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Abstract. The ever increasing application footprint raises challenges for
GPUs. As Moore’s Law reaches its limit, it is not easy to improve single
GPU performance any further; instead, multi-GPU systems have been
shown to be a promising solution due to its GPU-level parallelism. Be-
sides, memory virtualization in recent GPUs simplifies multi-GPU pro-
gramming. Memory virtualization requires support for address transla-
tion, and the overhead of address translation has an important impact
on the system’s performance. Currently, there are two common address
translation architectures in multi-GPU systems, including distributed
and centralized address translation architectures. We find that both ar-
chitectures suffer from performance loss in certain cases. To address this
issue, we propose GMMU Bypass, a technique that allows address trans-
lation requests to dynamically bypass GMMU in order to reduce trans-
lation overhead. Simulation results show that our technique outperforms
distributed address translation architecture by 6% and centralized ad-
dress translation architecture by 106% on average.

Keywords: Multi-GPU system· Memory virtualization· Address trans-
lation architecture

1 Introduction

Graphics Processing Units (GPUs) have been widely used in graph analyt-
ics [16,17], large scale simulation [6,14], and machine learning [8,13] due to its
massive thread-level parallelism. Over the years, with the development of big
data, the application footprint has increased rapidly, which raises challenges for
GPUs. What is worse, as Moore’s Law reaches its limit [1], improving GPU per-
formance through integrating more transistors on a single die is more difficult
than ever before. Instead, multi-GPU systems [4,7,18] have been shown to be
a promising solution due to its GPU-level parallelism. Nowadays, multi-GPU
systems have been used in data centers to improve the performance of cloud
computing [9].
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Recent support for memory virtualization [5,19,20] in GPUs has simplified
programming and improved programming productivity. Memory virtualization
requires the support of address translation. Also the details of memory hierarchy
from mainstream GPU manufacturers, such as NVIDIA, AMD, and Intel, have
not been published, it is accepted that current GPU supports TLB-based address
translation [2,4]. Recent research [2,3,11,12] has shown that the efficiency of
address translation has an important impact on GPU performance.

Currently, there are two common address translation architectures in multi-
GPU systems, namely, centralized address translation architecture (“centralized
architecture” for short) and distributed address translation architecture (“dis-
tributed architecture” for short). The major difference between these two archi-
tectures is that distributed architecture uses a GMMU (GPU Memory Manage-
ment Unit) in each GPU node (in the system) to manage address translation
for that GPU. When an address translation misses L2 TLB, the request is sent
to GMMU first for page table walk in distributed architecture; while, in central-
ized architecture, the request is directly sent to IOMMU (Input Output Memory
Management Unit) on the CPU side for translation.

In this paper, we make an in-depth analysis of these two architectures. In
terms of hardware overhead, centralized architecture causes less overhead due
to the absence of GMMU. In terms of performance, distributed architecture
outperforms centralized architecture on average, because GMMU reduces the
frequency of remote translation (translation requests are sent to IOMMU) for
local translation requests (translation requests find mappings in local memory).
However, we find that distributed architecture suffers from performance slow-
down in certain cases. For example, for those access requests that demand for
shared data (residents in other GPU node), the address translation requests are
sent to page table walker in GMMU if they miss L2 TLB. As the shared data
does not resident in the local GPU memory, the translation requests cannot
find address mappings in local memory either. These requests are then sent to
IOMMU for further translation. These unnecessary page table walks consume
additional power and incur performance degradation.

To address this issue, we propose GMMU Bypass in distributed architec-
ture to reduce unnecessary page table walks and improve address translation
performance. GMMU Bypass uses two fixed thresholds to predict according to
the variance in access behavior. Simulation results show that GMMU Bypass is
effective at reducing the overhead of handling address translation requests.

This paper makes the following major contributions:

– To our knowledge, this is the first work to provide in-depth analysis of two
address translation architectures from hardware overhead and performance
points of view in multi-GPU system.

