
EasyChair Preprint
№ 9426

Memory Based FFT Implementation on
Re-Configurable Hardware

Rama Krishna Thirumuru, Vani Sai Kumar Komarraju,
Sai Madhava Yellamraju and Varshith Rao Gundavaram

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 7, 2022

Memory based FFT Implementation on

Re-configurable Hardware

Rama Krishna Thirumuru
Professor at Electronics & Communication Department

KL University

Vijayawada, India

ramakrishnathirumuru@gmail.com

Sai Madhava Yellamraju
Electronics & Communication Engineering

KL University

Vijayawada, India

saimadhava17@gmail.com

Vani Sai Kumar Komarraju
Electronics & Communication Engineering

KL University

Vijayawada, India

k.vanisaikumar@gmail.com

Varshith Rao Gundavaram
Electronics & Communication Engineering

KL University

Vijayawada, India

gundavaramvarshith1333@gmail.com

Abstract—In Digital Signal Processing irrespective of Appli-
cation Fast Fourier Transform (FFT) is a critical processing
method while operating on discrete-time signals. The traditional
way of computing FFT using a software approach by DSP pro-
cessor will execute serially which restricts execution speed. The
FFT implementation with optimized functionalities in parallel
processing using the latest FPGA hardware is discussed in this
work. In this paper, a memory-based FFT implementation on
reconfigurable hardware that follows a conflict-free strategy with
predefined memory size and a few other combinational compo-
nents is proposed. Based on the experimental results obtained
through simulations targeting ZTEX field programmable gate
array (FPGA) Using Xilinx ISE, we conclude that the algorithm
developed is faster than conventional approaches, with a 7.556ns
delay and power consumption of 12.68 mV.

Index Terms—Digital signal processing Re-configurable hard-
ware, ZTEX FPGA, Xilinx ISE,Discrete Fourier Transform
(DFT),Fast Fourier Transform (FFT), Radix-4.

I. INTRODUCTION

One of the most widely utilized mathematical operations is

the Fast Fourier Transform(FFT). It is an essential algorithm

in DSP Applications for computing Discrete Fourier Trans-

from(DFT). It is part of numerous systems in a large variety of

applications.It is used in medical, engineering and communica-

tion, and other fields because it transitions quickly from the T-

is it will be reusing previous iteration data for computing

current stage iterations. There are numerous architectures in

this literature, and mainly, we perform this process using

butterflies and rotators. As butterflies and rotators are reused

in multiple stages of the FFT, memory-based FFTs have a

lower number of butterflies and rotators.[2] There is a separate

access strategy to memory for providing free access and may

also demand extra multiplexers, buffer, or cache memory. The

radix-4 memory has many advantages compared to previous

experiences, it uses fewer Memory N samples and some

multiplexers.[6-8] Further, this has been implemented FPGA.

This implementation will allow the integration of the hardware

with distributed logic.

This brief is organized as follows. Section II explains the

proposed memory-based FFT. Section III explains the imple-

mentation using FPGA . Section IV presents a discussion on

Results. Section V describes about an Application. Section VI

describes Conclusion. Finally references used for this work.

II. PROPOSED IDEA

A. Architecture

The basic architecture uses radix-4 and computes the FFT

algorithm with six iterations. The number of iterations depends

on
domain to the F-domain and vice versa.[1] Pipelined FFTs are

employed in a system that requires very high rate computation It =
log2N

log2r

n

=
log2r

(1)

of FFT. When systems’ performance requirements are less
stringent. Instead, there are requirements in terms of the

amount of space or hardware resources used by the architec-

ture. Under these conditions, developers typically use memory-

based FFTs, also known as In-place or Iterative FFTs.[3] In

Memory FFT the data is stored in a memory or bank of

memories.This data is retrieved from memory, processed by

butterflies and rotators, and then put in memory again. This

method is repeated until all stages of the FFT algorithm have

been computed. The main advantage of memory based FFT’s

The proposed architecture has four memories elements, each
having N/4 samples in parallel fashion rather than a single

memory of n samples. Using this design will allow read and

writing the memory simultaneously and reduce the latency,

increasing the throughput of the circuit.

