
EasyChair Preprint
№ 2336

Special subclass of Generalized Semi-Markov
Decision Processes with discrete time

Alexander Frank

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 8, 2020

Special subclass of Generalized Semi-Markov
Decision Processes with discrete time

Alexander Frank

1 Introduction

Many planning problems with stochastic uncertainty can be modelled as Markovian
Decision Processes. Because of their condition to be memoryless the resulting agent
assigns an optimal action in a given state and released time by paying attention to
the gaining rewards and the future states. Those processes are used in stochastic
games, network planning, robotics and further more. Discrete- and continuous-time
Markov Decision Processes (MDPs and CTMDPs) can be solved efficiently with
policy iteration or linear programming, [6].
One more universal class of decision problems is given by Generalized Semi-
Markov Decision Processes (GSMDPs). The formalism in this article is similar to
the definition by [7], based on previous definitions of GSMPs by [3]. In this class of
problems we have several events, which can be triggered. Those events cause tran-
sitions from state to state and achieve some rewards. It is possible that for a period
of time no event is triggered and the agent only knows the progressing clocks, so
there are different sojourn times. By adding a choice of actions affecting the active
set of clocks the agent has to make a decision for the underlying problem.
There are only a few articles about continuous time GSMDPs. [2] examine a gen-
eralized model of Stochastic Automate (SA) with clocks, which are triggered asyn-
chronously, activating transitions in the SA. By the Kronecker product clock states
are combined to handle their interaction. Similarly [7], defined asynchronous events
by continuous phase-type distributions (PHDs). Events are triggered and affect the
underlying Markovian problem. They bring all active events in relationship and cal-
culate their coherent probabilities to trigger one of them without losing the current
progress of the others. Based on that article and a previous of [5], an approxima-
tive planner for solving deliberation scheduling problems was build using results
for GSMDPs in [4].

Alexander Frank
TU Dortmund, 44227 Dortmund, e-mail: alexander.frank@tu-dortmund.de

1

2 Alexander Frank

To the best of my knowledge, there are no research articles written up to now about
discrete time GSMDPs. The fact that there are discrete time steps, in which sev-
eral events can be released, leads to a high dimensional problem. Even if the events
have a certain order to be worked off, the agent has to consider over an exponential
number of possible event combinations. This paper is focused on a special subclass
of discrete time GSMDPs. The first limitation is that once an action is chosen in a
state it is fixed until at least one event is triggered. The second limitation is that all
progress for all events is lost if at least one single event is triggered.
The complexity is still PSPACE hard, but in this paper two randomized algorithms
in polynomial runtime are introduced and analysed. Some backgrounds and a com-
pleted formulation for discrete time GSMDPs are given. After that, the two random-
ized algorithms are explained and in the last section the results are discussed.

2 Background and Definitions

In this section, basic definitions and problem formulations are introduced. In general
P(X) is the probability of X and E(X) is the expected reward. Bold letters are for
linear functions (like P) and calligraphic letters (like S) are used for sets. 1 and 0
are vectors only consisting of 0 or rather 1 (where i have to say that the dimension
is always logically conceivable).

2.1 Markov Decision Process

A tuple of (S ,A ,P,R,p0) defines a discrete Markov Decision Process (MDP)
where S is a finite set of states, A is a finite set of actions, P : S ×A ×S → [0,1]
is the transition function for moving from s to s′ choosing action a and is used as a set
of stochastic matrices P(s,a,s′)≡ Pa(s,s′), so that the condition ∑s′∈S Pa(s,s′) = 1
is fulfilled for all s ∈S . Furthermore R : S ×A ×S → R is the reward function
and is also used as a set of matrices R(s,a,s′) ≡ Ra(s,s′). At least p0 ∈ R1×|S | is
the initial distribution over all states.
By mapping actions to states the agent produces a policy π(s, t) = a, depending
also on the past time t ∈ [0,T], or a pure policy π : S → A , if the time has no
relevance. Let Π be the set of all policies. For an explicit policy π several paths
σ =< s0,s1,s2, ...sT > in the MDP are enabled, with p0(s0) > 0 and to every pair
of following states < si,si+1 > applies Pπ(si,i)(si,si+1)> 0. The set over all possible
paths (for a given policy) is called Σ π . A discounting factor β ∈ (0,1] may be added
to reduce the weights of future decisions. For an infinite horizon β is necessary.
The optimization criteria for the agent is to find an optimal policy π maximizing
the discounted rewards over all possible paths in infinite horizon (there might be
other optimization criteria, but they are not of interest in this paper). Intentionally
the formalism for the optimization criteria depends on the set of possible paths Σ π ,

