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Abstract. Precise photovoltaic (PV) module electrical modelling is essential 

because of the comprehensive system installation of PV power stations. The 

scientists have therefore suggested a photovoltaic single-diode model (SDM) 

for effective PV modelling. The SDM is a simple and non-linear model com-

prising five unknown parameters. This paper, therefore, presents a novel hybrid 

approach called particle swarm optimization (PSO) and grey wolf optimization 

(GWO), in order to extract unknown parameters from the SDM model. This pa-

per also shows a new cost function based on the values of the datasheet instead 

of using extensive experiments. This paper, therefore, used standard test condi-

tion (STC) data to estimate two parameters by optimizing three remaining pa-

rameters by using PSOGWO algorithm. This proposed algorithm is applied to 

two commercial PV panels, namely KC200GT and SQ85, to find its parame-

ters. Following this, the I-V curves of these PV modules were plotted under 

STC for five individual runs of the simulation. To prove the performance of the 

proposed PSOGWO algorithm, it is compared based on the statistical results 

with other algorithms, such as GWO and hybrid GWO-cuckoo search 

(GWOCS). 

Keywords: GWO, Parameters, Photovoltaic, PSO, Single-diode model. 

1 Introduction 

The solar PV energy is the renewable energy most commonly used in residential, 

industrial, vehicle, large power stations because of its advantages, such as low 

maintenance, noiseless operation, and no CO2 emission. However, the cost competi-

tiveness in PV markets, unstable prices, and political aspects of fossil fuels have sig-

nificantly enhanced investment in PV [1-2]. For PV investigations, such as maximum 

power tracking, thermodynamic impacts, partial shades of PV [3-5] and stand-alone 

or grid-tied photovoltaic systems, accurate PV modelling and simulation is thus es-
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sential [6]. Then, the researchers recommended the exact electrical modelling of the 

PV module by analysis of the internal structure of the PV cell. Ideally, the PV cells 

are modelled using the single-diode model (SDM), double-diode model (DDM), and 

three-diode model, however, due to simplicity, most of the researchers consider SDM 

alone for their further applications. Thus, an electrical equivalent of the PV 

cell/module includes a current source (Ip) in parallel with diode and shunt resistance 

(Rsh), and then connected with a series resistance (Rse). In this model, the diode is 

modelled by a non-linear exponential expression with three parameters, such as pho-

tocurrent (Ip), ideality factor (a), and reverse saturation current (Isd). Then, for SDM, 

there are five unknown parameters, such as Ip, Rsh, Rse, a, and Isd [7].  

In literature, mostly the researchers preferred SDM or DDM for the estimation of 

electrical parameters of the PV cell/module. The researchers have tried using analyti-

cal methods, iterative methods, meta-heuristics methods, or its combination with ana-

lytical and iterative methods to estimate the unknown parameters of the photovoltaic 

modules. In some of the analytical techniques, the datasheet values at STC and nomi-

nal operating cell temperature (NOCT) are used. Nevertheless, the analytical methods 

use rough solutions due to the assumption of constant values for Rse and Rsh. Some 

methods, such as the Lambert function and bond graph model ignores the value of Rse 

or Rsh. Few iterative methods, such as least squares, Gauss-Seidel, and Newton-

Raphson, are used for parameter estimation problems. Nevertheless, due to the draw-

backs, such as ignoring few parameters, assumption off constant values, and incorrect 

initial value selection, iterative and analytical methods are not preferable. Nowadays, 

metaheuristics algorithms are utilized to estimate the parameters of both SDM and 

DDM by minimizing the error or objective function [8]. In most of the literature, the 

root-mean-square error (RMSE) is considered as the objective function, in which 

RMSE is defined as the root of the average of the current difference between the ex-

perimental data and the estimated data. To do this, many algorithms, such as PSO, 

GWO, whale optimization, artificial bee colony, Jaya optimization, teaching-learning 

optimization, firefly optimization, Rao algorithms, slime mould optimization, salp 

swarm optimization, etc. and many hybrid versions of above-said algorithms [9]. 

