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Abstract Staffing hospitals 24 hours a day requires some physicians to be assigned to overnight duties
via duty schedules. As overnight duties have an impact on physicians’ personal life, physicians can submit
preferences indicating when they would prefer to perform duties and when they would prefer not to be
assigned to a duty. The created schedule then tries to respect those preferences. However, some duties are
assigned to physicians who have not requested them, simply because nobody requested these duties and
they have to be covered. This workload should be evenly distributed. We propose a workload indicator
that tracks how much duties physicians perform over several planning horizons. The workload from the
past is then used to inform decisions on the current plan. Our workload indicator is integrated into a
scheduling model for physicians in hospitals. The application of our model to test data shows that our
workload indicator helps to spread workload over all physicians more evenly.

Keywords OR in health services · mixed-integer program · physician scheduling · long-term fairness ·
workload distribution

1 Introduction

Patients in hospitals require around-the-clock care. To provide this, some physicians have to stay overnight
at the hospital and perform so-called overnight duties. Identifying which physician should stay over night
is a complex task. Physicians are assigned to overnight duties by duty rosters, which need to satisfy a
multitude of constraints, such as working time regulations, minimum staffing levels, and required ex-
perience levels. As duties span the entire night, physicians on duty need to be present at the hospital
throughout the night and need to plan their private lives accordingly. This makes performing duties quite
demanding on physicians. The scheduling process should therefore incorporate physicians’ preferences
for which duties they want to perform. Physicians can request to be assigned to certain duties and can
also request to not be assigned to any duties on a specific date. Additionally, the workload of duties
should be evenly distributed among all physicians.

Duty rosters for physicians are usually created monthly. Models creating duty rosters therefore con-
sider a planning horizon of 4 to 5 weeks. Many models in the existing physician scheduling literature only
optimize for the current planning horizon and do not take into account data from previous planning hori-
zons. When thinking about physician satisfaction, this might mean that some physicians are repeatedly
disadvantaged in sequential months. In terms of preference fulfillment, it is possible that some physi-
cians are repeatedly denied their duty requests whereas other physicians are repeatedly granted their
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requests. Gross et al (2018a) show that using a model that does not equalize preference fulfillment over
several planning horizons creates unequal preference fulfillment between physicians. With these models,
the fulfillment of preferences for an individual physician – and therefore this physician’s satisfaction –
is based on solver implementation details. Gross et al (2018a) propose a satisfaction indicator for pref-
erence fulfillment to mitigate this problem and equalize preference fulfillment over all physicians over
several planning horizons. However, they do not take into account duties which have not been requested
via a preference but must still be assigned to ensure adequate staffing of the hospital. For these duties,
the problem is similar to the one with preference satisfaction: It is possible that some physicians are
repeatedly assigned to many duties they did not request while others are not.

This work has two main contributions. First, we propose a workload indicator, modeled similarly
to the satisfaction indicator by Gross et al (2018a). Second, we evaluate the impact of our workload
indicator. We incorporate both the existing satisfaction indicator and our proposed workload indicator
into a physician scheduling model. The model is then compared to the model with only the satisfaction
indicator and to a model with only the workload indicator by applying it to the data used by Gross et al
(2018a). We generate additional data with a varying number of preferences and find that the effectiveness
of the workload indicator is tied to the number of preferences when used together with the satisfaction
indicator. Results indicate that our workload indicator succeeds in equalizing workload among physicians
over several planning horizons.

The remainder of this paper is structured as follows. We review related literature on equal workload
distribution in personnel scheduling in section 2. Afterwards, we provide a description of long-term equal-
ity considerations in physician scheduling and our workload indicator in section 3. A physician scheduling
model for equal workload distribution is presented in section 4. Section 5 describes the application of
our model to data and its results. Our work is concluded by section 6, which summarizes our findings.

2 Literature

We review literature on scheduling which considers equal workload distribution, with a focus on schedul-
ing in the health care sector. Most of the reviewed literature does not incorporate long-term equality
of workload over several planning horizons. For more literature on the topics of this work, we refer to
respective literature reviews on inequity averse optimization (Karsu and Morton, 2015), staff scheduling
(Ernst et al, 2004), nurse scheduling (Cheang et al, 2003), and physician scheduling (Erhard et al, 2018).
Further literature on fairness in preference fulfillment can also be found in Gross et al (2018a).

A simple approach to ensure equal workload distribution is setting an upper limit on the individual
workload. The international nurse rostering competition (Haspeslagh et al, 2014) defines constraints for
fairness, such as maximum and minimum number of shifts assigned to a nurse or the maximum and
minimum number of consecutive days on which a nurse does not have a shift assigned. Additionally,
nurses can request to be assigned to a specific shift or to not be assigned to shifts on a given day.
A solution is always created for the current planning horizon without taking into account fairness data
from the previous planning horizon. The second iteration of the international nurse rostering competition
(Ceschia et al, 2015) introduces a multi-stage scheduling problem. Limits, such as on the amount of shifts
per nurse, were defined as a sum over several planning horizons. Scheduling therefore requires data from
previous plans to make decisions in the current planning horizon, Furthermore, forecasts for plans in the
future are required to assign shifts in the current planning horizon in such a way that plans in the future
are feasible.