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 3

because a similar formalism for zero-steps will be introduced later.

max
π∈Π

∑
σ∈Σπ

P(σ |π)
T−1

∑
i=0

β
iRπ(si,i)(si,si+1). (1)

There are some options to solve MDPs like policy iteration and linear program-
ming. These methods are exact and solve MDPs in a polynomial time. Much more
information about MDPs can be found in [6].

2.2 Generally Semi-Markov Decision Process

GSMDPs are defined as a tuple of (S ,A ,E ,C,P,R,F). As in section 2.1 , S
and A are sets of states and actions. E is an extension and a set of independent
events which are triggered with a probability given by F(t,e) for a discrete passed
time t ∈N since activation of the event. E0 includes the trivial event e0, that nothing
happens. The function C : S ×A ×E →{0,1} specifies if an event e ∈ E is active
C(s,a,e) = 1 or inactive C(s,a,e) = 0 in a given state and a chosen action. The
transition function P : S ×E → S declares the full known following state, if an
event e ∈ E is triggered in s ∈S . Also the rewards depend on the occurred events
R : S ×E0×S → R, however it is sufficient to know the current state and event.
The agent has to make decisions identifying the active events. Then discrete time
steps are made until the first event is triggered. Furthermore, all other active events
can be triggered in the same time step. For a given order (or rather with decreas-
ing priority) the system is affected by the events so that the status of events can
be changed, transitions switches the state and rewards are gained. An optimal deci-
sion earns optimal rewards heeding to the next status of the system. So the policy
π : S ×N|E | maps an action to the given state and the passed event times since an
event gets active and has not been triggered before.

Figure 1 shows a small example for the transition graph with four states and three
events. C(·,a, ·) is visualized by the set of edges, so all events not belonging to an
edge are blocked (like C(s2,a,e1) = 0). If the current state is s1 and all events are
triggered a zero-step path γ =< s1,e1,s2,e2,s3,e3,s1 > is produced for the system
transitions in actual a single time step. So the following state for the next decision is
s1, the same as when only e3 is released with γ =< s1,e1,s1,e2,s1,e3,s1 >, but this
path gains different rewards.
Those paths γ are paths in the zero-step-phase, which are handled between two de-
cisions. All possible paths γ during the zero-step-phase are parts of the set of regular
zero-steps Γ ∗. Every regular path γ =< s0,x1,s1,x1, ...,x|E |,s|E | > with xi ∈ {ei,ei}
is also well defined for a given initial state s0 by the formula γ =< x1,x2, ...,x|E | >.
The reward for a zero-step path γ is computed additively

R(γ) = ∑
i: xi=ei

R(si,ei,si+1) or R(γ) = R(s0,e0,s0). (2)

4 Alexander Frank

s1

s2

s3

s4

e1

e3

e2

e3

e2

e3

e1

e3

e2

Fig. 1 Example: Transition graph for a fixed action, 4 states and 3 events

For the small example in Fig. 1 and s3 as the initial state the set of possible paths is

Γ
∗(s3,a) = {< e1,e2,e3 >,< e1,e2,e3 >,< e1,e2,e3 >,< e1,e2,e3 >}.

So it is possible to transfer in every state s ∈ S before the next action has to be
decided.

The optimization criteria is also defined with the set of all paths Σ and zero-step
paths Γ ∗. Therefore Γ ∗(s,a,s′) is defined as the set of all regular zero-step paths
starting in s and ending in s′ by choosing action a. Also t means the actual progress
in the current time step i.

max
π∈Π

∑
σ∈Σπ

P(σ |π)
T

∑
i=0

β
i

∑
γ∈Γ ∗(si,π(si,t),si+1)

P(γ|π(si, t), t) ·R(γ) (3)

2.3 Resetting discrete GSMDPs

Discrete GSMDPs are very difficult to solve, due to an exponential huge definition
amount the agent has to handle. Even if the passed time has an upper bound for each
event forcing it to be triggered, the system is too huge to be solved in polynomial
time.
A resetting discrete GSMDP (GSMDP0) has the same definition as a GSMDP with
two more restrictions:

a. If one or more events are triggered, before they are inactivated (per action or
in transitions of zero-steps), all progress of each event is set to 0 after the zero-
step-phase.

b. When entering a state after one or more events are released the agent has to
make a decision for an action. This action is not able to be changed until the
next regular event is triggered.