Nevertheless, to minimize the RMSE, the experimental data of the cell/module is 

required, which is not present in datasheet provided by the manufacturer. Thus, the 

researchers proposed an alternate objective function and then applied algorithms to 

estimate the parameters of the module. But, the selection of upper and lower bounds 

of optimized parameters is the main drawback of above-said methods. Recently, the 

most of the researchers used SDM for the parameter estimation problems of the PV 

module and therefore, the optimization methods, such as PSO, WOA, Rao, Coyote 

optimization are applied to extract the five uncertain parameters of the PV module 

[10]. Nevertheless, no optimization algorithm can find the global optimum solution 

for all engineering problems based on no free lunch theory. This motivates the re-

searchers to apply new algorithms to find the optimal values of five parameters of the 

SDM of the PV module.   

Recently, the authors of [11] introduced a new hybrid algorithm called PSOGWO 

by combining the PSOs exploitation ability with GWO’s exploration ability. In which, 

the particles of the PSO algorithm is replaced by a particle enhanced with GWO. In 
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hybrid PSOGWO, the GWO algorithm helps the PSO to minimize the opportunity of 

dwindling to a local optimum. The inventors of this algorithm tested PSOGWO using 

classical engineering problems and benchmark functions, but PSOGWO has not been 

utilized for parameter estimation problems due to its freshness.  

The paper is organized as follows. Section 2 covers the mathematical modelling of the 

SDM and the formulation of the objective function. Section 3 covers the basic con-

cept of PSOGWO and its application to parameter estimation problem. Simulation 

results are discussed in Section 4, and section 5 concludes the paper. 

2 Mathematical Modelling of SDM and Problem Formulation 

2.1 Mathematical Modelling 

The PV module comprises several PV cells in parallel (Nsh) or series (Nse) to produce 

high voltage and high current. The equivalent circuit of the PV module based SDM is 

discussed in this section of the paper. The SDM of the photovoltaic module is repre-

sented by the current source, Ip in parallel with diode and shunt resistance, Rsh, and 

series resistance, Rse, as illustrated in Fig. 1 [12].  

 

Fig. 1. Equivalent SDM circuit of the photovoltaic module  

The photocurrent, Ip is changed with respect to the solar insolation. As per Shockley 

equation, the equation of the PV module current, I, is written as follows, in which q 

represents the electron charge and is equal to 1.60217×10-19 C, T denotes the absolute 

temperature of the module, the output voltage of the PV module is denoted as V, and k 

denotes the Boltzmann constant which is equal to 1.3806×10-23 J/K.  

𝐼 = 𝐼𝑝 − 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞(𝑉 + 𝐼𝑅𝑠𝑒)

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] −
(𝑉 + 𝐼𝑅𝑠𝑒)

𝑅𝑠ℎ

                                                     (1) 

The analysis is further made by considering the operating points, such as short-circuit, 

open-circuit, and maximum power point (MPP). By considering these points, Eq. 1 is 

modified as follows. The short-circuiting the PV module is the first condition and 

substitute the voltage V=0, and current I=Isc in Eq. 1 and the expression for the pho-

tocurrent is written as follows. 
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𝐼𝑝 = 𝐼𝑠𝑐 + 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞𝑅𝑠𝑒𝐼𝑠𝑐

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] +
𝑅𝑠𝑒𝐼𝑠𝑐

𝑅𝑠ℎ

                                                                     (2) 

The open-circuiting the PV module is the second condition and substitute the voltage 

V=Voc and current I=0 in Eq. 1 and the expression for the photocurrent are written as 

follows. 

𝐼𝑝 = 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] +
𝑉𝑜𝑐

𝑅𝑠ℎ

                                                                                    (3) 

From Eq. 2 and Eq. 3, the equation for the diode reverse saturation current is written 

in Eq. 4, and by substituting Eq. 4 in Eq. 3, the expression for the photocurrent is 

written in Eq. 5. 