A similar method of restricting individual workload is employed by Fügener et al (2015) and Gross
et al (2018b). They assign overnight duties to physicians in a one-month planning horizon and set an
upper limit on the duties which should be assigned to any individual physician. Any duty above this
limit is then penalized with a constant weight, encouraging the model to assign this duty to another
physician whose assignments are still below the limit. This approach, however, cannot ensure equal
workload distribution above or under the limit. Let (a, b) be an assignment of duties to two physicians
where the first physician is assigned to a duties and the second physician is assigned to b duties. If the
limit is, e.g., 2 duties per planning horizon, then the assignments (1, 1) and (2, 0) are considered equal.
Similarly, the assignments (2, 4) and (3, 3) are also considered equal. Both properties are obviously
undesirable. Additionally, the number of assigned duties above or below the limit is not carried over into
the next planning horizon.
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Stolletz and Brunner (2012) create fortnightly physician schedules by using flexible shift start and end
times. Workload is measured in terms of over- and undertime as well as number of assigned overnight du-
ties. Their proposed model succeeds in creating schedules which assign exactly the same amount of over-
and undertime to each physician. Due to the number of required overnight duties not necessarily being
divisible by the number of available physicians, the model cannot assign the same number of overnight
duties to each physician. However, it creates an assignment where differences between physicians are
minimized. The amount of assigned over-/undertime and the amount of assigned overnight duties are
not carried over into the next planning horizon.

A survey of constraints on physician scheduling in practice is conducted by Gendreau et al (2006).
They study the scheduling process in five hospitals in the area of Montreal, Canada. The study categorizes
scheduling constraints into, among others, “workload constraints” and “fairness constraints”, both with
the effect of limiting the amount of work that is assigned to a single physician and distributing the work
equally among all physicians. In the first category, the authors find limits on the amount of working hours
or number of assigned shifts per physician. This is the same approach as used by Gross et al (2018b) and
Fügener et al (2015). The second category describes constraints such as a fixed number of shifts that
needs to be assigned to all physicians with the same experience level, or a maximum number of weekends
shifts in a certain period. There is no mention that deviations from these constraints are carried over
into the next planning horizon.

A different approach to long-term fairness is taken by Carrasco (2010). Instead of carrying inequalities
into the next planning horizon, he chooses a sufficiently large planning horizon to be able to create
equal assignments during the planning horizon. While most scheduling models use a one-month planning
horizon, this approach uses 12 months and creates overnight duty rosters for a Spanish hospital. As such
large instances cannot be solved using linear optimization in acceptable time and memory, an algorithm
is proposed that creates schedules while selecting employees for shifts in such a way that the workload is
equalized throughout the planning horizon. However, this schedule cannot incorporate midterm changes
which are not known at the time of schedule creation, such as personnel turnover. Vacation also has to be
planned either ahead of schedule creation or by exchanging shifts between physicians to keep the global
workload balance intact.

Summarizing, current work on fairness in physician scheduling largely does not consider long-term
fairness over several months. Most approaches just provide fairness during the planning horizon and do
not take into account data from the past. As planning horizons in physician scheduling are usually one
to two months, this is not a sufficient time span to create total fairness among physicians. Some existing
approaches solve this problem by extending the planning horizon to a year but this creates new problems
as required changes to such a plan will be abundant. Research on how to provide long-term fairness on
physician duty schedules between several planning horizons of one month is currently lacking.

3 Physician scheduling and long-term equality considerations

We now provide a more detailed description of the physician scheduling problem with a focus on con-
siderations of long-term equality among physicians over several planning horizons. In hospitals, patients
need to be cared for around the clock. During the day, a sufficient number of physicians is always present
to perform scheduled procedures. During the night, no procedures are scheduled and physicians are only
present to ensure adequate care in case of emergencies. Therefore, there are only a few physicians present
during night hours. To ensure that a sufficient number of physicians is always present, physicians are
assigned to overnight duties via a roster. These rosters have to fulfill many requirements, which makes
their creation quite complex. For a sufficiently large number of physicians the number of possible sched-
ules is virtually endless. This makes it hard for human schedulers to create a schedule respecting all
the constraints. Often, software-assisted scheduling is employed to create optimal schedules. Research on
physician scheduling is abundant. A recent review of this area of research was published by Erhard et al
(2018). They find that many works on rostering problems, such as the one we describe, create rosters
for planning horizons of up to six weeks. This is a comparatively short time span when the goal is to
equalize workload or fulfillment of physician preferences. However, not many works take into account
data from the previous planning horizon to create the next roster. This opens up the possibility that
some physicians are disadvantaged by the plan repeatedly.
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Gross et al (2018a) show that this is not only a theoretical possibility but rather a real problem which
can occur in practice. They calculate the satisfaction of physicians in terms of preference fulfillment and
propose several strategies for equalizing physician satisfaction over all physicians. The constant strategy,
denoted by C, only maximizes satisfaction over all physicians in the current planning horizon. This is what
many similar physician rostering models implement. The second strategy, denoted by ESA, calculates a
satisfaction indicator for each physician for each planning horizon and then uses that satisfaction indicator
to calculate the individual physician’s preference weight for the next planning horizon. Their third
strategy, denoted by ESD, calculates the satisfaction not only after planning horizons but continuously
updates the satisfaction and physicians’ individual weights online during the rostering process. In this
case, the preference weight is a decision variable based on the amount of satisfied preferences, i.e.,
when the model satisfies a preference it simultaneously changes the physician’s preference weight. An
application of their models to 24 months of data based on a real-life problem shows that the C strategy
indeed disadvantages certain physicians in the long run. In contrast, the ESD strategy performs best
when considering the equal distribution of satisfaction over all physicians after all 24 planning horizons
as well as the variance of satisfaction between planning horizons for each physician. Or in other words:
After 24 planning horizons, schedules created with the ESD strategy distributed satisfaction among
physician more equally than the C strategy. Additionally, the ESD strategy achieved a more stable level
of satisfaction between months for each physician than the ESA strategy.