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 5

Due to these two restrictions the agent only has to find a policy π : S → A . The
vector for the progress time in GSMDPs can be seen as t := t ·C(s,a, ·). Nevertheless
the problem is further hard to solve, due to the evaluation of zero-steps.
At least every time the agent has to make a decision the progress vector t ∈ N1×|E |

is 0. This criteria makes it possible to create an approximating model in polynomial
time. In the conclusion some approaches for future algorithms are presented, solving
discrete GSMDPs without specifications.

2.4 Discrete Phase-Type Distributions

Acyclic discrete Phase-Type distributions (ADPHs) are introduced in [1]. They are
used to simulate the progress of the events. It is obvious that discrete distributions
are suitable for a GSMDP, because of the discrete time steps, but not necessary. The
focus of this paper is the zero-step-phase, so ADPHs are an adequate choice by in-
creasing the probability to be released.
ADPHs guarantee that the probability to come in the absorbing phase sn+1 is
monotonous increasing. Also every ADPH has a unique representation in a canoni-
cal form with an initial vector q ∈ [0,1]1×n and a probability matrix Q:

Q =

Q̃
(

0
qn

)
0 1

 , Q̃ =

(1−q1) q1 0 0 ... 0

0 (1−q2) q2 0 ... 0
...

...
...

...
...

0 0 0 0 ... qn−1
0 0 0 0 ... (1−qn)

 (4)

with ∑
n
i=1 q(i) = 1 and 0≤ q1 ≤ q2 ≤ ...≤ qn ≤ 1. In this paper ADPHs are used to

describe the progress of the events. So the probability of triggering event e, if it is
activated since t time steps, is

P(e|t) = 1−||qQ̃t ||1 = 1−
n

∑
i=1

q ·
(
Q̃t(·, i)

)
. (5)

.

3 Randomized Approaches

Now the basic definitions are explained and a closer look at the analysis of GSMDP0s
is possible. The first question is: What happens in a discrete time step of our model?
The behaviour of the model in a discrete time step is defined as zero-step-phase.
Nevertheless there is also the opportunity that no event is released in this time step.
The set of all regular zero-steps is Γ ∗ with |Γ ∗| ≤ 2|E |, on the other hand Γ is the

6 Alexander Frank

set of all paths, regular or not.
At least two randomized approaches to solve discrete GSMDP0s approximate in
polynomial time are given. Both solve every instance exact if their input value for
the bounding capacity is unlimited.

3.1 Zero-Step-Phase

This phase is the main focus of this paper, because the zero-step-phases make GSM-
PDs so difficult. For the analysis of the zero-step-phases the current state s ∈ S ,
only a single available action a ∈A is considered and the past time since no event
has been triggered t ∈ N is known. Also for every event e ∈ E the ADPH is known
as tuple (qe,Qe), so the probability for a triggering event can be computed like in
equation 5.

Not all events are active for a fixed combination of (s,a). The set of active events in
s under a is defined as

Eact(s,a) := {e ∈ E | C(s,a,e) = 1.} (6)

The probability that no event is triggered for the progress time t is

P(e0|t) = ∏
e∈Eact

||qeQ̃t(e)
e ||1 (7)

In the other case one or more events are released. All in all there are 2|Eact | pos-
sibilities of combinations of events, which are triggered or stay in progress. For a
given zero-step path γ ∈ Γ with γ =< s0,x1,s1,x2, ...,x|E |,s|E | > and xi ∈ {ei,ei}
the correctness has to be evaluated. Also the probability P(γ|a, t) and rewards R(γ)
of a path can be computed. The special path < e0 >:=< s0,e1,s0,s0, ...,e|E |,s0 > is
defined for no triggering event.