𝐼𝑠𝑑 =
𝐼𝑠𝑐 +

𝑅𝑠𝑒𝐼𝑠𝑐

𝑅𝑠ℎ
−

𝑉𝑜𝑐

𝑅𝑠ℎ

𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑎𝑘𝑇𝑁𝑠𝑒
) − 𝑒𝑥𝑝 (

𝑞𝑅𝑠𝑒𝐼𝑠𝑐

𝑎𝑘𝑇𝑁𝑠𝑒
)

                                                                               (4) 

𝐼𝑝 =
[𝐼𝑠𝑐 +

𝑅𝑠𝑒𝐼𝑠𝑐

𝑅𝑠ℎ
−

𝑉𝑜𝑐

𝑅𝑠ℎ
] [𝑒𝑥𝑝 (

𝑞𝑉𝑜𝑐

𝑎𝑘𝑇𝑁𝑠𝑒
) − 1]

𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑎𝑘𝑇𝑁𝑠𝑒
) − 𝑒𝑥𝑝 (

𝑞𝑅𝑠𝐼𝑠𝑐

𝑎𝑘𝑇𝑁𝑠𝑒
)

+
𝑉𝑜𝑐

𝑅𝑠ℎ

                                                    (5) 

The MPP of the PV module is the third condition and substitute the voltage V=Vmpp 

and current I=Impp in Eq. 1 and the current equation is as follows. 

𝐼𝑚𝑝𝑝 = 𝐼𝑝 − 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞(𝑉𝑚𝑝𝑝 + 𝐼𝑚𝑝𝑝𝑅𝑠𝑒)

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] −
(𝑉𝑚𝑝𝑝 + 𝐼𝑚𝑝𝑝𝑅𝑠𝑒)

𝑅𝑠ℎ

                    (6) 

2.2 Problem Formulation 

In the problem formulation, the points at which open-circuit, short-circuit, and MPP is 

considered. The two parameters, such as (Isd and Ip) is estimated analytically and three 

parameters, such as (Rs, Rp and a) optimized by using PSOGWO of the PV module. 

The formulation and solution of the objective function must guarantee that the target 

performance attained for the PV panel complies with the I-V relation. Thus, to mini-

mize errors in the operating points, an advanced optimization algorithm is required. 

By considering all the facts, the objective function of the module is written as follows. 

𝐹1 = 𝐼𝑠𝑐 + 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞𝑅𝑠𝑒𝐼𝑠𝑐

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] +
𝑅𝑠𝑒𝐼𝑠𝑐

𝑅𝑠ℎ

− 𝐼𝑝                                                           (7) 

𝐹2 = 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] +
𝑉𝑜𝑐

𝑅𝑠ℎ

− 𝐼𝑝                                                                            (8) 

𝐹3 = 𝐼𝑝 − 𝐼𝑚𝑝𝑝 − 𝐼𝑠𝑑 [𝑒𝑥𝑝 (
𝑞(𝑉𝑚𝑝𝑝 + 𝐼𝑚𝑝𝑝𝑅𝑠𝑒)

𝑎𝑘𝑇𝑁𝑠𝑒

) − 1] −
(𝑉𝑚𝑝𝑝 + 𝐼𝑚𝑝𝑝𝑅𝑠𝑒)

𝑅𝑠ℎ

          (9) 
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The final objective function, FT is written in Eq. 10. 

𝐹𝑇 = 𝐹1
2 + 𝐹2

2 + 𝐹3
2                                                                                                           (10) 

The value of Eq. 10 is reduced as small as possible by utilizing the values from the 

datasheet. The two parameters of the PV module are estimated by optimizing three 

variables by the solution vector as minimum as possible. 

3 Hybrid PSOGWO and Its Application 

A hybrid approach has been formulated by means of combining PSO and GWO algo-

rithms that produce productive and fruitful results [11]. 

3.1 PSO Algorithm 

As discussed in the literature, PSO is a practical algorithm for most of the engineering 

applications, and it is based on social actions of birds grouping during food search. 

The initial solution of PSO is randomly generated within the search space. The opti-

mal position and location of each particle are kept in memory, and the particles are 

updated using the following equations.   

𝑋𝑞+1

𝑖
= 𝑋𝑞

𝑖
+ 𝑉𝑞+1

𝑖
                                                                                                                 (11) 

𝑉𝑞+1

𝑖
= 𝑤𝑉𝑞

𝑖
+ 𝑐1𝑟1 (𝑝

𝑞

𝑖
− 𝑋𝑞

𝑖
) + 𝑐2𝑟2 (𝑝

𝑞

𝑔
− X𝑞

𝑖 )                                                        (12) 

Where the particles are represented as i, the iterations are denoted as q, and the 

random numbers are denoted by r1 and r2 between [0,1], w denotes the parameter 

weight, the position vector is denoted as X, the particle velocity is V,  the coefficients 

are denoted as c1 and c2, 𝑝𝑞

𝑖
 is current best of the particle and 𝑝

𝑞

𝑔
 is the best position 

exists in the swarm. The new velocity and position of the particles are not known with 

insignificant option. As an alternative, it is substituted in the search space by a ran-

dom position to avoid local optimum solutions.  

