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Abstract—Magnetic resonance imaging (MRI) motion artifact
is common in clinic which affects the doctor to accurately locate
the lesion and diagnose the condition. MRI motion artifact is
caused by the physiological movements of the patient while
scanning the organ. Most of the current methods do artifact
suppression and image restoration on the inverse Fourier trans-
form level. They are neither effective nor efficient and can not be
utilized in clinic. In this paper, the method that transfers deep
learning into this domain with adopting a novel approach in
Multi-scale mechanism for MRI motion artifact correction was
proposed. What’ more, a newer residual block with the deeper
and wider architecture was proposed. With the deeper and wider
residual block, the correction effect is greatly improved. The Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM)
were adopted as the evaluation metrics. In short, our model is
trainable in an end-to-end network, can be tested in real-time
and achieves the state-of-the-art results for MRI motion artifact
correction.

Index Terms—MRI motion artifact correction, deep learning,
multi-scale, residual block

I. INTRODUCTION

Magnetic resonance imaging (MRI) technology is widely
used in many medical institutions. MRI technology can clearly
show the internal structure of the human body such as organs,
bones and blood. At the same time, MRI has no radiation
and X-ray damage. Therefore, MRI not only can help doctors
effectively identify tumors and necrotic lesions but also be
not harmful to human’s body. The motion artifacts will be
produced in the process of generating magnetic resonance
images which will affect the quality of the images seriously,
especially for the edge of the object in the images. The details
of the images will be lost, then it will be difficult for doctors
to locate the key parts of the lesion which will have an
extremely adverse impact on the diagnosis. Motion artifact
in MRI is mainly caused by physiological movements of the
patient during the process of generating images, such as atrial
fibrillation, muscle spasm, and so on. These motions cause
phase shifts during imaging. In the process of the inverse
Fourier transform, these shifts will cause image signals of the
same period to be combined at different locations. See Fig. 1
for the principle.

The correction of MRI motion artifact has received many
attentions in recent years, and many different algorithms have

Fig. 1. The synthesis process of MRI images. The normal process is on the
right that the signal from the same periods will be filled in the same places.
However, if there is irregular atrial fibrillation during scanning, the signals
will be stacked incorrectly in different places that the process was shown on
the left.

been developed by the researchers. However, most of these
methods do artifact suppression and image restoration on the
inverse Fourier transform level. These methods can only do
motion artifact correction for the images with the single blur
kernel and it’s time-cost and involves heuristic parameter-
tuning and expensive computation leading to difficulties in
implementation. Actual MRI with motion artifact is complex
with many blur kernels that makes these traditional methods
inapplicable.

Deep learning has achieved great development in recent
years. Deep learning techniques are choosen to solve the
problem of MRI motion artifact in our paper. In this paper,
an end-to-end convolutional neural network structure was
developed which takes blurred images as input to train the
mapping between the blurred images and the sharp images
through reducing the loss function, then utilized the trained
model to restore images with motion artifacts.

Utilizing CNN for image deblurring has been widely studied
and applied. Our method which utilizes CNN for MRI motion
artifact correction is motivated by utilizing CNN for image



deblurring. The following formula (1) defines motion blur:

LB = K ∗ LS +N; (1)

,where LB is a blurred image, K is a blur kernel, LS is a
sharp image, ∗ denotes the convolution operation and N is an
external noise.

Through learning the formation principles of MRI motion
artifact and the definition of motion blur, the facts that they
have essential similarity in principle was found. Organ motion
represents the blur kernel of the motion blur, the frequency
domain of the inverse Fourier transform can be regarded
as the image latent space. These provide theoretical support
for the application of deep learning for MRI motion artifact
correction.

This paper first introduced the background in I, then the
related works about the paper are introduced in II, algorithm
implementation and details are introduced in III. What’s more,
experimental results and analysis are written in IV. At last,
some summary of the paper was made and some future work
plans were done in V.

Our paper has the following contributions:
First, the connection between the MRI motion artifact

correction and the image motion deblur in theory was found
in our research. What’s more, CNN has been utilized for MRI
motion artifact correction successfully and got state-of-the-art
results.

Second, an end-to-end convolutional neural network ar-
chitecture for MRI motion artifact correction which takes
the pair of blur image and sharp image as input to train a
mapping between the blur images and the sharp images was
developed. This network was named as Remove MRI Motion
Artifact Network (RMMAN). This network uses the multi-
scale information of the images to fully extract the feature
information of the images of different scales. After many
training iterations, good results could be achieved.