B. Conflict free access

Four memories are retrieved parallelly, And PE is processed

in every clock cycle that comes from different memories.

The samples of these memories are stored in a natural order.

mailto:ramakrishnathirumuru@gmail.com
mailto:saimadhava17@gmail.com
mailto:saimadhava17@gmail.com
mailto:k.vanisaikumar@gmail.com
mailto:k.vanisaikumar@gmail.com
mailto:gundavaramvarshith1333@gmail.com
mailto:gundavaramvarshith1333@gmail.com

4

4

4

2 4

4

4

n-3 0 4

n=0 N N
2

n= n 4 N

n=0 N

4

n=0 N
2

n= N N

Samples are 0 to N/4-1 are stored in MEMO, N/4 to N/2-

Σ 3N −1
x(n)Wnk +

Σ
N−1

x(n)Wnk

(4)

1 in MEM1. The samples are from 0 to N-1 with an index n= N N n= 3N −1 N
I=bn-1,bn-2 ... b0, the memory of each sample I is

P 1 = bn − 3, bn − 2........b0 | bn − 1, bn − 2. (2)

Bits bn-1 and bn-2 will indicate four memories in sample and
store, whereas bits b to b are address.

The above equations are the results of a process called

decimation in time. This process is performed because the

samples of time are arranged into groups. The basic operation

of the R4 butterfly is shown in Fig.2 Thus,

X (k) =
Σ N −1

x(n)W nk+W Nk/4
Σ N −1

x(n +
n

)W nk+

W Nk/2
Σ 3N −1

x(n +
n

)W nk+W 3Nk/4
Σ

N−1 x(n)Wnk
N

Therefore,

n= n

2 N N

n= 3N −1 N

(5)

X(k) =
Σ n −1

[x(n) + (−j)kx(n +
N

) + (−1)kx(n +
N

)
n=0 4

 + (j)kx(n +
3N

)]Wnk
2
(6)

4 N

Fig. 1. Proposed Architecture

C. Radix-4 Algorithm

The Radix-4 is an additional fast Fourier Transform

Algorithm (FFT) that can be obtained by moving the base

from 2 to 4. The power/index diminishes in direct proportion

to the size of the base. There are 50 fewer stages in radix-4

than in radix-2 since N=4M, indicating that stages have

decreased by 50. It is explained in more detail in the later

sections on how radix-4 simplifies complex calculations.

D. Functioning of radix-4 algorithm

For computing sequences, the radix-4 algorithm is com-

parable to the radix-2 technique in terms of type and speed

management.The given sequence divides into four parts based

on ’n’.[15] The given sequence layout in radix-4 is as follows:

n = [0, 4, 8, N - 4] results x(4n),

n = [1, 5, 9, N - 3] results x(4n+1),

n = [2, 6, 10, N - 2] results x(4n+2), and

n = [3, 7, 11, N - 1] results x(4n+3).[16-18]

After the division of N-point DFT, it can be computed as

the sum of the outputs of 4 N/4-point DFTs, and these sub-

sequences are interconnected with so-called twiddle factors.

W lk
N = e−(j2lπk/N)l = 0, 1, 2, 3, (3)

X(k) =
Σ

N−1x(n)Wnk

Fig. 2. Nodes of Radix-4 butterfly Algorithm

III. EXPERIMENTAL SETUP

This concept has been introduced to ZTEX FPGA System.

These VSX Systems include DSP48E arithmetic logic units

and small elements of Distributed logic. Proposed Architec-

ture makes the most of DSP48E and diminishes the use of

distributed logic. But memories in this architecture make use

of distributed logic. The perk of utilizing DSP Slices is that

they can be clocked at high frequencies. And it allows large

word lengths without disturbing the clock frequencies. But

in Distributed logic clock frequency may slow down when

improving word length.