– We propose GMMU Bypass, a technique that bypasses GMMU selectively to
improve the performance of multi-GPU system by profiling and predicting
the memory access behavior. We evaluate the performance of our design and
results show that GMMU Bypass outperforms the distributed architecture
by 6% and centralized architecture by 106% averagely.
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2 Background

In this section, we introduce the background on multi-GPU systems, including
programming models, remote data access mechanisms, and address translation
architectures.

2.1 Programming Models

Currently, there exist two programming models in multi-GPU system: discrete
model and unified model [15]. Discrete model dispatches kernels to each GPU
node for execution, as a result, programmers have to rewrite the code developed
for single GPU in order to make it executable on multi-GPU systems. While,
unified model dispatches tasks at CTA (Cooperative Thread Array) granularity,
which means the CTAs of a single kernel can be dispatched to different GPU
nodes for execution. In this case, the code developed for single GPU can run
seamlessly on multi-GPU systems without any modification. Due to the pro-
gramming convenience, the research community focuses on unified model. This
paper also targets unified model.

2.2 Remote Data Access Mechanisms

There exist three remote data access mechanisms in multi-GPU system: direct
cache access, page migration, and first touch migration. Direct cache access

means that a GPU directly accesses the L2 cache of a remote GPU node to
retrieve the requested data through RDMA (Remote DMA) [4,10,18]. In this
case, the corresponding page will not be migrated to the requested GPU. Page
migration refers to migrating a page from the GPU which it residents in to the
requested GPU in case of a page fault. First touch migration is a special case of
page migration. It means that CPU migrates the page to the GPU that demands
it first, which is used for data allocation generally.

2.3 Address Translation Architectures

There exist two address translation architectures in multi-GPU systems: cen-
tralized/distributed architecture. The major difference between the two archi-
tectures is whether the GPU node has a GMMU. The address translation process
in these two architectures is shown as follows.

Centralized Architecture The address translation process in centralized ar-
chitecture is shown in Fig. 1. The request first accesses the L1 TLB to check for
the address mapping. On an L1 TLB miss, the request accesses L2 TLB ( 1©).
If the request also misses L2 TLB, the request is sent to IOMMU (on the CPU
side) for further translation ( 2©). IOMMU performs page table walk and sends
the required address mapping to the GPU ( 3©). The GPU completes the data
access using the translated address. If the data residents in local memory, the
data is retrieved from its memory hierarchy; otherwise, the data is retrieved from
remote GPU through RDMA ( 4©).
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Distributed Architecture The address translation process in distributed ar-
chitecture is shown in Fig. 2. The request accesses L1 TLB first for address
translation. On an L1 TLB miss, the request accesses L2 TLB ( 1©). If it also
misses L2 TLB, the request is sent to page table walker in GMMU for page
walk ( 2©). If the request finds the desired page table entry during page walk,
the address translation is finished; otherwise, the request is sent to IOMMU for
further translation ( 3©). IOMMU performs page table walk and sends back the
required address translation mapping ( 4©). The GPU retrieves the data from its
local memory or remote GPU via RDMA ( 5©).
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Fig. 1: Centralized address translation architecture
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Fig. 2: Distributed address translation architecture

3 Motivation

The major difference between centralized architecture and distributed architec-
ture is whether address translation requests are sent to GMMU for page ta-
ble walk. For centralized architecture, when translation requests miss L2 TLB,
the requests are directly sent to IOMMU for further translation; while, for dis-
tributed architecture, the requests are sent to GMMU for page table walk.

Despite the fact that distributed architecture incurs higher hardware over-
head due to GMMU, it usually outperforms centralized architecture in terms
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of performance. Through further analysis, we find that the address translation
requests that miss L2 TLB touch either a local page (residents in local mem-
ory) or a remote page (residents in a remote GPU node). If it touches a local
page, for distributed architecture, the address translation completes after page
table walk, and thus, there is no need to access the IOMMU. However, for cen-
tralized architecture, no matter where the page residents, the request is always
sent to IOMMU for translation. As the communication between CPU and GPU
via PCIe incurs significant overhead (refers to latency), the remote translation
(accesses IOMMU) causes much longer latency than page table walk. Therefore,
for address translation requests that touch local pages, distributed architecture
can reduce translation overhead and improves performance.