An additional factor in physician happiness is the distribution of the workload. The problem here
is similar: slightly unequal distribution of workload during one planning horizon does not have a huge
impact, but if the same set of physicians is repeatedly assigned a higher workload over several planning
horizons, this unequal treatment adds up and can lead to physician attrition. The focus of this work is
therefore the equal distribution of workload over many planning horizons. Our main contribution is the
introduction of a workload indicator for physician scheduling. We integrate this workload indicator into
a scheduling model and combine it with the satisfaction indicator introduced by Gross et al (2018a).

3.1 Physician-specific workload indicator

To measure the individual workload of each physician, we define a workload indicator. This workload
indicator can be calculated for each duty roster and for each physician. Intuitively, we define the workload
indicator as the amount of overnight duties a physician is assigned on a roster divided by the number
of days in the roster. This gives us an approximation of the number of overnight duties this physician
performs per day. Note that the division by the number of days is unavoidable as duty rosters have
different lengths (4 or 5 weeks) in different planning horizons. We define the workload indicator on a
roster which assigns physicians J to duties I on days D in weeks W. xjiwd is a binary variable which is
1 if physician j is assigned to duty i on day d of week w and 0 otherwise. The workload indicator λj of
physician j is then defined as follows.

λj =

∑
i∈I
∑

w∈W
∑

d∈D xjiwd

|W| · |D|
Our approach differs from existing work by its focus on the individual physician. Existing approaches

discuss indicators for groups, such as minimizing the maximum deviation from the average of a group’s
working hours. Our workload indicator, however, tracks the workload for each physician individually,
regardless of other physicians’ workload. This individual indicator can then be used to calculate weights
which can compare physicians in a group with each other without requiring some sort of group baseline
for working hours or number of assigned duties.

4 Model

We propose a model to assign overnight duties to physicians. Our model is derived from the model
proposed by Gross et al (2018a). It assigns physicians j ∈ J to duties i ∈ I on days d ∈ D of weeks
w ∈ W. Each physician can be assigned to at most one duty per day and needs to be given the next
day off, i.e., physicians cannot be assigned to duties on consecutive days. Similarly, physicians cannot be
assigned to duties on consecutive weekends. The number of required physicians for a duty i on the day
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of the week d is given by d̄dutyid . We implement this demand as an upper bound, so we can always find
feasible solutions even if there is an insufficient number of physicians available to perform a duty. This
undercoverage can then be seen in decision variables ∆out-duty

iwd and will need to be handled by human
schedulers. Not every physician should be assigned to every duty. Our model requires parameters Epos

jiwd

to specify which physician can be assigned to which duty on which day. As we also do not want to assign
physicians to duties when they are absent, our model respects absences supplied in parameters Doff

jwd.
Physicians want to have a say in which duties they are assigned to. We provide physicians’ preferences to
be assigned to a duty in parameters greq-on

jiwd and the preferences to not be assigned to a duty in parameters
greq-off
jwd . Our model tracks the violations of these preferences with variables ∆req-on

jiwd and ∆req-off
jwd . As we

consider preference fulfillment and workload distribution from past planning horizons, we provide the
historic satisfaction with preference fulfillment in parameters ŝj and the historic workload in parameters
l̂j .

The model we introduce has two sets of conflicting constraints. The first set consists of {(11a), (11b)},
and the second set consists of {(13a), (13b)}. Note that these numbers refer to constraints introduced
below. We choose not to repeat them here to avoid duplication. When implementing the model, only one
constraint out of each set can be used, otherwise the model becomes infeasible. As our model is geared
towards evaluating the impact of satisfaction and workload indicators, these constraints each implement
a different strategy for updating these indicators. Regarding equal distribution of preference fulfillment,
we define two different strategies:

I. No preference fulfillment (unfair, U) For this strategy, we use constraints (11a). This effectively dis-
ables preferences in the model, meaning the solver will not optimize for the fulfillment of preferences.
With this strategy, physicians’ preferences are completely ignored.

II. Long-term fair preference fulfillment (fair, F) This strategy is implemented by constraints (11b). These
constraints implement the ESD strategy as proposed by Gross et al (2018a). They use a physician-
specific satisfaction indicator to ensure long-term equal preference fulfillment among all physicians
while updating the satisfaction continuously during the solving of the model. This is achieved by
basing the satisfaction-based weight directly on the satisfaction indicator of the current planning
horizon, thereby requiring a quadratic decision model. They describe how this can be transformed
into a linear decision model. Note that we do not implement the other strategies for equal preference
fulfillment proposed by Gross et al (2018a) because they find that the ESD strategy creates superior
results for the APS and ASV performance indicators in comparison to all other tested strategies.

To achieve equal distribution of workload, we define two different strategies:

I. Constant workload-based weight (CL) We set the workload-based weight to 0 for all physicians. This
effectively disables tracking the workload among physicians. For this strategy, we use constraints (13a).

II. Exponential smoothing for workload-based weight during the planning horizon (ESL) We update the
workload-based weight in the model, i.e., during the planning horizon, depending on the amount of
duties assigned to the respective physician. This strategy requires the use of constraints (13b). Note
that this results in a quadratic decision model as well, for which we describe an equivalent linear
formulation in section 4.1.

