
EasyChair Preprint
№ 6267

Assimilating the Structure of Formal and
Informal Proof

Kensho Tsurusaki and Akiko Aizawa

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 10, 2021

Assimilating the structure of formal and informal proof

Kensho Tsurusaki
The University of Tokyo

kensho.tsurusaki@gmail.com

Akiko Aizawa
National Institute of Informatics

The University of Tokyo
aizawa@nii.ac.jp

Abstract

Formal proof is regarded as an insufficient alternative to informal proof
because it has both advantages and disadvantages, compared to infor-
mal proof. Focusing on the macro structure of proof, this study pro-
poses assimilating the structure of formal and informal proof to retain
both readability and verifiability. An implementation example of the
Ntac system, a library for the Lean theorem prover, is introduced. The
system converts Lean script into natural language text, which allows
treating formal proof as informal proof.

1 Introduction

Formal proofs are verifiable by computer. As such, they must have detailed structures representing every step
of logical inference. However, it is often difficult for human readers to follow such detailed structures. Informal
proofs are readable by human, but they are generally not verifiable by computer.

Suppose the ”same” proof is represented as both a formal and an informal proof. Then, there exists a difference
between them owing to the usage of natural language. However, using only the restricted expressiveness of natural
language (controlled natural language) or displaying hierarchical structure (structured proof, declarative proof)
is insufficient to attain the high readability of informal proof. In this paper, we focus on the macro structure of
informal proof, such as the 1) change of topic, 2) importance of consequence, and 3) appropriate omission. We
assume that such auxiliary features of informal proof make the proof easier to understand for human readers.

The solution is to ”assimilate” the two types into a single proof system. Namely, if a connection is built
between natural language sentences and formal proof tactics, formal proof would become readable as informal
proof. As an initial attempt, a library for the Lean theorem prover [dKA+15], which is called Ntac (Natural
tactic)is developed. It introduces new types of tactics that can be converted into natural language text and
allows the omitting of some detailed inferences from the output or the assigning of explanatory text manually.

2 Approach

The ”idea” of a proof can be represented by a structure such as a proof tree. Here, we assume proof trees in
sequent calculus as the idea of proof. A proof is constructed by considering ”what has been proven before” and
”what to prove now,” whether formal or informal. This pair is called the ”goal,” in terms of a theorem prover.
Goals can be multiple and are changed by commands called ”tactics.” Natural language sentences in informal
proof corresponds to tactics in formal proof. This is the similarity between formal and informal proof.

Copyright © by the paper’s authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

However, we need to verbalize the tree structure into a ”linear” structure to represent it as proof text. There
are many ways for this ”linearization.” Here are listed good proof (1a, 2a, 3a) and bad proof (1b, 2b, 3b), both
written in natural language.

* change of topic

(1a) We have A. Since A, B holds. We have C. Since C, D holds.

(1b) We have A. We have C. Since A, B holds. Since C, D holds.

* the importance of consequence

(2a) Since A implies B, C holds. Therefore, D holds.

(2b) Since A, B holds. Since B, C holds. Since C, D holds.

* appropriate omission

(3a) . . . a is odd. . . . ab is even. Since a + b is odd, . . .

(3b) . . . a is odd. . . . ab is even. If the product of two natural numbers is even, one of the two is even
because 2 is a prime number. Since a is odd, b is even. Then, a + b is odd. . . .

When writing informal proof, the better option is chosen intuitively. However, when writing formal, we often
write proof we often write the proof such that it leads to the worse option. Because proof assistants show
all unresolved goals, there is no motivation to avoid confusing arguments like in (1b). Because formal proof
languages do not have discourse markers such as ”but” or ”therefore,” whose function G. Frege interpreted as
”Färbung (coloring),” formal proofs have difficulty with expressing the importance of consequence like in (2b).
Because computers require every detail of proof, there exists an obligation to write proofs like in (3b).