Third, ResNet is the basic network of our architecture, and
ResBlock is widely used in various computer vision tasks. The
residual network has the ability to make the network deeper
so as to be good for parameter learning, so it was selected in
our method. A deeper and wider ResBlock architecture was
designed which greatly enhances the ability of the network
to extract features, and it was called the deeper and wider
ResBlock (DW-ResBlock) in our paper. Through utilizing this
architecture, the same results while reducing the depth of the
network could be achieved. After applying this architecture,
our restored images not only get better results than the original
network on the evaluation metric but also have a more actual
edge and detail information, which makes the restored images
are closer to the ground-truth images visually.

II. RELATED WORKS

A. Image deblurring

As mentioned in I, the methods of the image deblurring
could be divided into two types: blind deblurring (unknowing
blur kernel) and non-blind deblurring (knowing blur kernel).

Fig. 2. Our results. The above two sets of images are MRI images of the
patient’s heart, but they are shot at different angles, so they don’t look very
similar. The column on the left is the input images, the column on the right
is the output images. The first line is the MRI images, and the next two lines
are the enlarged images.

Most of the early algorithms which rely on the classical Lucy-
Richardson algorithm [1] were used to process the motion
blur for images with clear blur kernel K. These algorithms are
effective for the images with a single and clear blur kernel,
while most of the image blur kernels in daily life are not the
single kernels, on the contrary they are complex and diverse.

CNN has been widely used in the study of image deblurring
and has achieved good results. Li Xu et al. [2] presented a
generalized and mathematically sounded L0 sparse expression,
they also presented a new effective method to deal with
motion deblurring. Jian Sun et al. [3] used convolutional neural
networks to predict the probability distribution of motion blur
and used the Markov random field model to infer non-uniform
motion blur fields and got good results. Orest Kupyn et al.
[4] presented an end-to-end learning approach for motion
deblurring, which is based on conditional GAN and content
loss. This method adopts GAN idea which takes the blur
images as input and generates sharp images, achieving the
state-of-the-art results by a visual appearance at that time.
Sainandan Ramakrishnan et al. [5] also adopt GAN as their
basic framework. Furthermore, they added sparse connections
and dense connections in their networks. This structure effec-
tively reduces the computation time and gets good results.

B. MRI motion artifact correction

MRI motion artifact is very common in clinic. It is usu-
ally caused by the movements of the patient, such as atrial
fibrillation and muscle spasm, which will affect the doctor’s
judgment of the patient’s condition, so, it is very necessary to
remove motion artifact. YH Tseng et al. [6] presented a new
post-processing algorithm to deal with more general motion
artifact. This algorithm corrects blurry images by constantly
iterating through the knowledge of the image. Van, Anh T
et al. proposed a new k-space and image space combination
(KICT) method [7] to eliminate motion artifact and avoid
incomplete correction of phase error. Huang Min et al. [8]



improved the MRI motion artifact correction method based on
minimum entropy constraint, which improved the correction
effect. Wu Chunli et al. [9] presented an image correction
algorithm which combined Fourier projection algorithm and
genetic algorithm for handling MRI motion artifact correction.
This method has higher image clarity and faster imaging speed
at that time. So far as today, the effects of motion artifact
correction are extremely tiny.

C. multi-scale architecture

The idea of Multi-scale architecture is widely utilized in
various tasks of deep learning, which could make the network
has a more powerful ability to extract features. Seungjun Nah
et al. [10] presented multiscale loss function that mimicked
conventional coarse-to-fine approaches. Furthermore, they pro-
posed a new large-scale dataset that providesd pairs of realistic
blurry image and the corresponding ground truth sharp image
that were obtained by a high-speed camera. With the proposed
model and dataset, they got achieved exciting results not only
qualitatively, but also quantitatively. Juncheng Li et al. [11]
proposed a novel multi-scale residual network (MSRN) to fully
exploit the image features. The architecture was well designed
which using different convolution kernels and superimposing
gradients of different scales. Qifeng Chen et al. [12] adopted a
cascaded refinement network to generate realistic streetscape
maps. This architecture could be applied to high-resolution
images with strong adaptability. Multi-scale architecture could
improve the ability to extract features without increasing
network parameters, so our network adopted this architecture.

III. PROPOSED METHODS

In this section, the proposed method was introduced in a
comprehensive and detailed manner. The new residual block
which was named DW-ResBlock in our paper was illustrated
firstly. The DW-ResBlock was compared to the previous
residual block and the benefits of such an architecture were
introduced in principle. After that, the overall architecture was
illustrated. It takes a sequence of different scale blurry images
as input that were resized from the original image and restores
a sequence of different scale sharp images. The sharp one at
the original size as the final output is adopted. What’s more,
the loss functions were demonstrated and finally, the evaluation
metric was introduced.