Definition 1. A path γ ∈ Γ is regular for an action a ∈ A and a progress vector t
(for a decreasing priority), if and only if

∀i ∈ {1, ..., |E |} : (xi = ei) ⇒ (∀ j < i : C(s j,a,ei) = 1) . (8)

So it has to be verified that the event is not set inactive before the priority of this
event is high. As an example you want to buy several things online in one session,
but when you come to the fourth article, it is already sold out.

Definition 2. The probability of a regular zero-step path γ ∈ Γ ∗ depends on the
probability that e is triggered in γ and equation 5, so it is P(ei|γ,a, t) = P(ei|t(ei)) ·
∏

i−1
j=0 C(s j,a,ei). The probability for the path now is given by

P(γ | a, t) = ∏
i:xi=ei

P(ei|γ,a, t) · ∏
i:xi=ei

(1−P(ei|γ,a, t)) (9)

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 7

Definition 3. The additively gained rewards are already defined in 2. For the planing
of the agent it is important to calculate correctness, probabilities and rewards for all
γ ∈ Γ ∗. If multiple paths end in a state s′ the probabilities can be summarized as

P(s′|s,a, t) = ∑
γ: γ(s|E |)=s′

P(γ|a, t). (10)

On the other hand the rewards are summarized with weights in relation to their
probabilities

R(s,a, t,s′) = P(s′|s,a, t)−1 · ∑
γ: γ(s|E |)=s′

P(γ|a, t) ·R(γ). (11)

Since all possibilities and rewards are computed, the agent has total knowledge
about the future status of the system. With these information an optimal decision
can be made to collect discounted rewards.

3.2 Randomized Γ -Method

The first approach to avoid an exponential number of zero-steps is to limit the set of
active unset events like in algorithm 1. Generally there are |Eact | events which can
be triggered or not, leading to a set Γact with |Γact |= 2|Eact | different paths (also with
irregular paths).
The main idea of the Γ -method 1 is to fix so many events randomly in step random-
ize of the algorithm depending on their probability, that the set of the other events
Erest fulfils 2|Erest | ≤ Ω . The more the probability of an event is near to 0 or 1, the
more it is fixed randomly by the method. So for all active unset events e is the prob-
ability to be fixed |P(e)− 0.5| normed by the total of all active unset events. Also
the fixed value is randomly chosen equal to the triggering probability.
So in the approximation step Eact is split into Erest ,E0 and E1, where the last define
sets of events specified to be 0 or 1. Now the main loop of the following algorithm
has an upper bound of Ω .
The update step in algorithm 1 is similar to the equations 10 and 11. The probabili-
ties are summarized and the rewards are summed with weights of their probabilities.
This method has a running time in Θ(Ω · |E |2 + |S |). Moreover Ω = 2|Eact | leads
to the exact solution and calculates all possible paths in the zero steps.

3.3 Randomized E -Method

The other algorithm 2 based on a totally different structure. This time all steps for a
single event are evaluated and saved in a double sorting list. The higher priority is
the actual state and the lower sorting priority is for blockings from C.

8 Alexander Frank

algorithm: zero steps Γ

input : (S ,Eact ,P,C,R,F), (s̃,a, t) ∈S ×A ×N|E |0 , Ω ∈ N
output: L list of reachable s, probabilities and rewards

L(s, ·, ·)← [s,0,0]; // ∀s ∈S ;
(Erest ,E0,E1)← randomize(Eact , s̃,a, t,Ω) // explained in 3.2;
Γ ′←P(Erest)\{< e0 >};
for γ ∈ Γ ′ do

if γ is regular (8) then
L is updated with results of γ // explained in 3.2;

end
end

Algorithm 1: zero-steps over randomized paths

So at the time point when event e ∈ Eact is evaluated all list entries become an up-
date for triggering and for staying in progress. The list size will grow by factor 2 in
every iteration, so again we limit the size to Ω .
In general two entries which are at the same state after an iteration step are not able
to be combined, cause they walked different paths and passed different C(·,a, ·).
With an additional function to find and combine same acting entries for all future
iterations the list is kept small. So if S has no exponential size and there is no up-
per bound Ω the list size will increase to 2|Eact |/2 and not later than this point it will
shrink in every iteration until there are not more than |S | entries. The combination
is equal to the proceeding in 3.2
If the list size of Ω is exceeded (only possible by an single element) the algorithm
discards randomly an entry depending on their current probabilities. As well as the
Γ -method the algorithm solves the zero-steps exactly if Ω is great enough.
The last line in the algorithm is to correct the influence of < e0 >. On the one hand it
is possible to stay in the initial state s̃ on the other hand it is possible to join the state
per a chain of transitions (zero-steps). But in the first case the progress is increased
by 1 and otherwise t is reset to 0. So both cases has to be separated.