The structures of formal and informal proof are thus different, and it is almost impossible that a proof in one
language is both verifiable by computers and readable by humans. However, if one thinks that they only have
to understand or verify the ”idea” of a proof, and not the proof text itself, then machines and humans can use
different language texts to recognize the idea. Formal proofs contain full information of proof trees, so the goal
of this study is to make formal proof readable as informal proof or to ”assimilate” formal and informal proof.

There exist some previous studies related to this study. CNLs (Controlled Natural Languages) [Pas, Cra13,
KN12] are formal languages mimicking natural languages and interpreted by both machines and humans. It
seems effective to control the change of discussion topic, because writers will be motivated to make proofs
readable as natural language text. However, as seen in the examples (2a) and (2b), restricting the usage of some
“coloring” words which have no mathematical meaning does harm to readability. Another approach is called
structured proof [Lam12]. They are written in natural language but explicitly displayed in tree structures such
as Fitch-style proof notation, which clarify the importance of a consequence. However, they are separated into
short sentences in many lines and are not necessarily readable as a whole.

3 The Ntac system

3.1 The tactic system of Lean

Lean provides a metaprogramming function by formalizing tactics as a monad [EUR+17]. Therefore, the tactics
themselves, which are part of Lean language, are defined inside Lean. Tactics are written in begin ... end

blocks in Lean script. By default, Lean uses tactics in the namespace tactic.interactive, but users can switch
the namespace to xxx.interactive by writing begin[xxx] ... end. Therefore, we can virtually change only
the implementation of existing tactics by defining new tactics in another namespace with the same names as
existing ones. The tactics of Ntac uses namespace ntac.interactive, where several basic tactics are defined,
including exact, admit, have, and suffice. Also, we added special tactics T and X. The descendant of T in the
tree structure is removed from the output and thus used for omission. X has a similar function, but it takes one
argument of string type and uses it as the output of the descendant.

3.2 Implementation

The translation process is divided into four steps:

(tactic script)→ goal_info→ semantic_tree→ list statement→ string

On execution of a tactic, a goal is either resolved or changes to one or more goals. Therefore, the process of the
resolution of goals can be represented by a tree structure. With a metaprogramming function, the Ntac system
collects complete information about how goals change and are resolved and stores it in goal_info data type.

The data type semantic_tree has a tree structure too, but it is refined to better represent the meaning of
the usage of each tactic. For example, when the goal has a form like ¬P (= P → ⊥), we can use either the intro

or by_contradiction tactic to add P to assumptions and change the goal to ⊥. Usually such differences are not
present in natural language, so either tactic will be converted into a uniform data representing the assumption
of P . Also, the data of inferences marked by tactic T are removed in this step.

The next step involves the transformation to the sentences of natural language. The tree structure is separated
and linearized into a list of small structures of sentences. The data structure of sentence resembles the abstract
syntax of Grammatical Framework (GF) [Ran11], and it is designed to support multiple languages. Currently,
the system supports only English and Japanese. The translation from sentence to string is almost identical
to what GF does, and the trace_proof tactic shows the result of conversion.

3.3 Example

Here, we use the proof of the infinitude of prime numbers as an example. Figure 1 shows how the Ntac system
operates in the VS code extension of Lean.

Figure 1: Ntac on VS Code

The Lean script and translation are listed below. The number at the beginning of each line indicates the
correspondence between the lean script and its natural language translation.

(Lean script)

: theorem exists_infinite_prime_Ntac (n : N) : ∃ p, n ≤ p ∧ prime p :=

: begin[ntac]

(1): let p := min_fac (n! + 1),

: existsi p,

(2): have pp : prime p, {

(2): have : n! + 1 6= 1, T, from (ne_of_gt $ succ_lt_succ $ factorial_pos n),

(2): T, from min_fac_prime this},

: simp [pp],

(3): { apply le_of_not_ge,

(4): intro h,

(5): have h1 : p | n!, T, from dvd_factorial (min_fac_pos _) h,

(6): have h2 : p | 1, X "Since p is a prime factor of n! + 1, p | n! + 1. therefore, p | 1",
(6): from (nat.dvd_add_iff_right h1).2 (min_fac_dvd _),

(7): from prime.not_dvd_one pp h2},

: trace_proof

: end

(translation)

(1): let p be (n! + 1).min_fac.