The memories named MEM0, MEM1, MEM2, MEM3 are im-

plemented by Block RAM(BRAM) memories. All memories

elements contain 1024 addresses, and each address can store

24 + 24 bits of real and imaginary parts. Multiplexers would

represent a remarkable cost if developed using Distributed

logic. Connections among memory and PEs should be static

=
Σ N −1

x(n)Wnk +
Σ N −1

x(n)Wnk+

without multiplexing.

i.e., outputs of memories should always be connected to PE

4 2

BTF0 Module has two DSP48E in which multiplexers func-

tionality is paralyzed and takes four input signals of 24 +

24 bits. The ALU unit of DSP48E is initialized by mode

SIMD=TWO24. Similarly, BTF1 Consists of two DSP48E,

which involves calculating the 2nd part of Radix-4 Butterfly.

The execution of operations depends on the bits Cn3, Cn4 of

Control Counter.

iterations.

*** TP – Processing Time, this is the product of number of

iterations and the number of cycles per iteration.

The radix influences the trade-off between architectural

resources and processing time. The bigger the radix, the

greater usage of the Processing Elements(PE). A large PE

expands the area, but processing time TPROC is reduced.In the

below equation memory access time is denoted by TMEM

N

T PROC =
lt.T MEM (7)

r

Fig. 3. Functioning of BTF0 Module

The TWD Module plans the multiplications by Twiddle fac-

tors. These Twiddle factors are banked in ROM Memory, these

banked factors are used in further iterations of FFT. In the First

iteration, Coefficients are read sequentially. In Next Iterations

LSBs of Control Counter are removed for determining the

address. As BTF1 outputs are shuffled so as Twiddle factors.

In the last Iteration, there is no necessary for rotation. For

finding power at each output frequency the squared magnitude

of complex values is carried out.

Fig. 4. Functioning of BTF1 Module

IV. RESULTS AND DISCUSSIONS

There is a trade-off between the number of resources

available to the architecture and the processing time in

memory-based FFTs, TPROC.

Fig. 5. Comparison Of Access Strategies in Memory-Based FFT’s

*Parallel Process- Number of data that are proposed in

Parallel. Which means how many data are read in parallel

from the memories in each clock cycle.

** Related to Radix- Bigger Butterflies calculate a larger part

of FFT Flow graph at each iteration, reducing the number of

Below figures shows the area and Delay analysis achieved

through proposed Architecture

Fig. 6. Area Analysis

Fig. 7. Delay Analysis

V. APPLICATION CASE

The proposed memory based FFT can be employed in the

procees of Medical Image compression which provides images

of the human body and its components for clinical applica-

tion.Using Memory based FFT compression in compression

algorithm can process the image quickly coupled with the

transformed domain compression.

VI. CONCLUSION

In this article, the new FFT algorithm based on radix-4

algorithm for DSP Applications was proposed and simulated

on a target device ZTEX. This method has been successful

in reducing the FPGA inner resources and passed the simu-

lation and verification tests with above results. Moreover, the

intended FFT has been successfully deployed on an FPGA

utilizing DSP slices. The recommended design makes use

of less distributed logic than earlier FPGA findings while

maintaining a same resources in the terms of DSP slices and

BRAM units.

REFERENCES

[1]S. He and M. Torkelson, “Design and implementation of a 1024-point
pipeline FFT processor,” in Proc. IEEE Custom Integr. Circuits Conf.,
May 1998, pp. 131–134.

[2]M. Garrido, J. Grajal, M. A. S ánchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 1, pp. 23–32, Jan. 2013.

[3]D. Cohen, “Simplified control of FFT hardware,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 24, no. 6, pp. 577–579, Dec. 1976.

[4]Y. Ma and L. Wanhammar, “A hardware efficient control of memory
addressing for high-performance FFT processors,” IEEE Trans. Signal
Process., vol. 48, no. 3, pp. 917–921, Mar. 2000.