A. ResBlock and DW-ResBlock

The residual network has epoch-making significance in the
field of deep learning, which addresses the problem that CNN
is difficult to train an effective model. As we all know, the
deeper network has a powerful ability to learning. However,
with the network getting deeper and deeper, the problem of
vanishing gradient and exploding gradient will occur when the
network is training. The residual network has just solved this
issue, so it is widely utilized in various tasks of deep learn-
ing, such as object detection, object segmentation. Recently,
residual networks [13]–[15] exhibit excellent performance in
computer vision problems of super-resolution. Ledig et al.

Fig. 3. Comparison of residual blocks in SRResNet (a), EDSR (b), and our
proposed (c). Each convolution layer’s kernel size is 5 and the activation
function is ReLU. ”+” represents the splicing operation.

[15] successfully applied the residual network to the super-
resolution problem with developing SRResNet.

In Fig. 3, the different residual network architectures which
contains SRResNet [15] ,EDSR [16] and our proposed net-
works were illustrated. Compared to SRResNet, EDSR re-
moves the batch normalization layers that make the network
simple. In SRResNet, authors thought that since batch nor-
malization layers normalize the features, they got rid of range
flexibility from networks by normalizing the features, it was
better to remove them. With the simple architecture, GPU
memory usage is also sufficiently reduced since the batch
normalization layers consume the same amount of memory
as the preceding convolutional layers.

Removing the batch normalization layers was proved to be
effective in the task of MRI motion artifact correction, so
based on it, a deeper and wider residual network was proposed
which was called DW-ResBlock in this paper. A Convolution-
ReLU-Convolution architecture was added between the o-
riginal convolution layer and ReLU activation function. A
powerful ability to extract image features could be gotten with
using the deeper and wider residual network. With utilizing
DW-ResBlock, a bigger receptive field could also be gotten
by utilizing the same number of ResBlock. Then the deep
information of the MRI motion artifact images can be fully
extracted. The better results could be achieved not only in
evaluation metric but also in vision.

B. Overall architecture

As mentioned in I, a multi-scale network architecture was
adopted in the coarse-to-fine strategy. In Fig. 4, each scale
can be seen as an image deblurring subtask which takes blur



images as input and generates corresponding sharp images as
output. The formula (2) can represent this subtask.

Ii = Net(Bi; Ii−1;Netpar) (2)

Where i is the scale index, and i = 1 is the first scale with
the smallest image size. After testing, the three scales achieved
good results in balancing network parameters and evaluation
metric. Bi and Ii are the blur images and restored images
at the i-th scale, respectively. Netpar represents the training
parameters of this subnetwork.

Fig. 4. Overall architecture of our model. Our architecture has three
scales, in which the input of scale 1 is the initial input and the output
of scale 3 is the final output. Each scale is a subnetwork which has three
downsampling structures and three upsampling structures. The downsampling
structure contains one 5 � 5 convolution layer and three DW-ResBlocks. The
upsampling structure contains three DW-ResBlocks and one 5 � 5 convolution
layer. The image size (S) is resized by the scale ratio(r) that Si = Si�1 *
r. + represents the splicing operation. And lines with arrows represent skip
connections

Each subnetwork is a symmetric architecture with the
same number of downsampling structures and upsampling
structures. Downsampling structure contains one convolution
layer and n DW-ResBlocks. In this paper, n is 3 is adopted
because n = 1...5 have been tried and the network with n
= 3 get the best result. Similarly, the upsampling structure
contains m DW-ResBlocks and one deconvolution layer, m =
3 is chosen in our paper after testing. The dotted line with
an arrow represents the skip connection which connecting the
feature maps with the same dimension. The output image of
the previous scale was upsampled and spliced with the blurred
image of the next scale to input the next scale subnetwork. For
example, the scale 1 output was upsampled and the upsample
one and the scale 2 input were spliced. The spliced result
will be taken as the input of the 2-nd scale. The output
of the 3-rd scale is the final output of the whole network
architecture. What’s more, the convolution kernel size will also
affect the final result because the bigger kernel size can get a
bigger receptive field which will have a better ability to extract
feature. However, our methods can’t simply increase the size
of the convolution kernel because if the kernel size is too large,
the parameters of the network will become too much, so much
so that the memory usage of GPU is unaffordable or there will
be the problem of overfitting. Similarly, if the kernel size is

too small, the features could not extract very well which will
lead to the network’s ability to express not very good then this
will not get good results too. After doing the experiment, 5
was chosen as the size of the convolution kernel.

