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1 Abstract
We discuss the two specific applications of Bayesian Inference[5] with deep
learning[4] specifically in Structure identification problems. As deterministic
modeling does not consider uncertainty during computation, it is complementary
to combine it with stochastic method, for instance, Bayesian Inference when
solving problem requires prior information. In the first problem, MCMC[14]
is applied in randomizing the sampling of seismic waves.It is remarkably more
comprehensive when the problem transfer from 1D to 2D since the randomized
initialization with different MC Markov Chains do make the search of reconstruc-
tion of the seismic faster (getting convergent with more parameters) and more
accurate(less inference bias misleading the inversion and less disturbed by noisy
and unrelated information.) In the second problem. t-SNE[17] is conducted
with modified Bayesian Information Criteria(BIC) which not only makes the
computation easier and faster but also efficiently reduce the high dimensional of
the data. The choice of the perplexity is also done automatically which can be
updated with every iteration.

2 Introduction
In the current era, artificial intelligence[10] is developing rapidly dedicated in
solving problems which is not straightforward for human or its computation is
based on exponential order. The main method for machine to learn is basically
either with supervision or with inference lacking supervision/semi supervised.
In this paper, we combine the deep learning with Bayesian Inference on struc-
ture identification problems. Generally, the identification of structure requires
human’s prior knowledge about it or at least partially to construct model with
some deterministic parameters. As we discuss further into seismic detection and
RNA/protein sequencing, the necessity and advantage of the Bayesian inference
also become clearer: Stochastic sampling helps randomize the process and against
the bias and noise especially brought in by measurement. During inversion, it is
also important to consider the uncertainty statically instead of global solution
only based on labels at risk of no solution or overwhelming computation/time.
We intentionally choose the M-H method[6] with configuration on basis of the

1



symmetrical design of transition and ergodicity. The problem is solved with 1D
model with marginal probability and applied to 2D later. And the evaluation of
our model is based on 4 measures of rooted mean squared error(RMSE) with
1-norm and 2-norm roughness and depth separately after burn in.(Although
the focus of the paper on seismic wave is deep learning with MCMC, to make
sure the quality of the test, some basic details including preprocessing is still
included in the appendix D). As for another application we discuss about is
the RNA sequencing. Usually, scRNA sequenceing with the large RNA content
information brings about redundancy in computation with randomized sampling.
Thus, we here turn to conduct the variational inference[1]. The easiest but
fastest criteria Baysian Information Criteria (BIC)[11] is modified with Kullback
Leibler(KL)[13] convergence which is mainly to maximize the variational lower-
bound. In some specific problem of dna/protein alignment, structural informaion
can also be considered with diffusive process which here we do not introduce
detailedly.

3 Methodology
In this work, the basic model is the Bayes theorem utilized in the inverse model
for identification problem[9]. Generally, for a forward operator f(.):
d = f(m) + ε,
where m is the model with N observations contained in the data vector d and ε
is an N-dimensional vector containing the residuals, the solution can be given by
the conditional posterior probability distribution:
p(m|d) = k ∗ ρ(m) ∗ L(m|d),
where k is a normalizing constant, ρ(m) is prior for N-dimensional model and
L(m|d) is the likelihood function, which reflects how well a model explains the
data.
As for studying the interior structure of a planet, we usually starts with the
problem simplified on 1D or 2D model [18]which leads to our interest on the
marginal probability distribution for a subset of the model parameters, which is,
p(m’|d) = k*ρ(m’)*L(m’|d) =

∫
p(m|d)dms+1dms+2...dml

where m’ is a c-dimensional model vector(with s<= l). The marginal posterior pdf
stands the terminal state of knowledge of m’, given the variations in the l,c model
parameters.With c being 1 or 2, the marginal probability distribution represents
1-D or 2-D marginal posterior pdfs, respectively standing the problem with
knowledge of a single parameter model and the correlation information between
any two parameters. Note that, the necessary pre-process and decompose/
simulation of P-wave, S-wave and surface wave is not introduced but included in
Appendix D to make the work completed.
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4 Application on low dimension problem: wave
analysis[16] with radial seismic wave[15]

For the interior structure identification based on wave analysis,the simplest
model which consider the misfit simply as the likelihood during the inversion of
amplitude and phase:
L(m) is proportional to exp(−

∑
|Aobs(ωi)−Aapprox(ωi)|2

2∗(σA
i

)2

),

where the first term denotes to the observed and approximated amplitude
while the second term stands for the angle between observed and approximated
phase, both evaluated at the frequency ωi considering the sources of the seis-
mic are unknown. Here, the optimal Aobs = ςχl′ ∗Ml,l′ , and Aapprox(0ωl) =
ςχl′ ∗ k