[5]Z.-G. Ma, X.-B. Yin, and F. Yu, “A novel memory-based FFT architec-
ture for real-valued signals based on a radix-2 decimation-in-frequency
algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 9,
pp. 876–880, Sep. 2015.

[6]B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed radix (CFMR)
FFT processor using novel in-place strategy,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 52, no. 5, pp. 911–919, May 2005.

[7]X. Xiao, E. Oruklu, and J. Saniie, “Fast memory addressing scheme
for radix-4 FFT implementation,” in Proc. IEEE Int. Conf. Electro/Inf.
Technol., Jun. 2009, pp. 437–440.

[8]P.-Y. Tsai and C.-Y. Lin, “A generalized conflict-free memory addressing
scheme for continuous-flow parallel-processing FFT processors with
rescheduling,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
19, no. 12, pp. 2290–2302, Dec. 2011.

[9]S.-J. Huang and S.-G. Chen, “A high-throughput radix-16 FFT processor
with parallel and normal input/output ordering for IEEE 802.15.3c
systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp.
1752–1765, Aug. 2012.

[10]D. Reisis and N. Vlassopoulos, “Conflict-free parallel memory accessing
techniques for FFT architectures,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 55, no. 11, pp. 3438–3447, Dec. 2008.

[11]C.-F. Hsiao, Y. Chen, and C.-Y. Lee, “A generalized mixedradix algo-
rithm for memory-based FFT processors,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 57, no. 1, pp. 26–30, Jan. 2010.

[12]M. Garrido, “Efficient hardware architectures for the computation of the
FFT and other related signal processing algorithms in real time,” Ph.D.
dissertation, Dept. Signals, Syst. Radiocommun., Tech. Univ. Madrid,
Madrid, Spain, 2009.

[13]M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit
reversal,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp.
657–661, Oct. 2011.

[14]M. Garrido and J. Grajal, “Efficient memoryless CORDIC for FFT
computation,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
vol. 2. Apr. 2007, pp. II-113–II-116.

[15] Chang, C.K., Hung, C.P. and Chen, S.G., 2003, May. An efficient mem-

ory based FFT architecture. In Proceedings of the 2003 International
Symposium on Circuits and Systems, 2003. ISCAS’03. (Vol. 2, pp. II-
II). IEEE.

[16] Ma, Z.G., Yin, X.B. and Yu, F., 2015. A novel memory-based FFT
architecture for real-valued signals based on a radix-2 decimation-in-
frequency algorithm. IEEE Transactions on circuits and systems II:
Express Briefs, 62(9), pp.876-880.

[17] Bruguera, J.D. and Lang, T., 1996. Implementation of the FFT butterfly
with redundant arithmetic. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, 43(10), pp.717-723.

[18] White, S., 1981. A simple FFT butterfly arithmetic unit. IEEE Transac-
tions on Circuits and Systems, 28(4), pp.352-355.

[19] Heydt, G.T., Fjeld, P.S., Liu, C.C., Pierce, D., Tu, L. and Hensley,
G., 1999. Applications of the windowed FFT to electric power quality
assessment. IEEE Transactions on Power Delivery, 14(4), pp.1411-1416.

[20] Yu, C., Yen, M.H., Hsiung, P.A. and Chen, S.J., 2011. A low-power 64-
point pipeline FFT/IFFT processor for OFDM applications. IEEE
transactions on consumer electronics, 57(1), pp.40-40.

[21] Han, X., Chen, J. and Rahardja, S., 2019, September. A new twiddle
factor merging method for low complexity and high speed FFT archi-

tecture. In 2019 IEEE International Circuits and Systems Symposium
(ICSyS) (pp. 1-5). IEEE.

	Rama Krishna Thirumuru
	Sai Madhava Yellamraju
	Vani Sai Kumar Komarraju
	Varshith Rao Gundavaram