In their study of the satisfaction indicator, Gross et al (2018a) also evaluate a strategy with expo-
nential smoothing of the satisfaction indicator after each planning horizon and no updating during the
planning horizon. Based on the results found in their evaluation, we refrain from applying this strategy
to the workload indicator and defining a model with exponential smoothing of the workload indicator
after the planning horizon. This strategy has the downside of alternating between high and low values for
the smoothed values, leading to a high fluctuation of the weights derived from them between planning
horizons. As these results discovered for the satisfaction indicator can be generalized, we expect the
same results for a similar strategy for the workload-based weights. We therefore only incorporate the
ESL strategy with exponential smoothing in the model itself.

Sets and indices
d ∈ D = {1, ..., 7} Days of the week, starting with Monday = 1
i ∈ I Duties
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j ∈ J Physicians
w ∈ W Weeks in the planning horizon

Parameters
α1 Weight for personnel demand coverage
α2 Weight for preference fulfillment
α3 Weight for workload distribution
γ1 Smoothing constant for satisfaction indicator
γ2 Smoothing constant for workload indicator
ŝj Pre-computed value as an input to calculate satisfaction-based weight for physi-

cian j based on the previous planning horizon

l̂j Pre-computed value as input to calculate workload-based weight for physician j
based on the previous planning horizon

d̄duty
id Demand of physicians for duty i on day d

greq-on
jiwd 1 if physician j has a preference for duty i on day d of week w, 0 otherwise

greq-off
jwd 1 if physician j has a preference for being off duty on day d of week w, 0 otherwise

Epos
jiwd 1 if physician j can be assigned to duty i on day d of week w, 0 otherwise

Doff
jwd 1 if physician j is absent on day d of week w, 0 otherwise

Decision variables
xjiwd ∈ {0, 1} 1 if physician j is assigned to duty i on day d of week w, 0 otherwise
sj ∈ [0, 1] ⊂ R Satisfaction-based weight for preferences of physician j for the current planning

horizon
σj ∈ [0, 1] ⊂ R Satisfaction indicator for physician j (Gross et al, 2018a)
lj ∈ [0, 1] ⊂ R Workload-based weight for assignment of duties to physician j for the current

planning horizon
λj ∈ [0, 1] ⊂ N0 Workload indicator for physician j

xWE
jw ∈ {0, 1} 1 if physician j is assigned to a duty on the weekend of week w, 0 otherwise

∆out-duty
iwd ∈ N0 Missing physicians to cover demand of duty i on day d of week w

∆req-on
jiwd ∈ {0, 1} 1 if preference of physician j for duty i on day d of week w is not satisfied, 0

otherwise
∆req-off

jwd ∈ {0, 1} 1 if preference of physician j for being off duty on day d of week w is not satisfied,
0 otherwise

Minimize
α1 ·

∑
i∈I

∑
w∈W

∑
d∈D

∆out-duty
iwd + (1a)

α2 ·
∑
j∈J

(
(2− sj) ·

(∑
i∈I

∑
w∈W

∑
d∈D

∆req-on
jiwd +

∑
w∈W

∑
d∈D

∆req-off
jwd

))
+ (1b)

α3 ·
∑
j∈J

(
lj ·
∑
i∈I

∑
w∈W

∑
d∈D

xjiwd

)
(1c)

subject to
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∑
j∈J

xjiwd +∆out-duty
iwd = d̄duty

id ∀i ∈ I, w ∈ W, d ∈ D (2)

∆req-on
jiwd = greq-on

jiwd · (1− xjiwd) ∀j ∈ J , i ∈ I, w ∈ W, d ∈ D (3)

∆req-off
jwd = greq-off

jwd ·
∑
i∈I

xjiwd ∀j ∈ J , w ∈ W, d ∈ D (4)∑
i∈I

xjiwd ≤ 1 ∀j ∈ J , w ∈ W, d ∈ D (5)∑
j∈J

∑
i∈I

∑
w∈W

∑
d∈D:Doff

jwd=1

xjiwd ≤ 0 (6)

∑
j∈J

∑
i∈I

∑
w∈W

∑
d∈D:Epos

jiwd=0

xjiwd ≤ 0 (7)

∑
i∈I

xjiwd +
∑
i∈I

xjiw(d−1) ≤ 1 ∀j ∈ J , w ∈ W, d ∈ D, d > 1 (8a)∑
i∈I

xji(w−1)7 +
∑
i∈I

xjiw,1 ≤ 1 ∀j ∈ J , w ∈ W, w > 1 (8b)

xWE
jw + xWE

j(w−1) ≤ 1 ∀j ∈ J , w ∈ W, w > 1 (9)∑
i∈I

∑
d∈{6,7}

xjiwd ≤ 2 · xWE
jw ∀j ∈ J , w ∈ W (10)

sj = 2 ∀j ∈ J (11a)
sj = γ1 · σj + (1− γ1) · ŝj ∀j ∈ J (11b)

σj =

∑
i∈I

∑
w∈W

∑
d∈D

(
greq-on
jiwd −∆req-on

jiwd

)
+
∑

w∈W

∑
d∈D

(
greq-off
jwd −∆req-off

jwd

)
|W| · |D|

∀j ∈ J

(12)

lj = 0 ∀j ∈ J (13a)
lj = γ2 · λj + (1− γ2) · l̂j ∀j ∈ J (13b)

