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Abstract—We provide a new numerical procedure for con-
structing low coherence matrices, Trust-Region Stochastic Tuning
for Matrix Incoherence (TRSTMI) and detail the results of
experiments with a CPU/GPU parallelized implementation of this
method. These trials suggest the superiority of this approach
over other existing methods when the size of the matrix is large.
We also present new conjectures on optimal complex matrices
motivated and guided by the experimental results.

Index Terms—Equiangular tight frames, line packings, com-
plex projective codes, discrete geometry, manifold optimization,
parallelization, trust region method, MIMO.

I. INTRODUCTION

Structured point configurations have generated much inter-
est in recent years in connection with their role in applications
to coding theory, wireless beam-forming, and compressed
sensing. Some of these configurations, like packings which
have maximal separation of elements, arise naturally in com-
munications due their optimal properties for quantization.
Multiple-Input Multiple-Output (MIMO) wireless communi-
cation is one of the main areas where such configurations
(called Grassmannian constellations) have gained interest due
to desirable statistical properties for signal transmission and
other domains [ARU], [HMR+], [LHS], [TSR], [ZWG].

An optimal packing of lines or subspaces in Fd (F = R,C,
or H, however we focus here on F = C) satisfies that
the minimal pairwise chordal distance is maximized over
all choices of collections of k-dimensional subspaces in Fd,
ΦΦΦ = {φφφj}Nj=1. The difficulty in designing such codebooks
is demonstrated by the extensive literature (see [BGM+],
[CBS+], [MD], [YRP] for instance) addressing attempts to
numerically and algebraically construct optimal and near-
optimal packings. Conway, Hardin, and Sloane pioneered
numerical searches for real subspace packings [CHS] hosting
an online database of these configurations [Sl2].

For simplicity, we address here only the case that k = 1,
corresponding to the problem of packing lines. In this case,
lines may be identified with points in the projective space
FPd−1, and so we will call such packings optimal projective
codes. Any line through the origin in Fd,

xF = {xλ | λ ∈ F \ {0}}.

can be identified with a unit vector in Fd (one interesting fact is
that line packings in CP1 under this identification are in one-
to-one correspondence with optimally spread collections of
points on S2, we use this later). Through this correspondence,
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the chordal distance between points x, y ∈ FPd−1 (lines in
Fd), has a simple formula

ρ(x, y) =
√
1− |⟨x, y⟩|2.

The problem of maximizing the minimal chordal distance
is then equivalent to minimizing the coherence of a configura-
tion, the maximal absolute value in the off-diagonal elements
of the Gram matrix ΦΦΦ∗ΦΦΦ of a set of unit vectors, ΦΦΦ = {φφφj}Nj=1,
|φφφk| = 1. We use µ(ΦΦΦ) to denote this quantity and Sd−1

F to
denote the unit sphere in Fd. In searching for optimal codes
then, the goal is to find the optimal values

µN,d = min
ΦΦΦ⊂Sd−1

F : |ΦΦΦ|=N
max
j ̸=k

|⟨φφφj ,φφφk⟩|.

II. WELCH BOUND AND EQUIANGULAR LINES

One unusually symmetric type of packing of lines play
a special role in the line packing problems. These equally
spaced projective codes (which additionally must satisfy some
conditions outlined below) are called equiangular tight frames
(ETFs), optimal simplices, or equiangular lines [LS]. The
vectors in an ETF form a tight frame, and attain the Welch
bound, a lower bound on the coherence of a configuration
(detailed below) [We]. When a tight frame is represented by
a d × N matrix ΦΦΦ over F, it satisfies the property that the
composition, ΦΦΦΦΦΦ∗ is a constant times the d×d identity matrix.
Tight frames have similar properties to orthonormal bases, but
are additionally overcomplete, or redundant.

ETFs are precisely the systems of unit vectors which attain
equality in the Welch bound, a lower bound on the minimal
coherence of any code in FPd−1,

µ(Φ) ≥

√
N − d

d(N − 1)
.

The size of an ETF cannot become too large in connection
with Gerzon’s bound, which says that this size is bounded
above by the dimension of a corresponding space of symmetric
matrices, N ≤

(
d+1
2

)
, d2, or 2d2 − d in the real, complex, or

quaternionic cases respectively.
It is generally an open question for which dimensions

maximally sized equiangular lines exist. Zauner’s conjecture
posits that in the complex case these configurations always
exist, and this has been verified up to dimension 21, while
numerical evidence suggests the conjecture holds at least up
to dimension 121 [ABF+], [Z]. In the real case, a variety of
methods show that equality in Gerzon’s bound cannot hold
in several dimensions, and it is known generally that d + 2
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must be the square of an odd integer if equality holds [BMV].
In the quaternion case, there is a lack of numerical evidence
for a similar phenomena which appears in the complex setting
[CKM].