However, if the address translation request touches a remote page, distributed
architecture may cause slight performance slowdown. This is because GMMU
does not store the page table entry of remote pages, therefore, the address
translation request cannot find the desired address mapping in local memory
after page table walk. In other words, the page table walk is unnecessary for
these requests. These unnecessary page table walks waste power and may cause
performance degradation.

To quantitatively show the discrepancy of two architectures, we evaluate the
performance of these two architectures and an ideal scheme, which is shown in
Fig. 3. The ideal scheme can predict the exact destination for each translation
request, and thus, it achieves the best performance. The experimental method-
ology can be found in Section 5. We have two observations from Fig. 3. First, we
can see that though distributed architecture significantly outperforms centralized
architecture for MT, FFT, KM, and ST, it does worse than centralized architecture
for RL, FIR, and MP. This result corroborates our analysis that unnecessary page
table walks may harm the performance of distributed architecture. Second, we
discover that the performance of the ideal scheme is better than distributed ar-
chitecture, which means that there are a great number of unnecessary page table
walks existing in distributed architecture. So we can propose a mechanism that
selects better destinations to reduce unnecessary page table walks for improving
performance.
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Fig. 3: Comparison of different address translation architecture
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4 GMMU Bypass

To reduce unnecessary page table walks and maintain the advantages of GMMU
for distributed architecture, we propose GMMU Bypass, a GMMU-side mech-
anism that 1) allows address translation requests to directly access IOMMU
without walking the GPU page table, or 2) simultaneously sends translation
requests to GMMU and IOMMU. Its architecture is shown in Fig. 4.

GMMU Bypass is a simple mechanism, it counts the number of address
translation requests that touch local pages and remote pages, and calculates
the ratio periodically (L/T ratio in the figure, L is the number of local pages, T
is the number of all pages). If the ratio is larger than a threshold (T1 ), which
means more requests touch local pages in the current epoch, then the control
logic predicts more requests touching local pages in the next epoch and disables
GMMU bypass. If the ratio is smaller than a threshold (T2 ), which means more
requests touche remote pages in the current epoch, then it predicts that this is
also the case in the next epoch and enables GMMU bypass.

However, we find that when the ratio locates between T1 and T2, the pre-
diction accuracy is low as a result of random accesses to local pages and remote
pages. The random accesses do not show a domination trend and accesses to
local/remote pages account for a certain percentage. In this case, it is not ap-
propriate to send all requests to GMMU only or IOMMU only. Instead, our
mechanism sends all requests to GMMU and IOMMU simultaneously. If the
request can find the desired address mapping after page table walk, then the
response from IOMMU will be discarded; while, if the request cannot find the
address translation, it will be discarded, since there has been a request sent to
IOMMU for further translation.

By simultaneously sending requests to GMMU and IOMMU, the requests can
be handled without unnecessary page table walks. Therefore, the latency caused
by awaiting page table walks for remote translation in distributed architecture is
eliminated. However, the performance gain comes at a cost. Sending requests to
both MMUs simultaneously generates unnecessary page table walks in GMMU
or IOMMU, which may cause congestion in GMMU and IOMMU. According to
our evaluation, setting proper thresholds (empirically set T1 to 0.85 and T2 to
0.15) can both achieve high performance and limit the congestion effectively.

L2 TLB Control 
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L/T Ratio
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Fig. 4: GMMU Bypass
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5 Methodology

We evaluate Bypass GMMU with MGPUSim [15], a multi-GPU simulator that
supports multi-GPU system simulation. This simulator has been validated against
AMD multi-GPU systems.