λj =

∑
i∈I

∑
w∈W

∑
d∈D

xjiwd

|W| · |D|
∀j ∈ J (14)

xjiwd, x
WE
jw ,∆req-on

jiwd ,∆req-off
jwd ∈ {0, 1} ∀j ∈ J , i ∈ I, w ∈ W, d ∈ D (15)

sj , σj , lj , λj ∈ R+ ∀j ∈ J (16)
∆out-duty

iwd ∈ N0 ∀i ∈ I, w ∈ W, d ∈ D (17)

Our objective function describes our three main objectives. Term (1a) penalizes undercoverage, i.e.,
assigning an insufficient number of physicians to duties. Term (1b) penalizes preference violations based
on physician-specific satisfaction-based weights. We weight the preference violations with α2 · (2 − sj),
as recommended by Gross et al (2018a). This is required because 0 ≤ sj ≤ 1 and smaller values for sj
should result in a higher weight. The strategy to calculate the satisfaction-based weight sj based on the
satisfaction indicator is implemented by constraints (11a) or (11b). Finally, term (1c) punishes assigning
duties to physicians. This term contains the individual physician’s workload-based weight. Our model
will therefore incur different penalties for assigning a duty, based on the workload of the physician to
which we are assigning the duty. This guides the model towards assigning duties to physicians with a
lower workload-based weight and therefore results in a more equal distribution of assigned duties among
physicians. The strategy to calculate the workload-based weight lj based on the workload indicator is
implemented by constraints (13a) or (13b).

To ensure that an adequate number of physicians is assigned to each duty, constraints (2) set devi-
ation variables ∆out-duty

iwd in case a duty is not covered. Constraints (3) and (4) set deviation variables
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∆req-on
jiwd and ∆req-off

jwd when physician preferences for a certain duty or for not being assigned to any duty
are violated. To ensure that a physician is not assigned to more than one duty per day, we use con-
straints (5). A valid duty roster cannot assign duties to physicians who are either not present or not
qualified for the assigned duty. This is ensured by constraints (6) and (7). As duties span the entire night,
physicians need to be given a day off after a duty and cannot be assigned to a duty on the following day.
Constraints (8a) ensure this for Tuesday through Sunday and constraints (8b) for Monday. As physi-
cians are unwilling to work duties on consecutive weekends, we track whether a physician is working on
a weekend with constraints (10) and prevent assigning duties on consecutive weekends with constraints
(9). Constraints (11a) and (11b) specify how our satisfaction-based weights for preference fulfillment
are calculated. These constraints are conflicting, so only one of them can be included in the model at
any time. Constraints (11a) effectively disable objective (1b), whereas constraints (11b) calculate the
satisfaction-based weight using exponential smoothing. The satisfaction indicator for each physician (see
Gross et al, 2018a) is calculated for the current planning horizon using constraints (12). Constraints (13a)
and (13b) set our workload-based weights. These constraints are conflicting and we can include only one
at a time in the model. Constraints (13a) disable physician-specific workload-based distribution of du-
ties (1c), and constraints (13b) calculate the workload-based weight using exponential smoothing on the
current workload and the historic workload. See section 5 for how we use constraints (11a), (11b), (13a),
and (13b) to evaluate the effects of satisfaction- and workload-based weights. Constraints (14) calculate
the workload indicator (see section 3.1) for each physician for the current planning horizon. Finally,
constraints (15), (16), and (17) restrict the domains of our decision variables.

4.1 Linearization of the model

In the form above, our decision model is a quadratic decision model. This can be seen in objective
terms (1b) and (1c). For term (1b), we apply the linearization described by Gross et al (2018a). For
term (1c), we can identify two cases: In the first case, we use constraints (13a). This means that lj is
set to a fixed value of 0 and can be modeled as a parameter, making the model linear. For the second
case, we use constraints (13b). In this case, lj must be modeled as a decision variable and our decision
model is quadratic. We now describe a linearization for the second case to transform the model with
constraints (13b) into a linear decision model.

Looking at the workload indicator λj for physician j, we find that it depends on the sum of assignments
to this physician (

∑
i∈I
∑

w∈W
∑

d∈D xjiwd), the amount of days per week |D|, and the amount of weeks
in the planning horizon |W|. As the amount of days and weeks are parameters, these values can never
change and are always constant for all physicians. The sum of assignments, however, is described by
decision variables and is different for each physician. When thinking about what possible values our
workload indicator can assume, we therefore need to identify all possible values the sum of assignments
can assume. We know that physicians cannot be assigned to duties on consecutive days as they need to
rest on a day after a duty. It follows that physicians can at most be assigned to a duty on half of the
days in the planning horizon. Additionally, we know that physicians cannot be assigned to more than one
duty per day. The upper bound (UB) on the duty assignments for each physician is therefore

⌈
|W|·|D|

2

⌉
.

As x is a binary variable and therefore integer, the sum over x must always be integer. We can
therefore enumerate all integers between 0 and the UB to find all possible values for the sum of duty
assignments for physician j. We define the set A as all possible amounts of duty assignments for each
physician.