It is worth mentioning there is a type of dual construction,
in which any ETF of size N in Fd gives rise to another ETF
of equal size in FN−d. One may check that by completing
the d × N matrix to an appropriately scaled unitary matrix
gives rise to another ETF. This is known as Gale duality and
the new ETF is referred to as the Naimark complement of the
first.

The Welch bound is only the first among several other lower
bounds for the coherence of N lines in Fd. These include
the orthoplex bound, the Levenshtein bound, and the Bukh-
Cox bound [BC]. It happens, although rarely when compared
to Welch bound equality, that these bounds are met too for
configurations, for instance by mutually unbiased bases and
more rarely, the tight projective designs. For examples of the
latter, take the tight projective designs of size 40 and 126 in
CP3 and CP5 [DGS], [H].

III. GRASSMANNIAN PACKINGS AND MISO
By exploiting radio channel information MIMO allows for

sending and receiving data simultaneously via multiple trans-
mitting and receiving antennas. Complex optimal projective
codes (also called Grassmannian packings) give good beam-
forming codebooks in MIMO but we focus below only on the
specific case of MISO (Multiple-Input Single-Output) systems
here due the result of [LHS] which shows that codebook
design for single stream transmission is independent of the
number of receive antennas.

The typical MISO system with d transmit antennas and
a single receive antenna can be modeled with a channel
vector hhh = [h1, ..., hd] with independently and identically
distributed (i.i.d.) complex Gaussian entries with zero mean
and unit variance hhh ∼ NC(0, IIId). The channel vector captures
transmission conditions (like physical obstructions in the path
between antennas for instance) which result in the form of the
received signal. The channel is often assumed to be static over
a small time period (called the coherence time).

We transmit a symbol or bit s over the channel using what
is called a beamforming vector φφφ where φφφ = [φ1, φ2, . . . , φd]
is a vector in Cd with unit norm. Altogether this gives us
a simple model for the transmission of the symbol s to the
receiver

y = ⟨φφφ,hhhs⟩+ η

where η is complex Gaussian noise of mean zero and variance
σ, and each of the d entries of φφφ†s are transmitted at the same
time by the d input antennas.

A well studied method for choosing the beamforming vector
in the above transmission model assumes that a codebook
of potential beamforming vectors is agreed upon first and
accessible to the transmitter and receiver

ΦΦΦ = [φφφ1,φφφ2, . . . ,φφφN ].

Further it is assumed the receiver can measure in an error-free
manner

max
i=1,...,N

|⟨φφφi,hhh⟩|2

and may select a φφφi which maximizes this quantity, relaying
the relevant index to the transmitter before it sends the symbol
s.

At this point the transmitter uses the code word φφφi to
transmit the symbol s. This choice maximizes the signal-to-
noise ratio (SNR) within a small time interval of the receiver’s
measurements

γ =
|⟨φφφ,hhh⟩|2Es

σ

where Es = E
[
|s|2

]
is the average symbol error. Note that the

value of s can now be trivially estimated from y via dividing
by ⟨φφφ,hhh⟩ [ZWG].

A good beamforming codebook in this setting unsurpris-
ingly is found by taking ΦΦΦ to be a complex line packing [LHS].
In other words if ΦΦΦ minimizes coherence over all systems of
N unit norm vectors in Cd (or even approximately) then it
serves as a good set of vectors for the MISO transmission
application above.

To see this, let dc be the chordal distance, and h ∼ σCPd−1

be uniformly distributed on the space of complex lines. The
quantization scheme that corresponds to the optimal choice of
φφφi above then takes the form

QΦΦΦ(hhh) : hhh 7→ arg max
i=1,...,N

|⟨φφφi,hhh⟩|2 = arg min
i=1,...,N

dc(φφφi,hhh)

so that a codebook ΦΦΦ has distortion metric

D(ΦΦΦ) = E[d2c(σCPd−1 ,QΦΦΦ(σCPd−1))].

This distortion is hard to express generally. One of the main
results of [LHS] is that this distortion measure may be bounded
by an increasing function of the coherence of the codebook ΦΦΦ
and so as a proxy for designing a codebook which minimizes
the distortion, we find one minimizing coherence.