(2): since n! + 1 6= 1, prime p.

(3): from le_of_not_ge, it suffices to show ¬n ≥ p.

(4): assume n ≥ p.

(5): obviously, p | n!.
(6): Since p is a prime factor of n! + 1, p | n! + 1. Therefore, p | 1.
(7): from prime.not_dvd_one pp h2, false

In the first line of the script, we define p as the minimal prime factor of n! + 1. existsi p means that we use
the defined p as quantified variable p in ∃p, n ≤ p ∧ prime(p). The system is aware that the two variables have
the same name, so it produces no translation. The next three lines include good examples of tactic T. We prove
n! + 1 6= 1 from the positivity of n!, and then prove p is prime from n! + 1 > 1. Because these are relatively
trivial, we insert T tactics before proving them. Ntac can translate this structure of three lines into one sentence
using the word ”since”.

In the next line, the simp tactic is used. Currently Ntac does not support translation of simp, and it is just
copied from the original Lean. It simplifies goals or assumptions using lemmas or hypotheses. Here, it uses
pp : prime p to simplify the goal from n ≤ p ∧ prime(p) to n ≤ p.

The apply tactic in (3) is a typical usage of tactics against a goal. The lemma le_of_not_ge asserts ¬a ≥
b→ a ≤ b for all a and b, so the goal can be changed from n ≤ p to ¬n ≥ p. Here ”it suffice to show” is used as
translation. Note that information about the goal is present only in translation. The next intro tactic is also
used against the goal, proving by contradiction. Now, the goal is ¬n ≥ p. It assumes n ≥ p and changes the
goal to ⊥. It is translated with the word ”assume”.

In the next line, a T tactic is again used with have and from tactics. The structure is different from the
previous example, and Ntac translates it with the word ”obviously.” The next line shows the usage of tactic X

with have. The inference is explained by the text specified in the argument of X. The last line is the derivation
of ⊥ (false, contradiction), which concludes the proof.

4 Discussion and Future Work

The Ntac system revealed that formal proof languages can have an expressive power to incorporate the macro
scale structure of proof, which we initially assumed only informal proof could have. The current implementation
of Ntac is only experimental, and we haven’t considered the conversion at the micro structure of proof, that
is, the syntax of natural language with mathematical object. For example, ”since n! + 1 6= 1, prime p.” is
not a regular English sentence. Also, the system provides no guarantee for the correctness of natural language
output, because users can write anything using the tactic X. Now, the most important question is how and to
what extent should one be able to customize the natural language proof converted from formal proof. Other
open problems in this field include display of mathematical equations or compatibility between foundations of
mathematics. They may also relate to this research, and thus, a better way to represent proof must be carefully
found.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 21H04415.

References

[Cra13] Marcos Cramer. Proof-checking mathematical texts in controlled natural language. 2013.

[dKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In International Conference on Automated Deduction,
pages 378–388. Springer, 2015.

[EUR+17] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A metapro-
gramming framework for formal verification. Proceedings of the ACM on Programming Languages,
1(ICFP):1–29, August 2017.

[KN12] Kevin Kofler and Arnold Neumaier. DynGenPar–a dynamic generalized parser for common mathe-
matical language. In International Conference on Intelligent Computer Mathematics, pages 386–401.
Springer, 2012.

[Lam12] Leslie Lamport. How to write a 21st century proof. Journal of Fixed Point Theory and Applications,
11(1):43–63, March 2012.

[Pas] Andrei Paskevich. The syntax and semantics of the ForTheL language. page 70.

[Ran11] Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars, volume 173.
CSLI Publications, Center for the Study of Language and Information Stanford, 2011.