A =

{
n

∣∣∣∣n ∈ N0 ∧ n ≤
⌈
|W| · |D|

2

⌉}

Using these values, we can then pre-calculate the workload indicator λj for physician j for all possible
values a ∈ A and in consequence the workload-based weight lj for physician j. Using these, we can
calculate the workload-based cost cwork

ja incurred by assigning a duties to physician j as follows.
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cwork
ja = α3 · lj · a

= α3 ·
(
γ2 · λj + (1− γ2) · l̂j

)
· a

= α3 ·
(
γ2 ·

a

|W| · |D|
+ (1− γ2) · l̂j

)
· a

As can be seen, cwork
ja does not depend on any decision variables and can therefore be supplied as

parameters. For our objective function, we want to replace the quadratic formulation. In its stead, we
want to select the appropriate cost values cwork

ja . To achieve this, we introduce an additional binary
decision variable zja which is 1 if physician j is assigned to exactly a duties and 0 otherwise. We can
then replace term (1c) with the following.∑

j∈J

∑
a∈A

(
cwork
ja · zja

)
(18)

Additionally, we add the following constraints to the model.∑
a∈A

zja = 1 ∀j ∈ J (19)

∑
i∈I

∑
w∈W

∑
d∈D

xjiwd =
∑
a∈A

(a · zja) ∀j ∈ J (20)

The quadratic term (1c) in the objective function has now been replaced by the linear term (18).
Constraints (19) are linear and ensure that exactly one number of assignments a is selected via z for
each physician. Constraints (20) are also linear and ensure that the selected number of assignments a
is equal to the actual number of assignments. Therefore, we now have a linear model that we can solve
using any MILP solver.

5 Computational Study

To enable a comparison of physician satisfaction and workload between planning horizons, we add an
index m ∈ M to the satisfaction and workload indicators, with M being the set of all the months for
which we create duty rosters. σjm and λjm then describe the satisfaction and workload indicators for
physician j on the duty roster for month m, respectively.

We evaluate our results using the APS and ASV performance indicators introduced by Gross et al
(2018a):

1. Variance of average satisfaction indicator per physician over all planning horizons, i.e., months m

APS = Var
j∈J

(
1

|M|
∑

m∈M
σjm

)

2. Average of satisfaction indicator variance per physician between planning horizons, i.e., months m

ASV =
1

|J |
∑
j∈J

Var
m∈M

(σjm)

Additionally, we define the following two performance indicators for plan quality in terms of equal
distribution of workload.

1. Variance of average workload indicator per physician over all planning horizons, i.e., months m

APL = Var
j∈J

(
1

|M|
∑

m∈M
λjm

)
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2. Average of workload indicator variance per physician between planning horizons, i.e., months m

ALV =
1

|J |
∑
j∈J

Var
m∈M

(λjm)

All our experiments are run on a VirtualBox 5.2.6 virtual machine with 4 GB of RAM and one virtual
core of an Intel i5-4310M CPU, running Xubuntu 16.04.3 on kernel 4.13.0-32. Our model is implemented
in CMPL 1.11.0 and is solved with IBM ILOG CPLEX 12.7.1.0. The software used for our experiments
is derived from the published code by Gross et al (2018a) and can be found on GitHub1. Each of our
instances can be solved to optimality within 4 seconds. We choose the weights for our computational
study lexicographically, i.e., α1 ≫ α2 ≫ α3 (α1 = 100, α2 = 10, α3 = 1). This is based on our assumption
that the coverage of all duties is much more important than the equal fulfillment of preferences, which in
turn is much more important than the equal distribution of workload. Our smoothing constants γ1 and
γ2 are both set to 0.8. Setting these smoothing constants to a value close to 1 puts more weight on data
from the more recent planning horizons in comparison to data from the past. As physicians’ happiness
depends more on their treatment in the more recent past, we put a high emphasis on the more recent
satisfaction and workload data.

5.1 Data with varying conflict rate

First, we apply our model to the data presented by Gross et al (2018a) on GitHub2 which is based on
real world data from a German university hospital. This data contains 85 physicians who are employed
throughout the time horizon, which consists of 24 months with 4 to 5 weeks each. There are 6 duties to
be covered with a demand of 1 physician per day. In the data, no physicians are absent. A preference is
defined as being in conflict when there is at least one other preference by a different physician for the
same duty on the same date. The conflict rate is then defined as the number of conflicting preferences
divided by the total number of preferences. The preference probability is defined as the probability that
a physician is assigned a preference during data generation on any given day. A preference probability
of 80 % indicates that for any given physician on any given day the preference generation algorithm
assigns a preference with a probability of 80 %. The preference rate is then defined as the number of
actual preferences divided by the number of days. It follows that the preference rate is always bounded
by the preference probability. The data exhibits duty preferences with a preference probability of 80 %
and different target conflict rates between 0 and 100 %.

The different strategies for equal preference fulfillment and equal distribution of workload are intro-
duced in section 4. As we need to choose a preference fulfillment strategy and a workload distribution
strategy for each experiment, we will denote the combination of the two strategies as A-B, where A is the
strategy for preference fulfillment (U or F) and B is the strategy for workload distribution (CL or ESL).
See table 2 for an overview of the combinations of strategies used in our study. Initially, we compare
the U-CL strategy and the U-ESL strategy and apply both strategies to the data set with a 0 % conflict
rate. This means we ignore physician preferences completely and just optimize for coverage (U-CL) or for
coverage and equal workload distribution (U-ESL). As we do not consider preferences in either strategy,
evaluating the results by the APS and ASV performance indicators is not meaningful, because those
only evaluate preference fulfillment. Instead, we only evaluate the results based on the APL and ALV
indicators. The results can be found in table 3. For both indicators, we find a dramatic decrease of about
99 % for the U-ESL strategy in comparison with the U-CL strategy. This proves that our workload
indicator is effective in influencing our key performance indicators for workload distribution and shows
that it can achieve a more equal distribution of workload among physicians (APL) and a more equal
distribution of workload between months for each individual physician (ALV ).

