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Abstract 

This paper presents the application of the Wavelet transform for 

detection of bearing fault. Previously collected signal data is used to 

analyze the process.   [6] The intended fault is  created artificially on 
outer ring of cylindrical roller bearing. The vibration data is collected 

while bearing was rotating at a certain speed and under balance. 

Various signal processing techniques like time and frequency domain 
analysis, Fourier transform, Wavelet transform, Envelope analysis are 

applied on vibration data.  Then after the evaluated results for healthy 

and faulty bearings are compared for detection the existence of fault 
and its location. Very accurate  and concrete results are obtained 

successfully. 

Keywords: Wavelet, transform, bearing, Fourier transform, signal 
processing, Envelope Analysis 

1. Introduction 

Rotating machines make life a great deal easier and are used 

in many places in everyday life. Especially in industrial 

applications, revolving machines have an indispensable place. 

Roller bearings are extremely important machine parts found 

in all machines that have rotational motion due to their 

minimized power loss while providing rolling friction instead 

of slip friction in mechanical and electrical assemblies 

 

The bearings are one of the machine parts with a high error 

rate and these faults can occur in various forms. As a result of 

defects in the roller bearings, the machines can be faulty or 

completely dismantled. If possible failures can not be avoided 

in time, loss of production is inevitable. 

 

If possible faults can not be prevented in time, it is inevitable 

that losses will be experienced in production. The condition of 

the bearings must be monitored since it is necessary for the 

machine to operate smoothly in order to prevent such 

negativity. When the bearings begin to fail, these reactions are 

oscillating as the machine vibrates 

 

 For this reason, vibration analysis methods are often used to 

detect bearing failures. Various signal processing methods 

have been proposed for these error analyzes. [1, 2] Faults of 

the same kind that occur in the rolling bearings cause more 

damage to the machine than the damage of a single fault. 

Therefore, the diagnosis of the same type of mistakes is very 

important 

 

Each error that occurs in the bearing is seen in its 

characteristic frequency when it is examined in the power 

spectrum. The magnitude of this characteristic frequency 

error in the power spectrum allows us to have information 

about the error rate in the bearing. When the same type of 

error occurs in the bearing, the characteristic error frequency 

is the same as if there is only one error in the bearing, but the 

severity of the error is different. The special cases of two 

identical errors occurred in the rolling bearings. [3] 

 

If the error is repeated periodically, the periodic structure of 

the signal can be determined by a capstorm analysis. 

However, the power envelope analysis and the power 

spectrum of many machine parts, such as gearboxes, have 

yielded more accurate and better results in this type of systems 

because of the complexity of the envelope analysis. [4] 

Wavelet Transform (WT) and Envelope Analysis are 

frequently used methods for error diagnosis of bearings. [5] 

 

The effect of the imbalance on the bearing for unbalanced 

load bearing was investigated by the short-time Fourier 

transform. [6] A practical application and flow chart for 

predictive maintenance in order to be able to detect errors in 

ball bearings and sliding bearings has been investigated. 

Using time and frequency-based data analysis methods and 

statistical results, mistakes can be identified for ball and roller 

bearings. Errors can be diagnosed incompletely thanks to the 

development of condition monitoring applications and 

predictive maintenance. [7] The effective value (RMS), peak 

value and crest factor results of the vibration from the roller 

bear important information about the condition of the roller. 

Spectrum comparisons can be made for faults detected in the 

system and Zoom and Capstrum analysis can be used to find 

the cause of the increased vibration [8]. 
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2. Wavelet Transform (WT) 

If the frequency content of the signal does not change with 

time, these types of signals are called stationary signals. The 

Fourier transform transforms the time-domain signal into a 

frequency plane and allows frequency analysis. Fourier 

transformation is sufficient to examine the frequency content 

of stationary signals. However, it has been observed that it is 

necessary to use transformations in which time and frequency 

information are displayed at the same time for the signals 

whose frequency content varies with time, and in which case A 

short-time Fourier transform (STFT) or Wavelet Transform 

(WT) can be used when the frequency information of the 

signal varies with time (non-stationary signal, for example, 

vibrations from a roller bearing a local fault or gear box) 

Fourier transformation does not indicate at what time zone 

these frequencies occur when we show frequency information. 

In short-time Fourier transform and Wavelet transform, the 

time and frequency information of the signal are displayed at 

the same time. The wavelet is a wave form with a mean time 

value of zero and is expressed by the following equation. 

. 
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transform can be applied both in time domain and frequency 

domain. When applied in the transformation time plane, the 

convolution process is defined. In order to simplify the 

process, the transformation can be expressed by a simple 

multiplication operation as follows when the transformation is 

applied in the frequency domain. [11th] 

 ψ (t) is the main wavelet and the following condition is 

satisfied 
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ψ (w) is the Fourier transform of the main wave. 

In short-time Fourier transform, the time-frequency resolution 

of the main wavelet transforms the wavelet transform when a 

window function is operated with a fixed resolution. 