5.1 Experimental Setup

We evaluate a multi-GPU system with 4 AMD GPUs. The configuration is shown
in Table 1. Each GPU consists of 4 SEs (Shader Engine) and each SE consists
of 9 CUs (Compute Unit). Therefore, each GPU has 36 CUs. Each CU has a
private L1 vector TLB and all CUs in a GPU share an L2 TLB. Each Shader
Engine is equipped with an L1 instruction TLB and an L1 scalar TLB. The 4
GPUs in the system are connected via PCIe-v3 link with bandwidth of 16GB/s
in each direction. CPU and 4 GPUs are also connected via the PCIe-v3 link. The
IOMMU on CPU side supports 8 concurrent page table walks and the GMMU
in GPU supports 64 concurrent page table walks. The page size is 4KB, which
is the default size in current GPUs.

5.2 Workloads

We use workloads from AMD APPSDK, Hetero-Mark, DNN, and SHOC bench-
mark suites for evaluation. These workloads cover a wide range of domains,
including machine learning, graph analytics, numerical computation, etc. The
average dataset size of these workloads is 64 MB. Long simulation time pre-
vents us from evaluating workloads with larger footprint. Selected workloads are
shown in Table 2.

6 Evaluation

We first compare the performance of GMMU Bypass with centralized architec-
ture, distributed architecture, and an ideal scheme. We also make an in-depth
analysis behind the performance result. Finally, we estimate the overhead of our
mechanism.

Table 1: Multi-GPU System Configuration
Component Configuration Number per GPU

CU 1.0GHz 36
DRAM 512MB HBM 8
L1 TLB 1 set, 32-ways 44
L2 TLB 8 set, 32-ways 1
IOMMU 8 Page Table Walkers -
Intra-GPU Network Single-stage XBar 1
Intra-Device Network 16GB/s PCIe-v3 -
GMMU Page Table Walkers 64
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Table 2: Workloads Characteristics
Abbv. Application Benchmark Suite Mem.Footprint

RL Relu DNN 64M
FIR Finite Impulse Resp. Hetero-Mark 64M
MP Maxpooling DNN 64M
AES AES-256 Encryption Hetero-Mark 64M
PR PageRank Algorithm Hetero-Mark 64M
MT Matrix Transpose AMDAPPSDK 64M
FFT Fast Fourier Transform SHOC 64M
KM KMeans Clustering Hetero-Mark 64M
ST Stencil 2D SHOC 64M
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Fig. 5: Performance normalized to each address translation architecture

6.1 Performance

GMMU Bypass exposes several design parameters, including sampling epoch,
T1 and T2, We set sampling epoch to 10µs, T1 to 0.85 and T2 to 0.15 as we
empirically find that these values yields best trade-off between performance and
overhead. The performance comparison is shown in Fig. 5. We make three obser-
vations. First, our scheme outperforms distributed architecture for RL, FIR, and
MP, which distributed architecture suffers. Second, our scheme achieves similar
or slightly higher performance with distributed architecture for the rest of ap-
plications, which distributed architecture performs well. Third, the ideal scheme
performs best for all applications. On average, our scheme achieves 6% perfor-
mance improvement over distributed architecture and is within 96% of the ideal
scheme.

6.2 Analysis

We provide an in-depth analysis of our proposed technique.

Prediction Accuracy When the L/T ratio is larger than T1 or smaller than
T2, our technique disables GMMU bypass or enables GMMU bypass correspond-
ingly. Although in this case, L/T ratio shows a domination trend, the prediction
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Fig. 6: Prediction accuracy of our technique when L/T ratio is larger than 0.85
and smaller than 0.15
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Fig. 7: The number of reduplicate page table walks in GMMU and IOMMU

is not always accurate. We check this by calculating the prediction accuracy of
our scheme. The result is shown in Fig. 6.

It shows that when L/T ratio is larger than 0.85 (T1 ), our technique achieves
high prediction accuracy for MT, FFT, KM, and ST, but achieves relative low ac-
curacy for RL, FIR, MP, AES, and PR. Through further analysis, we find that for
these latter five applications, our technique only collects a few translation re-
quests in the sampling epochs. The limited number of translation requests does
not provide enough information for prediction, thereby lowers prediction accu-
racy. When L/T ratio is smaller than 0.15 (T2 ), our technique achieves relative
high prediction accuracy except FFT. We find that FFT also suffers from lim-
ited number of translation requests in sampling epochs. The average prediction
accuracy is 66% and 75% in these two cases, respectively.