The incorporation and fulfillment of physician preferences in the scheduling process is very important,
usually even more important than the equal distribution of workload. In order to demonstrate that our
workload indicator is also effective when used in conjunction with physician preferences, we now use
the F strategy for equal preference fulfillment for all further experiments. We now apply the F-CL and
F-ESL strategies for our model to the data and calculate the APS, ASV , APL, and ALV performance

1 https://github.com/chrisnig/long-term-workload
2 https://github.com/chrisnig/long-term-fairness
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preferences workload
label U F CL ESL
U-CL x x
U-ESL x x
F-CL x x
F-ESL x x

Table 2 Overview of used combinations of preference fulfillment strategies (U/F) and workload distribution strategies
(CL/ESL)

U-CL U-ESL
APL 0.006075 0.000012
difference to U-CL −0.006063
difference in % −99.80 %
ALV 0.006694 0.000082
difference to U-CL −0.006612
difference in % −98.78 %

Table 3 Values of the performance indicators for the U-CL and U-ESL strategies using the data set with a 0 % conflict
rate

indicators. We compare each indicator for the F-CL model with the indicator for the F-ESL model and
report the change as a percentage in figure 1. Note that the model for the F-CL strategy is identical to
the model for the ESD strategy proposed by Gross et al (2018a) as it only considers equal preference
fulfillment and no equal workload distribution.

-100%

-80%

-60%

-40%

-20%

0%

20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

re
la
ti
v
e 
d
if
fe
re
n
ce
 f
o
r 
F
-E
S
L
 t
o
 F
-C
L

target conflict rate

APS ASV APL ALV

Figure 1 Relative difference in performance indicators between F-CL and F-ESL strategy for data with different target
conflict rate

As can be seen from the graph, none of the key performance indicators change a lot between the data
sets for different target conflict rates. The improvement in the workload performance indicators APL
and ALV fluctuates at −20 % with a slight downward trend with increasing target conflict rate. This can
be attributed to the higher preference rate which comes with the higher conflict rate. Data with higher
conflict rates have higher preference rates. This can be attributed to the preference/conflict generation
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algorithm used by Gross et al (2018a): First, preferences are generated at random with a given preference
probability. Second, in order to meet the target conflict rate, if the conflict rate inherent in the generated
preferences is too high, conflicting preferences are removed until the target conflict rate is reached. This
reduces the preference rate for data with a low target conflict rate. When there are more preferences,
the ideal plan is not as highly constrained as it is for lower preference rates: With lower preference rates,
there are not that many physicians who have a preference for the same duty on a day. As we penalize
preference violations more harshly than unequal distribution of duties, the solver will always try to fulfill
these preferences, even if it results in a more unequal distribution of duties. The higher the preference
rate, the more likely it is that several physicians enter a preference for the same duty on the same day.
The solver can then choose the physician to assign to the duty in such a way that duties are more equally
distributed, without incurring a penalty for violating a duty preference.

For the fairness indicators APS and ASV , we can identify a similarly small downward trend with
higher target conflict rate. It may seem surprising that improvements, i.e., a negative relative change, is
even possible for these performance indicators as the F-CL and F-ESL strategy both contain the same
constraints for equal distribution of preference fulfillment. One might assume that optimizing for equal
preference fulfillment in the F-CL model would already yield the optimal result for the APS and ASV
performance indicators, so that the F-ESL model could not possibly improve on this. However, there are
some situations where several optimal solutions for the F-CL model exist, which are different in terms
of the APS and ASV performance indicators. The F-ESL strategy will therefore be able to distribute
some duties in a different way without achieving a worse score for our fairness objective (1b), but at the
same time improving the objective of equal distribution of duties (1c). As the preferences in our test
data are also equally distributed, this implicitly improves the fairness performance indicators APS and
ASV . Because the differences between all optimal solutions for the F-CL strategy are small, reductions
in the fairness performance indicators are always below 20 %. In some cases, improvements are even
impossible and the key performance indicators for fairness are worse when taking into account equal
workload distribution in the model, e.g., for a target conflict rate of 30 %.

5.2 Data with varying preference probability

Next, we take a look at how our performance indicators behave for different preference rates. We use
the same 24 months of base data and generate preference data with the preference generation algorithm
proposed by Gross et al (2018a). The only difference in our generation strategy can be found in the
preference probability, i.e., the probability that a physician submits a preference on any given day in
the planning horizon. While Gross et al (2018a) always assume a preference probability pon = 80 % and
adjust the generated data to match a target conflict probability, we vary this probability between 0 %
and 100 % and skip the adjustment for the conflict probability. We generate data for each preference
probability in increments of 10 percentage points. For each generated data set with a different preference
probability, we run the models for both our strategies and calculate the key performance indicators for
fairness and equal workload distribution of duties. The graph in figure 2 shows the relative change in
key performance indicators between the F-ESL and the F-CL strategy. This table shows the value of
the respective key performance indicator for the F-CL strategy subtracted from the value for the F-ESL
strategy and the result then divided by the value for the F-CL strategy.