Therefore, the main wavelet functions in wavelet transform 

fulfill the task of window functions in STFT. Therefore, when 

wavelet transform is applied, time-frequency resolutions 

change in high-frequency regions and low-frequency regions. 

In high frequency regions, the frequency resolution is getting 

worse although the time resolution is increased; while in the 

low frequency regions the frequency resolution increases but 

the time resolution deteriorates. 

.1 Continuous Wavelet Transform (CWT) 

The analysis function is wavelet in continuous wavelet 

transform. The scale value of the analysis function may vary 

for different regions of the signal to be transformed. The 

continuous wavelet transform of the x (t) signal can be 

described as the inner product of the x (t) signal and the ψ (t) 

wavelet function. The continuous wavelet transform, defined 

for the scale factor a> 0, 

2.1 Continuous Wavelet Transform (CWT) 

The analysis function is wavelet in continuous wavelet 

transform. The scale value of the analysis function may vary 

for different regions of the signal to be transformed. The 

continuous wavelet transform of the x (t) signal can be 

described as the inner product of the x (t) signal and the ψ (t) 

wavelet function. The continuous wavelet transform, defined 

for the scale factor a> 0, 

CWT(a,b;x(t),ψ(t))=∫_(-∞)^∞▒〖x(t) ψ_(a,b)^* (t)〗 dt 

 [11,12] where ψ_ (a, b) (t) is the vector of the position and 

scale information of the main wavelet function ψ (t) and can 

be expressed as follows. 
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Here, the * symbol indicates the complex conjugate, while the 

variables a and b are known as the scale factor and the 

scrolling parameter. The scale factor is inversely proportional 

to frequency. In other words, as the scale factor becomes 

smaller, the wavelet is compressed, fast changing details are 

better captured and high frequency regions are better 

analyzed; As the scale factor grows, the wavelet is expanded, 

slowly changing details are better captured and low frequency 

regions are better analyzed. 

Wavelet transform can be applied both in time domain and 

frequency domain. When applied in the transformation time 

plane, the convolution process is defined. In order to simplify 

the process, the transformation can be expressed by a simple 

multiplication operation as follows when the transformation is 

applied in the frequency domain. [11th] 

   (     ( )  ( ))  √    { ( )  (  )}    (2.1.3) 

The functions X (f) and ψ (f) are the Fourier transforms of the 

signals x (t) and ψ (t) respectively and F (-1) expresses the 

inverse Fourier transform process. The fast calculation of the 

continuous wavelet transform depends on the octave band 

analysis in which every octave is divided into equal vowels. 

[9] The number of octaves used in wavelet computation is 

determined by the time that the data is recorded. When the 

number of voices is determined, the desired frequency 

resolution of the conversion is important, and as the number of 

voices increases, the frequency resolution increases. [10] 

Mathematically, the wavelet transform provides flexibility in 

the choice of the analysis function. The Morlet Worm was used 

in this study because it is easy to understand because it is 

closely related to Fourier analysis. The Morlet wavelet is 

expressed in the time and frequency plane as follows. 
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f_0 represents the wavelet center frequency or 

oscillation frequency and t∈
center frequency to provide the f_0> 0.875 Hz condition 

makes the Morlet wavelet practically usable. [11,12] 

The real and imaginary parts of the Morlet wave are 

shown below. 
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Figure 1: The complex worthy Morlet Worm [13] 

 

If you want to do phase analysis with amplitude, you can use 

complex Morlet wavelets 

 

3. Bearing Characteristic Frequencies 

There are 4 types of local fault characteristic frequencies for 

bearings: BPFO, BPFI, BPF, FTF. The BPF (Ball Pass 

Frequency of Outer Ring) is the frequency of the error 

characteristic of the vibration generated by the rolling 

elements when passing over the outer ring, the frequency of 

the vibration generated by the rolling elements passing 

through the inner ring of the BPFI (Ball Pass Frequency of 

Inner Ring) The error characteristic frequency of the vibration 

occurring when rotating around its axis represents the 

characteristic error frequency that occurs in the result of the 

movement of the cage between the rings in the FTF 

(Fundamental Train Frequency) bearing. Based on this 

information, the characteristic error frequencies calculated 

according to the measured values in the table are as follows. 
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As a result of these operations, BPFO = 87.23 Hz, BPFI = 

129.44 Hz, BSF = 82.31 Hz, FTF = 6.71 Hz. 

In this study, the dimensions and parameter values of the 

cylindrical roller bearing FAG brand N205-E-TVP2 are used. 