Reduplicate page table walks As it is not easy to predict the accurate access
behavior (translation requests access local pages or remote pages)) when L/T
ratio lies between 0.15 and 0.85, our techniques chooses to send the request
to GMMU and IOMMU simultaneously. This generates reduplicate page table
walks in GMMU and IOMMU since there is only one effective page table walk.
To quantitatively show the number of reduplicate page table walks, we record
the number of page table walks in GMMU and IOMMU respectively. The result
is shown in Fig. 7.



10 J. Wei et al.

Although our technique increases the number of duplicate page table walks
in GMMU, the total number of page table walks is still smaller than that in dis-
tributed architecture. This is because by enabling GMMU bypass, our technique
can reduce unnecessary page table walks. In IOMMU, our technique does not
increase the number of page table walks dramatically except ST. This is because
ST sends more translation requests when L/T ratio lies between 0.15 and 0.85,
thereby increases the number of duplicate page table walks in IOMMU signifi-
cantly. The number of all page table walks increases 14% and the performance
improves 11% in ST specificly. On average, our technique reduces the number
of page table walks by 21% in GMMU, and increases the number of page table
walks by 29% in IOMMU compared to distributed architecture. Therefore, our
technique does not incur a significant number of reduplicate page table walks in
both GMMU and IOMMU.

6.3 Hardware Cost

Our technique is simple and incurs negligible hardware costs. It only needs two
8-bit counters to record the number of translation requests that touch local
pages and remote pages respectively. In addition, a simple ALU is enough for
calculating the L/T ratio.

7 Related Work

As far as we know, this paper is the first to optimize the address translation
workflow for multi-GPU systems. In this section, we introduce previous research
focusing on address translation designs on GPUs and performance optimization
for multi-GPU systems.

7.1 Address Translation on GPU

Since the introduction of unified memory, there have been several works that
target address translation designs on GPUs. J. Power et al. and B. Pichai et al.
were among the first to explore such designs. In J. Power’s design [12], per-CU
private L1 TLB, a highly-threaded page table walker and page walk cache are
essential components for efficient address translation on GPUs. B. Pichai’s design
includes per-CU private TLB and page table walker [11]. The authors showed
the importance of making the warp scheduler to be aware of TLB design. R.
Ausavarungnirun et al. showed that replacing the page walk cache with a shared
L2 TLB can improve the performance of address translation [2].

7.2 Performance Optimization for Multi-GPU Systems

Despite multi-GPU systems utilize GPU-level parallelism, it suffers from ineffi-
ciency in certain cases. The research community proposes several optimization
techniques to improve multi-GPU performance [4,7,18]. T. Baruah et al. pro-
posed Griffin [4], a page allocation strategy to reduce the impact of bandwidth
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by making more remote accesses to be local accesses. V.Young et al. proposed
CARVE [18], a hardware mechanism that stores recently accessed remote shared
data in a dedicated region of GPU memory. G. Kim et al. proposes a strategy to
allocate CTAs in multi-GPU system [7]. This strategy can improve the spatial
locality of data access and improves the address translation efficiency for dis-
tributed architecture. Our work focuses on the address translation in distributed
architecture.

8 Conclusion

The address translation efficiency has an important impact on the performance
of multi-GPU systems. Although distributed architecture significantly outper-
forms centralized architecture for a majority of workloads, it suffers in certain
cases due to unnecessary page table walks. In this paper, we propose GMMU
Bypass, a technique aims at reducing the overhead of unnecessary page table
walks in GMMU. The simulation result shows that our technique achieves 6%
performance improvement over distributed architecture and is within 96% of an
ideal scheme, which shows the effectiveness of our technique.
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