The running time of the E -method 2 is defined in Θ(|E | ·Ω 3 + |S |). However the
expected accuracy of this method is better compared to the Γ -method for the same
Ω , because there are no irregular paths consuming resources and combined entries
imply that more regular paths can be evaluated.

3.4 Transformation to a MDP

The chance that no event triggers in a state s by choosing action a in t ∈ N time
steps converges to 0, because of the ADPHs. For a negligible error of ε > P(e0|t)
the progress time t gets an upper bound of θ(s,a) ∈ N for every tuple of state and
action. The new set of states S̃ consists of

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 9

algorithm: zero steps E

input : (S ,Eact ,P,C,R,F), (s̃,a, t) ∈S ×A ×N|E |0 , Ω ∈ N
output: L list of reachable s, blockings, probabilities and rewards

L1← [s̃,Eact ,0,0];;
for e ∈ Eact do

for l ∈ L and e unevaluated for l do
if e in l(2) inactive then

update l with e blocked;
else

snew← P(l(1),e);
neu← [snew, l(2) ·C(snew,a, ·), l(3) ·P(e), l(4)+R(l(1),e,snew)];
l(3)← l(3) · (1−P(e));
L← insert(L,neu,Ω) // explained in 3.3;

end
end
L← combine entries(L) // explained in 3.3;

end
Correct the entry l(1) = s̃ // explained in 3.3;

Algorithm 2: zero-steps over events

S̃ =
⋃

s∈S
(s,0) ∪

⋃
s∈S ,a∈A ,t∈N≤θ(s,a)

(s,a, t).

For every state (s,a, t) the zero-step-phase has to be evaluated. With the results
of the zero-step-phases a MDP (S̃ ,A , P̃, R̃) can be built with the expected tran-
sition probabilities and rewards. The entries in the list describes the probabilities
P(s′|s,a, t) = P̃((s,a, t),a,(s′,0)) and the collected rewards R̃((s,a, t),a,(s′,0)). By
adding expensive penalties for switching a chosen action a′ in a given tuple (s,a, t)
and no transition happens the second restriction is guaranteed. At least transitions
from the states (s,0)→ (s,a,1) and (s,a, t−1)→ (s,a, t) have to be computed with
(t−1) and equation 7.
By using one of the presented methods (3.2 or 3.3) a MDP is build in a time based
on the method and S̃ . Of course ADPHs can be built so that S̃ is enormous, but in
general the upper bound θ is reached super exponentially.

4 Experiments

In this section the results for both randomized methods are shown. Their solutions
will be compared to each other and to the exact ones using the E -method with
Ω = 2|E |.
The test instances are randomized in transitions and transition probabilities, the or-
der of ADPHs is normally distributed with expectation 5 and variance 1. The entries
of ADPHs are randomized exponentially. The rewards are equally distributed just
about [−|E |, |E |] and also the entries C(s,a,e) ∈ {0,1} have the same probability.

10 Alexander Frank

The instances are build for |S | = {50,100}, different number of actions |A | =
{2,4,6,8} and various events |E | ∈ {15,20,25} (for greater E s the exact solution
can not be computed with the used computers).
Both randomized approaches run 10 times for a single instance and for 10 different
instances. Over all results for a fixed number of states, actions and events the aver-
age values are calculated and presented. Here the E -method is shorten with E and
the Γ -method is named G.