3.2 GWO Algorithm 

With the inspiration of grey wolf leadership, the grey wolf algorithm is developed, 

and it has been used for a few engineering problems. There are four wolves in the 

hierarchy, and alpha wolves denote the best solution, beta wolves and delta wolves 

denote second and third optimal results, and omega wolves denote the candidate with 

best result. The hunting mechanism of the wolf is as follows. (i) Tracing and reaching 

the prey, (ii) Chasing, encircling and troublesome the prey to stop its move, (iii) Fi-

nally, attacking. The mathematical model of the prey encircling is given in Eq. 13. 

𝐷 = |𝐶 × 𝑋p(𝑞) − 𝑋(𝑞)|                                                                                                      (13) 
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𝑋(𝑞 + 1) = 𝑋p(𝑞) − 𝐴 × 𝐷                                                                                                (14) 

Where the iteration is denoted as q, the prey position is represented by 𝑋p, the wolf 

location is denoted by X, and the coefficient is denoted by C and A. The value of 

these coefficients is calculated using Eq. 15 and Eq. 16, respectively. In which, a is 

linearly reducing from 2 to 0, as q decreases. 

𝐶 = 2 × 𝑟2                                                                                                                               (15) 

𝐴 = 𝑎 × (2 × 𝑟1 − 1)                                                                                                            (16) 

The alpha wolf leads the Grey wolves to find the prey location, and beta wolf and 

delta wolf also helps to find the location sometimes. The other wolves in the popula-

tion follow the position of these three wolves to find the best solutions and the same is 

modelled as follows.  

𝐷𝛼 = |𝐶1 × 𝑋𝛼 − 𝑋(𝑞)|

𝐷𝛽 = |𝐶2 × 𝑋𝛽 − 𝑋(𝑞)|

𝐷𝛿 = |𝐶3 × 𝑋𝛿 − 𝑋(𝑞)|

                                                                                                       (17) 

The best three wolves’ values are represented by 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿  in each iteration. 

𝑋1 = |𝑋𝛼 − 𝑎1𝐷𝛼|

𝑋2 = |𝑋𝛽 − 𝑎2𝐷𝛽|

𝑋3 = |𝑋𝛿 − 𝑎3𝐷𝛿|

                                                                                                                 (18) 

𝑋p(𝑞 + 1) =
𝑋1 + 𝑋2 + 𝑋3

3
                                                                                               (19) 

Where 𝑋p(𝑞 + 1) denotes the new position of the prey. The value of A decides the 

trap of local optima, i.e. if the value of A is larger than or equal to 1, the hunt is aban-

doned elseif A value is less than 1, wolves attack the prey forcibly. The search process 

completed when the maximum number of iterations is reached.   

3.3 Application of a Hybrid PSOGWO Algorithm   

Without altering the overall operation of the GWO and PSO algorithms, a new hy-

brid PSOGWO algorithm has been established for parameter estimation problems. In 

all real-world problems, the PSO algorithm can be efficient. Nevertheless, some best 

solution is needed to avoid the local optimum trap. The GWO helps the PSO to de-

crease the possibility of evading the local optimum trap. As discussed earlier, the PSO 

algorithm guides such particles at random positions that are small to prevent local 

minima. In order to prevent the risk of local minimum trap, the exploration capabili-

ties of the GWO are used to direct certain particles into positions that are partially 

enhanced rather than random positions. The run time is, however, long because, be-

sides the PSO, the GWO algorithm is also employed. The achievement of better re-

sults can tolerate additional time, as long as the result is achieved in a viable time. 
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The pseudocode of the PSOGWO is given in Algorithm. The comprehensive details 

are available in [11] for better understanding. The required control parameters to ap-

ply the proposed PSOGWO algorithm for the extraction of solar photovoltaic parame-

ter problem are listed in Table 1. 