C. Loss function

The loss function is used to measure the learning ability
of the training model. For the task of image deblurring, L1
loss and L2 loss are two classical choices. L2 loss has a
stronger convergence ability which makes the model difficult
to be overfitting. So L2 loss was adopted for each scale, the
specific definition is as follows:

L =

n∑
i=1

1

Ni

∣∣∣∣Ii − Iig∣∣∣∣2 (3)

Where Ii represents the output of the i-th scale and Iig is
the ground truth images with the corresponding size. Ni is the
batch size of the i-th scale, and in this paper, all scale’s batch
size is the same. What’s more, the L1 loss and adversarial loss
[17] have also been tried, but L2 loss has the best performance,
so L2 loss is adopted.

D. evaluation metrics

Our goal is to correct MRI motion artifact. With the restored
images and ground truth images, some evaluation metrics
are needed to use to determine the similarity between them.
Structural Similarity (SSIM) and Peak Signal to Noise Ratio
(PSNR) are classical evaluation metrics which are effective
for the task of evaluating the quality of the model. SSIM
was first introduced by Zhou Wang et al. [18] who come
from Laboratory for Image and Video Engineering. SSIM is a
measure of the similarity between two images. Python’s library
could be used to calculate SSIM. The peak signal-to-noise
ratio (PSNR) is an objective measure of image distortion or
noise level. The greater the PSNR and SSIM between the two
images, the more similar the two images are. In addition to
the above two classic evaluation indicators, a new evaluation
metric which is called Inception Score(IS) [19] has appeared to
evaluate the clarity and diversity of generated images recently.
In order to calculate the IS value of the image, the Google’s
inception v3 model [20] is adopted. The following formula (4)
defines Inception Score.

IS(G) = exp( E
x∼pg

DKL(p(y|x)||p(y))) (4)

Where E
x∼pg

represents the distribution of images generated

from the generator. y y is the vector obtained after the images
are input to inception v3. What’s more, p(y|x) is probability
of y under the condition of x, p(y) is the probability of y and
DKL(p(y|x)||p(y)) is the KL divergence between p(y|x) and
p(y). In general, the larger the value of the inception score,
the better the quality of the generated model.





TABLE I
MEAN PEAK SIGNAL-TO-NOISE RATIO, STRUCTURAL SIMILARITY

MEASURE

Evaluation Models
Metric DeblurGAN RMMAN with Fig. 3-b proposed
PSNR 31.22 34.78 34.97

MSSIM 0.9324 0.9269 0.9369
Inception Score 1.2682 1.2643 1.2770

in section III-B. The Tab.II shows the results of three kernel
size in Evaluation.

TABLE II
THE RESULTS OF DIFFERENT KERNEL SIZE

Evaluation Models
Metric kernel size = 3 kernel size = 7 kernel size = 5
PSNR 32.69 32.54 34.97

MSSIM 0.9197 0.9232 0.9369
Inception Score 1.2585 1.2643 1.2770

D. Runtime

All of our models were implemented with using Tensorflow
[21] deep learning framework and perform the training on
Texla K80 GPU. For model training, Adam solver [22] with
�1 = 0.9, �2 = 0.999 and � = 10−8 are used. The learning rate
is exponentially decayed from initial value of 0.0001 to 1e−6at
2,000 epochs using power 0.3. All the models are trained with
batch size = 10. The code released by [23] was utilized as our
framework.

2,000 epochs are enough for convergence, which takes about
192 hours for training. In addition to comparably robust and
visual reality correction results, our proposed method is the
first real-time, which will take 1.71s to generate a sharp image
in the size of 512×512 on the GPU. A transfer from JPEG
to DICOM post-process would take up to an additional 160.8
ms on the CPU. Comparing to existing complex and time-cost
correction methods that need several iterations to get results,
our method has large advantages.

V. CONCLUSION

In this paper, a deeper and wider residual block (DW-
ResBlock) was developed and why it is effective in the task of
MRI motion artifact correction was explained. What’s more, an
end-to-end correction system which based on the idea of multi-
scale was proposed and the DW-ResBlock was adopted in the
system. The method in deep learning domain was successfully
transferred to the task of MRI motion artifact correction and it
got state-of-the-art results both qualitatively and quantitatively.
However, whether the results have been up to the clinical
standard? We need to consult doctors for further professional
evaluation in medicine. As mentioned in section IV-D, the time
to generate a sharp image is about 1.71s. We think this is still
not fast enough, so we will do more research to make the
algorithm faster. We believe the DW-ResBlock can be applied
to other image processing tasks and we will do research in
this field in the future.
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