IV. OPTIMIZATION PROCEDURE

We now introduce a new optimization procedure we use to
optimize for low coherence matrices or complex Grassmannian
packings which we call Trust-Region Stochastic Tuning for
Matrix Incoherence (TRSTMI). This procedure uses an alter-
nating method of computing successive smooth approxima-
tions to the maximum function (log-sum-exp) coupled with an
unconstrained minimization procedure (trust-region conjugate
gradient method, a popular nonlinear optimization method
[NW]) used to minimize the smooth maximum function ap-
proximation evaluated on the absolute value squared of inner
products of a unit norm projection of a given matrix. A random
Monte-Carlo sampling procedure is additionally employed to
address the fact that many trials may reach a locally optimal
value of the coherence which is far from the global minimum.

The maximum approximation mentioned above takes the
form

Fs,δ(xxx) = s+ δ log

[
n∑

i=1

exp

(
xi − s

δ

)]
where s = max

i
xi and δ > 0 is small. The method of

optimizing successive approximations of the max function
evaluated on inner products was investigated also in [ARU].
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The reference [ZB] gives a good survey of other numerical
approaches for contructing line packings.

We choose a series of decreasing δ′ks (which are experimen-
tally chosen based on performance and guided by elementary
considerations) and feed the optimized matrix xxx′ which comes
out of minimization of Fs,δk(xxx) into a minimization of the next
approximation Fs,δk+1

(xxx′). Eventually we reach a terminally
small value of δ which decreasing further tends not to result in
any considerate improvement in the optima quality (for similar
time spent). The variable xxx here corresponds to the upper
triangular part of the absolute value of the matrix of inner
products obtained after normalizing the columns of a matrix
to be unit norm (it suffices to only compute the maximum of
the upper-triangular part by symmetry).

Algorithm 1 Trust-Region CG-Steihaug [NW][Alg. 7.2]

z0 ← 0, r0 ← ∇fk, d0 ← −r0 = −∇fk
if ∥r0∥ < ϵk then return pk ← z0 = 0

for j = 0, 1, 2, ... do
if dTj Bkdj ≤ 0 then

Find τ s.t. pk = zj + τdj minimizes (†)
return pk;

end if
αj ← rTj rj/d

T
j Bkdj

zj+1 ← zj + αjdj
if ∥zj∥ ≥ ∆k then

Find τ ≥ 0 s.t. pk = zj + τdj and ∥pk∥ = ∆k

return pk;
end if
rj+1 ← rj + αjBkdj
if ∥rj∥ < ϵk then

return pk ← zj+1;
end if

end for
end if
(†): minp∈Rn mk(p) = fk +∇fT

k p+ 1
2p

TBkp subject to
∥p∥ ≤ ∆k, where Bk = ∇2fk

We now show how an elementary inequalities suggest a
choice of δ which gives good approximation to the maximum
function.

Proposition 4.1. Let Fs,δ(xxx) = s+ δ log
[∑n

i=1 exp
(
xi−s
δ

)]
,

where s = max
i

xi. Then,

s ≤ Fs,δ(xxx) ≤ s+ δ log n.

Proof. The first (left) inequality is trivial since δ > 0 and
n∑

i=1

exp

(
xi − s

δ

)
≥ exp

(
s− s

δ

)
= 1.

Let yi = xi−s
δ , then

log

[
n∑

i=1

exp(yi)

]
≤ log

[
n · exp(max

i
yi)

]
.

Thus, since max
i

yi = 0, we have

Fs,δ(xxx) = s+ δ log

[
n∑

i=1

exp

(
xi − s

δ

)]
≤ s+ δ log n.

Algorithm 2 TRSTMI optimization steps

(i) generate random collection of N unit vectors.
(ii) run optimization procedure

a) approximate max function with log-sum-exp ap-
proximation Fs,δk(xxx) (with δk → 0 decreasing
sequence).

b) apply trust-region conjugate gradient method to
minimize Fs,δk(xxx) where xxx is the vectorized off-
diagonal Gram matrix entries (corresponding to the
unit vectors).

c) initialize optimization of Fs,δk+1
with the optimizer

of Fs,δk(xxx).
d) repeat for all values of δk, k = 1, ...,M .

(iii) repeat procedure for L random initializations and return
the minimum over these trials.

TABLE I: A comparison of time needed to optimize for
a single step (a single approximation of max function) for
different large values of (d,N) for CPU and GPU parallelized
procedures. The GPU runs were completed on an Nvidia A100
80 GB RAM graphics processing unit. The CPU runs were
done on either a single or 6 parallel cores on a Ryzen 5 3600
CPU.

d N GPU (s) CPU - 6 cores (s) CPU - 1 core (s)

4 18000 1161 2927 4075
5 18000 1918 3896 5661
6 18000 3400 3641 10128

Remark 4.1. In our case xxx is the vectorized form of the upper
part of a square N×N matrix and hence n = N(N−1)

2 . Hence
to get Fs,δ within ϵ of the value of the max function we may
take δ ≈ ϵ

2 logN .