For the APL and ALV indicators, we see that the biggest improvement can be achieved with a
preference probability of 0 %. This is not surprising, as having no preferences at all essentially prevents
the model from optimizing the roster according to submitted preferences. Note that this means that the
model for the F-CL strategy with a 0 % preference rate is identical to the U-CL model. It is therefore not
surprising that we exhibit similar differences in performance indicators as in table 3. The only objective
that is weighted higher than the equal distribution of duties is the coverage of all duties. As the coverage
is easily fulfilled and does not interfere with how the duties are distributed, the model will distribute the
duties only according to our constraints for equal workload distribution. As soon as we start introducing
preferences, we can see that the improvement in the APL and APV performance indicators decreases.
This is because our model will distribute duties in such a way that preferences are fulfilled first, and only
then optimize for the equal distribution of duties among physicians. This means our model will only move
duties between physicians to create a more equal distribution if this is not in conflict with the objective of
satisfying preferences equally. Essentially, the model can only move duties between physicians who have
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Figure 2 Relative difference in performance indicators between F-ESL and F-CL strategy for data with different preference
probability

both submitted a preference for the same duty on the same day or duties which have not been requested
by any physician, severely limiting the possibilities for achieving an equal distribution. In consequence,
the improvement in the performance indicators for equal distribution (APL, ALV ) declines with a rising
preference probability.

When looking at the APS and ASV indicators for physician satisfaction, we can see that these start
at a 0 % improvement and the improvement then gradually increases until it starts fluctuating around
20 % for a preference probability of 50 % and above. The 0 % improvement for a preference probability
of 0 % can be easily explained: This data set does not contain any preferences at all, so no preferences
can be fulfilled. In consequence, regardless of what strategy or model we use, the preference fulfillment
will always be at 0 and the difference between the performance indicators will also always be 0. As the
preference rate increases, the model can start fulfilling preferences. As already explained for the data set
with varying conflict rates, our F-ESL strategy will now resolve stalemates in the preference fulfillment
objective with a bias to distribute duties more evenly. This, in turn, will also lead to an improvement in
the satisfaction performance indicators because our duty preferences are also distributed evenly.

All our performance indicators converge to a constant improvement value around which they fluctuate
for preference probabilities over 50 %. For preference rates higher than 50 %, no noticeable change is
recognizable in the improvement in the performance indicators. This phenomenon results from the upper
limit on preferences we implicitly define. As a physician cannot work two consecutive duties, we also
do not allow specifying consecutive preferences. Therefore, the maximum number of preferences per
physician is

⌈
|W|·|D|

2

⌉
. The maximum preference rate, i.e., the number of days with a preference divided

by the total number of days in the planning horizon, is therefore close to 50 %. The actual preference
rate, however, is somewhat lower as the random iteration of the preference generation algorithm makes
it unlikely to distribute the preferences in such a way that there is a preference on every other day. It
follows that preference probabilities above 50 % will start converging towards a preference rate of less
than 50 %, meaning the change in the preference rate between a preference probability of 50 % and
100 % will be smaller than the change in preference rate for a preference probability between 10 % and
50 %. To illustrate this, we show the actual preference rate compared to the preference probability in
figure 3, which shows the flattening of the preference rate with increasing preference probability.
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Figure 3 Resulting preference rate when running the preference generation algorithm with different preference probabilities

5.3 Managerial results

Our results indicate that our workload indicator can improve the equal distribution of workload among
physicians in all settings. As we reward the equal distribution of preference fulfillment more than the
equal distribution of workload, our workload indicator is especially effective when there are no prefer-
ences or only a small number of preferences. For a higher number of preferences, our workload indicator
can still achieve a more equal distribution of workload, but the improvements are smaller. We there-
fore recommend implementing our workload indicator to schedulers, regardless of the preference rate in
their data. Improvements in the equal distribution of workload will be more noticeable on rosters with
less preferences. Additionally, schedulers should identify in which order the objectives of equal prefer-
ence fulfillment and equal workload distribution are important for satisfaction of their workforce. In our
experiments, we assume that equal preference fulfillment is more important than equal workload distri-
bution, which is reflected in our α-weights. These weights (α2 for equal preference fulfillment and α3 for
equal workload distribution) should be adjusted in accordance with the priorities of the physicians to be
scheduled.

6 Conclusion

Our work describes a workload indicator to measure an individual physician’s workload based on a given
duty roster. We incorporate the workload indicator into a scheduling model which creates duty rosters for
physicians. Our model takes into account the individual workload of each physician based on previous
rosters and distributes the workload in the new roster in such a way that the workload is equalized
over all physicians in the long term. To track this workload over several planning horizons, we require
a quadratic decision model. We describe a linearization of this model so it can be transformed into an
equivalent linear decision model. Our model with workload tracking is evaluated in comparison to a
model without workload tracking. For our study, we apply generated data for 24 months of physician
schedules to both models and compare the results using performance indicators. Our results indicate
that the workload indicator is effective in ensuring a more equal distribution of workload (i.e., overnight
duties) among physicians. The effectiveness of our workload indicator is higher when it does not have to
compete with higher ranked objectives, such as, e.g., equal fulfillment of preferences.
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Our results provide valuable insights for managers and schedulers. We show that without our workload
indicator the distribution of workload is not necessarily equal among physicians. This inequality can
accumulate over several planning horizons and lead to dissatisfaction for physicians who are repeatedly
burdened with a high workload. For all test instances, using our workload indicator leads to a more
equal distribution of workload among physicians over several planning horizons. We therefore recommend
managers incorporate our workload indicator into their scheduling process.
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