Algorithm. PSOGWO Algorithm 

 

Initialize population size (np) and maximum iterations (qmax) 

P: Possibility rate 

Particles Initialization 

For i=1 to qmax do 

For l=1 to np do 

 Execute PSO algorithm 

 Update the particle position and the velocity  

     If rand(0,1) < 𝑃 then         % to evade local optima 

       Set A, C, a   

      For 𝑗 = 1 to 10 do 

   For 𝑚 = 1 to 10 do 

     Run GWO Algorithm 

        Update the positions of α, β, δ   

     Update A, C, a   

      End for 

   End for 

   Current position, 𝑋p(𝑞 + 1) =
𝑋1+𝑋2+𝑋3

3
  

  End if 

End for 

End for 

Table 1. Control parameters of the PSOGWO 

User Parameters SDM 

Dimension, dim 3 

Number of particles, np 30 

Maximum iteration, qmax 1000 

Constant parameters, c1 and c2 0.5 

Weight, W Update by GWO 

Optimized variables, [𝑌𝑙𝑏 , 𝑌𝑢𝑏] Rsh = [50, 200] Ω, Rse = [0.001. 1] Ω, a = [1, 2] 

The decision variable range is wider, which leads to better fitness for the optimization 

of the SDM of the PV module. The execution of PSOGWO algorithm is carried out 

by MATLAB 9.4 using Core i3-4110 laptop.  

4 Simulation Results and Discussions 

The proposed PSOGWO algorithm is applied to various commercial PV modules, 

such as KC200GT and SQ85, and the simulation results are presented in this section. 
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The simulation of the proposed algorithm is carried out for five individual runs to 

check the performance of the algorithm. The datasheet information of the PV modules 

is listed in Table 2. 

Table 2. Specification of the PV modules  

Parameters KC200GT SQ85 

Maximum power output, Pmpp, in Watt. 200 85 

Short-circuit current, Isc in Amps. 8.21 5.45 

Open-circuit voltage, Voc in Volts. 32.9 22.2 

Current at MPP, Impp in Amps. 7.61 4.95 

Voltage at MPP, Vmpp in Volts. 26.3 17.2 

Number of cells in series, Ns 54 36 

 

The five individual I-V curves of the KC200GT PV module are shown in Fig. 2. Each 

curve is different, and the variations of curves are due to Rsh, Rse and n. The estimated 

parameters and the optimized of the KC200GT module are listed in Table 3.  

 

Fig. 2. I-V curves of the KC200CT module 

All the five I-V curves are passed through 8.21 A; 26.3 V, 7.61 A; 32.9 V, as shown 

in Fig. 2. The scatter plot of all the algorithms is displayed in Fig. 3(a) and it explains 

the distribution of the search parameters in the search space. The PSOGWO tries to 

find the optimal values by targeting zero error during the optimization process. It is 

also conferred that single I-V curve is applicable for the module; however, with lim-

ited information, such as Voc, Isc, Vmpp and Impp, it is impossible to generate the same. 

Therefore, multiple I-V curves are displayed during each run of the algorithm; how-

ever, each run produces optimal parameter solution.  

Table 3. Unknown parameters of the KC200CT module 

Run no. a Rsh (Ω) Rse (Ω) Ip (A) Isd (A) FT 

1 1.2774 135.2433 0.1739 8.2206 6.91E-08 1.19E-14 

2 1.4202 137.6824 0.0984 8.2159 4.47E-07 1.58E-12 

3 1.2325 127.3428 0.1920 8.2224 3.51E-08 7.84E-14 
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4 1.3411 84.6364 0.0613 8.2159 1.64E-07 2.11E-13 

5 1.4957 173.1386 0.0807 8.2138 1.05E-06 1.52E-14 

If experimental data is available, it is straightforward to get single I-V curve. How-

ever, the I-V relation is extracted only when the target error reaches zero. In this pa-

per, the error value more than 1E-12 is considered as zero error. All the extracted 

parameters are considered for further analysis since the researchers looking at the 

parameters only on the MPPs. The best and worst I-V curve during five runs of simu-

lation is displayed in Fig. 3(b) and it is observed that both best and worst curves al-

most match with the I-V curve provided by the manufacturer under STC. From Fig. 

3(a), it is also noted that, in PSOGWO and GWOCS, broad search has occurred on 

throughout the search space. However, the GWO fails to search the solution in search 

space, and it is trapped by local optima.                   