Remark 4.2. Without the shift by s within the exponential
function, evaluation of the inner function will ‘blow up’
for small δ. We handle differentiation of nonsmooth s via
the subgradient method [Ne], so that in our gradient based
minimization procedure we compute a subgradient as a proxy
for the gradient of the non-smooth function max

i
xi.

Remark 4.3. We are able to use an unconstrained mini-
mization technique because we divide each column of the
d×N matrix representing configuration ΦΦΦ by the norm of the
associated column vectors (precluding a zero vector column
from our matrix). One way to improve performance might be
to use another representation of the unit norm columns (for
instance using manifold optimization such as in [CBS+]).

Remark 4.4. We implement TRSTMI in PyTorch1 [PGM+]
so as to allow for straightforward parallelization support on
CPU/GPU. We found that this led to notable decreases in
runtime for large problems and detail the result of some

1Github repository with our code: https://github.com/JosiahPark/TRSTMI.

https://github.com/JosiahPark/TRSTMI
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TABLE II: A comparison of time needed to optimize for
different large values of (d,N) for different procedures (all
on CPU). The TRSTMI trials and MATLAB implementations
of Alt-Proj and CBGC were run on an i7-8750H processor.
Values are rounded up at fourth decimal to give actual upper
bounds (for example .50001 would be rounded to .5001 in the
table).

d N TRSTMI (s) Alt-Proj (s) CBGC (s)

(µ) (µ) (µ)

2 4 2.36 0.613 0.0156
(0.5774) (0.5774) (0.5774)

3 9 13.1 1.20 4.34
(0.5001) (0.5001) (0.5001)

4 16 21.3 2.73 0.301
(0.4473) (0.4473) (0.4473)

5 25 39.3 10.9 0.644
(0.4083) (0.4083) (0.4083)

6 36 79.7 19.5 1.37
(0.3780) (0.3780) (.3780)

7 49 146 25.6 859
(0.3536) (0.4545) (.3848)

8 64 189 48 1837
(0.3705) (.4782) (0.3693)

9 81 388 61.1 −
(0.3575) (.4648) −

experiments in Table I. In Table II we compare the runtime
and performance of TRSTMI to other established methods for
constructing complex line packings [TDH+], [DL] (because
these other methods are implemented in MATLAB instead,
some care should be applied in comparing runtimes). In these
experiments we stuck to L = 2d2 random initializations with
TRSTMI. We note that CBGC is an energy based optimization
procedure and that some properties of minimizers of associ-
ated energies are derived in [GP].

Remark 4.5. One approach which has been successful for
finding high precision optimal spherical codes (best packings
of spherical caps on the surface of a sphere) involves suc-
cessive minimization of harmonic energies [Wa1], [Wa2], an
adjustment of an algorithm from [K]. We find this procedure is
very time consuming for large problems, but expect that as a
(likely expensive) post-processing step, a singular energy op-
timization procedure may be applied to the output of TRSTMI
to possibly further decrease coherence.

Remark 4.6. In our experiments we found that TRSTMI
improved on many existing estimates for µN,d from the online
database associated with [JKM]. We collected a few that we
expect will be harder to improve upon in Table IV.

V. CONJECTURES FROM NUMERICS

A well-known phenomena that appears when studying best
packing problems in compact spaces is that one can obtain
other seemingly optimal packings from ’exceptional’ packings
by removing one or more points. This is not unique to packings
of subspaces, but is a phenomena which appears in a variety
of geometric packing questions.

One example of this phenomena can be understood via
the orthoplex bound, a coherence lower bound similar to the
Welch bound. By removing points from mutually unbiased

bases (MUBs) the orthoplex bound shows one often obtains
an optimal packing.

Proposition 5.1 (Orthoplex and Levenshtein bound, [CHS],
[Le]). Fix d > 1, select Φ ∈ Cd×N with unit norm columns,
and set µ = µ(Φ). Then

µ(Φ) ≥ 1√
d
, if n > d2,

µ(Φ) ≥

√
2n− d(d+ 1)

(n− d)(d+ 1)
, if n > d2.

Equality in the orthoplex bound (5.1) requires n ≤ 2d2−1,
and equality in the Levenshtein bound (5.1) requires that Φ
be tight with angle set {0, µ2}.

Two orthonormal bases in CPd−1 are said to be mutually
unbiased if they are aligned so that the inner product of any
pair of vectors, φj , φk, each from distinct bases, satisfies

|⟨φj , φk⟩| =
1√
d
.