In figure 2 the results for different actions and different Ωs are presented, with a
grid size (|S |) of 50 and several numbers of events. There is no obvious pattern for
a specific influence by the number of actions. But as suspected the E -method has
mostly a smaller relative error to the exact solution, which is also cut with an error
below ε , than the Γ -method for an equal Ω . Also it is visible that the relative error
raises for a greater set of E . Of course there are more unnoticed zero-step-paths with
a higher number of events. In general the quality of the solutions gets better for a
greater Ω . Here it should be mentioned that for Ω = |S | · |E | always all relative
errors are lower than 10−5.
The next figure 3 shows the average results for fixed sets of S and A . It confirms
the previous statements that the goodness of the algorithms for a fixed Ω is de-
creased. Several tests confirm, similar to the runtime of the algorithms, neither the
size of S nor A is really relevant for the quality of both approaches.

Table 1 Relative run times for |S |= 100 and |A |= 4

method and |E | Ω = 20 Ω = 40 Ω = 60 Ω = 80 Ω = 100

E -method, |E |= 15 0.985 0.973 0.981 0.985 1.004
Γ -method, |E |= 15 0.791 1.379 1.385 2.543 2.531
E -method, |E |= 20 0.840 0.953 0.971 0.988 0.992
Γ -method, |E |= 20 0.368 0.689 0.689 1.364 1.365
E -method, |E |= 25 0.607 0.863 0.929 0.946 0.957
Γ -method, |E |= 25 0.204 0.303 0.305 0.613 0.610

The run times in Table 1 are relative to the time an exact model takes time to be cre-
ated and solved. Because there is no force to combine list elements of the E -method,
it is possible that the polynomial approach takes a longer time as presented in the
last column. It is shown that the Γ -method is really faster than the E -method, if the
upper bound Ω is far away from 2|E |, otherwise if both algorithms compute almost
the exact zero-steps, Γ -method takes much longer. This results in the fact, that the
list for the E -method is naturally limited by

√
2|E | and the Γ -method has no smaller

natural bound than 2|E |.

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 11

Fig. 2 Average results for tests with |S |= 50

Fig. 3 Average results for tests with |S |= 100 and |A |= 4

12 Alexander Frank

5 Conclusion

The experiments show, that both approaches have their own advantages. Generally
very small run times are possible with the Γ -method in exchange to the quality
compared to the exact solution. On the other hand are the results of the E -method
for the same Ω closer to exact ones, but it takes more time. Both algorithms have a
polynomial time to evaluate the zero-steps and can be used to transform a GSMDP0
to an approximating MDP.
There are also polynomial methods to compute an approximative degree ∆ of the
problem instance, which gives more information about all regular paths Γ ∗:

|Γ ∗|= 2∆∗ ≤ 2∆ ≤ 2|E |. (12)

This information can be used to set Ω in relation to the degree of an instance, be-
cause in all test instances with |E | up to 25 it unnecessary to set Ω = |S | · |E |.
Future work has to be focussed on the class of normal GSMDPs, which are more
complex. There is an exponential number of combinations of states and different
progress times. So new approaches will be needed to decrease the decision space by
aggregating progress times or selecting representative states. If that will be success-
ful, the algorithms in this paper with small additions, can be used to evaluate the
zero-step-phase and to transform the problem in a MDP.

References

1. Bobbio, A., Horvth, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions: prop-
erties and a parameter estimation algorithm. Performance Evaluation 54(1), 1 – 32 (2003)

2. Buchholz, P., Kriege, J., Scheftelowitsch, D.: Model checking stochastic automata for depend-
ability and performance measures. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 503–514. IEEE (2014)

3. Glynn, P.W.: A gsmp formalism for discrete event systems. PROCEEDINGS OF THE IEEE
77(1) (1989)

4. Krebsbach, K.D.: Deliberation scheduling using gsmdps in stochastic asynchronous domains.
International Journal of Approximate Reasoning 50(9), 1347 – 1359 (2009). Special Track on
Uncertain Reasoning of the 19th International Florida Artificial Intelligence Research Sympo-
sium (FLAIRS 2006)

5. Musliner, D.J., Goldman, R.P., Krebsbach, K.D.: Deliberation scheduling strategies for adaptive
mission planning in real-time environments. In: AAAI Spring Symposium: Metacognition in
Computation (2005)

6. Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic programming (1994)
7. Younes, H.L., Simmons, R.G.: Solving generalized semi-markov decision processes using con-

tinuous phase-type distributions. In: AAAI, vol. 4, p. 742 (2004)