  
(a)               (b) 

Fig. 3.   KC200CT module; (a) Scattered plot; (b) Best and worst I-V curves 

The simulation is also extended to SQ85 PV module and I-V curves during five indi-

vidual runs are plotted in Fig. 4, in which, all the plots are passed through 5.45 A; 

17.2 V, 4.95 A; 22.2 V.  

 

Fig. 4. I-V curves of the SQ85 module 
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The estimated/calculated parameters and the optimized of the KC200GT module are 

listed in Table 4. As similar to the previous case study, the optimal parameters are 

obtained by achieving zero error using PSOGWO algorithm during all the runs of the 

simulation. The scatter plot of all the algorithms is displayed in Fig. 5(a) and it ex-

plains the distribution of the search parameters in the search space. From Fig. 5(a), it 

is also noted that, in PSOGWO and GWOCS, broad search has occurred on through-

out the search space. However, the GWO fails to search the solution in search space, 

and it is trapped by local optima. The best and worst I-V curve during five runs of 

simulation is displayed in Fig. 5(b). 

Table 4. Unknown parameters of the SQ85 module 

Run no. a Rsh (Ω) Rse (Ω) Ip (A) Isd (A) FT 

1 1.5211 97.0422 0.2193 5.4623 7.34E-07 1.393E-14 

2 1.6660 166.4632 0.2022 5.4566 2.95E-06 9.780E-15 

3 1.4216 123.9053 0.2983 5.4631 2.46E-07 6.670E-12 

4 1.7695 146.3195 0.1411 5.4552 6.82E-06 1.829E-15 

5 1.4032 110.3144 0.2960 5.4646 1.96E-07 1.360E-13 

  

(a)              (b) 

Fig. 5.   SQ85 module; (a) Scattered plot; (b) Best and worst I-V curves 

4.1 Comparison study 

The effectiveness of the proposed hybrid PSOGWO for the parameter estimation 

problem is compared with GWO and GWOCS. The cost function is the same for all 

the algorithms which minimize the error to zero. The number search agents and a 

maximum number of iterations are equal to 30 and 1000, respectively, for all algo-

rithms. The convergence curve of all algorithms is presented in Fig. 6, and it is ob-

served that the PSOGWO algorithm attained quicker convergence than other algo-

rithms. The summary of the statistical results is presented in Table 5 for various algo-

rithms. The PSOGWO and GWOCS algorithms can able to produce less error during 

all runs.  
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(a) 

 
(b) 

Fig. 6. Convergence curves, (a) KC200CT, (b) SQ85 

Table 5. Statistical results of GWO, PSOGWO, and GWOCS algorithms 

However, GWO fails and trapped to an optimum local value. But, the GWO is ob-

served to be quickest, followed by the PSOGWO and GWOCS. Due to the hybridiza-

tion, the computation time is high for PSOGWO and GWOCS algorithms. The error 

values are observed to be less than 1E-12, and it can be considered as zero error for 

engineering problems. 

5 Conclusion 

A new hybrid PSOGWO algorithm is applied to the photovoltaic module parameter 

estimation problem, and the same is studied in this paper. Two parameters are analyti-

cally estimated, and the other three unknown parameters are optimized by PSOGWO 

Module Algorithms 

FT Run 

Time 

(S) 
Max Min Median  

Standard 

Deviation  

KC200CT 

PSOGWO 7.65E-15 0.0020 2.17E-13 6.66E-07 5.50 

GWOCS 9.04E-12 0.0005 9.32E-10 1.49E-05 6.25 

GWO 1.52E-11 0.0013 2.54E-10 5.98E-04 4.55 

SQ85 

PSOGWO 2.49E-15 0.0004 8.49E-12 1.29E-07 5.42 

GWOCS 1.45E-13 3.57E-06 1.03E-09 2.52E-05 6.58 

GWO 1.36E-11 1.15E-05 1.52E-08 7.74E-04 4.54 
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algorithm. The proposed PSOGWO algorithm finds the optimal solution by achieving 

zero-error values during all runs of the simulation. Since the proposed method utilizes 

the information from the datasheet, there is no possibility of getting single I-V curve; 

however, each curve is optimal, and it can be useful for the researchers for their fur-

ther applications. The experimental results and statistical results summary are pre-

sented for two commercial PV modules. The experiments are carried out for STC; 

however, it can be extended to other environmental conditions.   
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