It is known that the maximal number of MUBs in CPd−1 is
no larger than d+1, and that for prime power dimension, d =
pk, it is known this maximum number is attained. Interestingly,
it is an open question what is the maximal number of MUBs
in dimension d = 6, where it is conjectured that at most 3
exist.

An immediate consequence of the orthoplex bound is that
for d = pk, where p prime, any (d + 1)-MUB gives rise to
an optimal projective packing of N = (d + 1)d − j points,
j = 0, . . . , d − 1 by removal of any j points in the (d + 1)-
MUB. In particular, µN,d = 1√

d
for d and N as above. It is

an interesting question of whether such configurations are the
unique coherence minimizers.

Our first conjecture suggests a similar phenomena occurs
for maximal complex equiangular tight frames (also known as
SIC-POVMs [RBSC]).

Conjecture 5.1. For d ≥ 2, there exists a SIC of N = d2

points and for each N = d2−j, j = 0, . . . d−2, each optimal
projective code of size N is given by the removal of some j
points from the SIC. In particular, µN,d = 1√

d+1
for d and N

as above.

The first statement on existence is just Zauner’s conjecture.
However, if the above statement is true, this would imply non-
existence of an ETF of size N , for N slightly smaller than d2

as above, since

1√
d+ 1

>

√
d2 − j − d

d(d2 − j − 1)
,

holds for any j ∈ {1, . . . , d − 2}. For comparison, the only
non-existence result for complex ETFs (excluding those ruled
out by Gerzon’s bound) shows for d = 3 there does not exist
an ETF of size N = 8, a special case of the above conjecture.
Conjecture 5.1 also appears for the specific case of d = 3 in
[JKM].
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It is interesting how sharp the threshold is for removing
points while still obtaining an optimal packing. We expect
that for d = 2, 3, 4, and 5 the above conjecture gives the right
threshold. Besides maximally sized MUBs or SICs there are
several other exceptional configurations for which it appears
one can remove a point, still obtaining an optimal packing. In
increasing dimension, some examples from numerics appear
to be the tight 3-design in CP3 of 40 points, the W (K5) line
system of 45 points in CP4, an ETF of N = 31 points in CP5,
and an ETF of 28 points in CP6.

We expect that the 126 point tight 3-design also has the
above property. A newly found highly symmetric, small sized
projective 3-design (described in full in [Pa]) of 85 points in
CP4 is also expected to have this property. In all of the above
cases, it is not clear how many points can be removed so as
to obtain an optimal packing, nor for what reason seeming
differences in this number occur for similar configurations.

One phenomena which is displayed numerically is that small
complex grassmannian packings appear to have a single dis-
tinct distance between lines for N up to some threshold m(d)
(which appears to increase non-trivially with the dimension d).
Since a one distance set cannot become too large in connection
with classical bounds, there is a maximum size m(d) ≤ d2

for which there exists a packing of size N ∈ [d,m(d)]
with only a single distinct distance appearing. By default
m(d) ≥ d + 1, since the orthonormal basis and the simplex
are optimal packings.

From our optimal candidates in dimensions d = 2 through 8
and for increasing N , there is a value of N where numerically
optimal configurations go from having very small differences
in the absolute value of their off-diagonal Gram matrix entries
to noticeably large differences. We tabulate our observations
in this direction in Table III.

TABLE III: Consecutive small values of N for which it
appears an optimal packing in CPd−1 of size N can be taken
to have a single distance appearing.

d N

2 2–3
3 3–4
4 4–8
5 5–13
6 6–16
7 7–19
8 8–22

TABLE IV: A comparison of select coherence values (rounded
up at sixth digit) obtained via TRSTMI to established construc-
tive upper bounds from [JKM].

d N TRSTMI coh. [JKM] database coh.

3 27 0.734233 0.73726116
3 28 0.737797 0.73884638
6 24 0.371529 0.37267800

Fig. V.1: Comparison of lower bounds for µN,d against con-
structive numerical upper bounds for N ≤ 100 and CP1, CP2,
and CP3 obtained via the TRSTMI optimization procedure
(minimum values among 20 random intializations for each set
of parameters). With log-sum-exp approximation level ‘eps’=
7, 8, 9 for the maximum function (code specific parameter
corresponding to δ = 10−7 − 10−8) and the scale taken in
the plots, the difference with the values coming from Sloane’s
database for optimal spherical codes are indistinguishable
[Sl1].
Some successive coherence values are smaller than those
preceding. Since removing a point from a larger configuration
does not increase the coherence, the plots can be improved
in some cases trivially. We show the raw optimized values
instead.
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