The parameter values of the bearing used in the calculation of 

the characteristic error frequencies are as follows: 

The inner diameter of the roller is d = 25 mm, 

Bearing outer diameter D = 52 mm, 

Rolling element diameter BD = 7.5 mm, 

Average diameter of rolling path PD = 38.5 mm, 

Number of rolling elements n = 13, 

Shaft rotation speed (revolutions) nr = 1000 rpm, 

Spindle frequency fr = 16.67 Hz, 

Rolling element contact angle α = 0 degree 

 

 

 

4. Creation of the Experiment Plan and Collection of the 

Data 

spooled cylindrical roller bearings. For this study, the test 

setup was set up and data was collected from the bearing 

without error when the shaft bearing speed The experiment 

uses N205-E-TVP2 coded FAG of the roller was running at 

1000 rpm. Thereafter, on the rolling path of the outer bracelet 

of the roller, a diamond-tipped lathe pen was used to create 

an error of 0.05 mm in depth and 7.5 mm in length, and the 

data were collected while the shaft was rotating at a speed of 

1000 rpm. The data taken from the bearing were recorded on 

the computer with the aid of an accelerometer. The Dytran 

3200B6 shock absorber is used in the vibration tests of the 

bearings. In the experimental phase of this work, a two-

channel dynamic signal amplification unit named DBK4, 

which was produced by IOtech firm, was used in order to 

strengthen the dynamometer signals. The A / D converter 

(DAQBOARD 2000) produced by IOTECH Inc 'was used to 

convert the analog signals obtained during the experiments 

into digital. The data were collected with a sampling 

frequency of 20kHz for 25 seconds. [6] 

 

 
 

Figure 2: Bearing Test Setup [6] 

 

 
 

Figure 3: Creation of Artificial Error on the Outer 

Ring Rolling Path of Test Roller [6] 

 

 

 



 

 
 

Figure 4: Local error applied on outer ring raceway 

[6] 

 

 
 

Figure 5: Transfer of Collected Data to Computer 

Environment [6] 

 

5. Experimental Results 

 

Figure 6: Time Base of Healthy Bearing Vibration 

Signal 

 

Figure 7: Time-based representation of faulty 

bearing vibration signal 

 
The time-axis representation of rolling-out data is shown in 

Figure 6 and Figure 7. The time axis is approximated (102.4 

milliseconds). While the collected data from the healthy 

bearing does not show any change over time, the data 

collected from the bearing bearing the error contains periodic 

repetitive pulses due to error. Periodically, the impact of the 

resulting impacts gives us an idea of the local error of the 

error in the bearing. By looking at the signals given in the 

time domain, it can be clearly seen which one is healthy and 

which is wrong. As a matter of fact, it is not possible to 

determine in which region of the bearing the error is by 

comparing only the representations in the time plane. 

 

 
Figure 8: Frequency Plane Display of Healthy 

Bearing Vibration Signal 



 

 
Figure 9: Frequency Plan of Imperfect Bearing Vibration 

SignalDüzleminde Gösterimi 

The representation of the collected data on the frequency 

plane with the help of the Fourier transform is shown in 

Figure 8 and Figure 9. When the error signal is examined in 

the frequency domain, it is seen that the system enters the 

resonance around 5 kHz. However, in which region of the 

bearing the error occurred, the results of the Fourier 

transformation shown above are still compared and can not be 

said clearly 

 

 

 
Figure 10: Envelope Spread of Healthy Bearing 

Vibration Signal 

 
Figure 11: Envelope Spectrum of Incorrect Bearing 

Vibration Signal 

 

The envelope spectrum (up to 1 kHz) of the harvested data is 

shown in Figure 10 and Figure 11. When the envelope spectra 

are compared, the harmonics are not observed in the healthy 

bearing, and the faulty bearing shows harmonics at the 

characteristic error frequency of 87.16 kHz and at the exact 

multiple of this frequency value. 

 

.  

 

 
Figure 12: Wavelet Transform of Healthy Bearing 

Vibration Signal 

 
Figure 13: Wavelet Transform of Healthy Bearing 

Vibration Signal 

 
Figure 14: Wavelet Transform of the Incorrect 

Bearing Vibration Signa 



 

 
Figure 15: Wavelet Transform of the Inclined 

Bearing Vibration Signal 
 

The result of the wavelet transformation of the data collected 

from the healthy bearing is shown in Figure 12 and Figure 13. 

The result of the wavelet transformation of the data collected 

from the bearing with error is shown in Fig. 14 and Fig. When 

the results of wavelet transform of healthy and erroneous data 

are examined; it is seen that the system of the harmonics 

having the fundamental frequency of 87.32 Hz caused these 

effects to resonate around 5 kHz due to these harmonics which 

occurred in the system during the repetition period of the 

erroneous period in which the ball bearing the error forms a 

time period of 11.46 milliseconds. 

 

6. Conclusions 

Since the frequency content of the vibration signals recorded 

at the local fault bearing changes with time, the Fourier 

transform alone is not enough to interpret the error 

characteristic. For this reason, it was decided to use Wavelet 

transform in this study. Time and frequency information can 

be shown at the same time due to the wavelet transform 

applied to the signal. The time intervals at which the vibration 

pulsations created during the operation of the failed roller 

occurred were found to be 11.46 milliseconds. With reference 

to these time intervals, the fundamental frequency of the 

harmonics generated by the harmful effects in the system is 

calculated as 87.32 Hz. It has been determined that the error 

is due to the periodic repetition of the error events and that 

the error is a local error, after which the Wavelet Transform 

and the Envelope Spectrum results are in agreement with each 

other and with the BPFO given by the calculated 

characteristic error frequencies (3.1). 
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