1+k′(0ωl′−0ωl′′) , where the Ml,l′ =
k

[1+k′∗(0ωl′−0ωl′′)2] is used in forward
model for simulation the wave.(can be seen in Appendix D)
When takes it as the nonlinear inversion without analytical formulation, the
M-H algorithm is applied for configuration in each iteration. The transition
probability is then proportional to the acceptance ratio α:
α = min(1,

L(mapprox|d)∗ρ(mapprox)∗p(mapprox−>mi)
L(mi|d)∗ρ(mi)∗p(mi−>mapprox) )

, where the p is the pdf of posterior generating model perturbations at each
iteration i. Note that, due to Markov process’s symmetries and egotistic, with
the configuration(derivation see Appendix A), the chain is guaranteed to move
neither too often (ratio smaller than 1) nor too rarely (ratio larger than 1) which
converges to the prior ρ(m)
As we cannot eliminate the exception to symmetric distribution which occurs
when the model parameterization evolves as part of the inversion, we thus sample
the prior pdf of a global measure of model structure S(especially, considering
roughness for 2D or 3D cases). Under such circumstances, the asymmetry of the
p(S(mi− > S(mapprox))) is supposed to be taken into account, which gives rise
to the ratio being:
α = min(1,

ρ(S(mapprox))∗p(S(mapprox)−>S(mi))
ρ(S(mi))∗p(S(mi)−>S(mapprox)) )

, where in the numerator, ρ(S(mapprox)) is the prior probability of the cho-
sen model structure metric, and p(S(mapprox)− > S(mi)) is the probability of
proposing a given model structure when using an underlying symmetric pro-
posal pdf p(S(mapprox)− > S(mi)) for the individual model parameters. The
approximated pdf in terms of model structure is often asymmetric and depends
strongly on mi in the denominator of the ratio, andmapprox. The absence of
an analytical expression for the proposal pdfs in the equation, requires us to
estimate it numerically at each iteration, which is the to fit the unknown pdf
with the gamma distribution for different degrees of symmetry(the asymmetry
occurs concurrently for both positive and negative skewness while reduces to
symmetry in the limit when the shape parameter goes to infinity as the distribu-
tion approximates normal distribution.):
f(x;β, θ) = xβ−1∗e−

x
θ

θβ∗Γ(β)
, x > 0

In this equation, β > 0 represents the shape parameter which determines the
skewness and θ > 0 is the scale parameter determines the dispersion of the pdf.
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Because the domain for gamma pdf is [0, inf] while the pdfs is required to be on
a subdomain [a,b] where a > 0andb < inf. We thus introduce the shift parameter
µ0 translating the pdfs with: f(x;β, θ) obtained by the computation of gamma
function with:
skewness = 2√

(β)
, Variance = E[(x− µ)2] = β ∗ θ2,Mean = µ0 + µ = µ0 + β ∗ θ

4.1 Structural Algorithm
(1)With the model at iteration i: mi = m1,m2, ...,mM , compute the mapprox

with the symmetric configuration equation and the according measure of structure
S(mapprox)
(2)similarly, generate P new realizations from result of step 1: p(mi− > mapprox)
(3)for each i and any p belongs to 1,2,...P,compute the corresponding structure
Sp = S(mp)
(4)estimate the pdfs with f(x;β, θ) from the obtained samples: S1, S2, ..SP in
step 3 until iterations reaches the required number

4.2 Convergence estimation
We measure the model structure with four deterministic quantities: Depth(l1-
norm) sum of the absolute differences between each model parameter and a prior
reference mref :
SD1

=
∑∑

|mi,j −mref |
Depth(l2-norm) sum of the squared differences between each model parameter
and a prior reference mref :
SD2

=
∑∑

(mi,j −mref )
2

Roughness(l1-norm) sum of the absolute differences between neighboring param-
eters:
SR1

=
∑∑

|mi,j −ml,k|
(i,j) unequals to (l,k)
Roughness(l2-norm) sum of the squared differences between neighboring param-
eters:
SR2 =

∑∑
(mi,j −mref )

2

(i,j) unequals to (l,k)

Practically, we calculated the SR1 and SD1 as evaluation of the data of
one riverbank in India, 5 independent MCMC chains are run with the struc-
tural prior M-H acceptance ratio (v is the velocity according to real data):
α = min(1, exp(l(mapprox|d)− l(mi|d)) ∗ (p(S(mapprox)−>S(mi))

p(S(mi)−>S(mapprox)) )
v)))

For 1D case(results with log2 preprocessed only is shown. more detal in
table and rawdata result can be seen in appendix C), in the left figure, the
posterior density of model structure is measured with gamma distributed(bins =
50, 10 ks and 10 thetas separately) synthetic data while the right one is tested
with gaussian (bins = 50, 10 mus and 10 sigmas separately) both comparing
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Figure 1:

with one real data(mean location marked with cross) through SD measure and
comparing with one another synthetical data through SR measure. (For gamma
distribution, meanSR1 =0.999912, meanSR2=0.999993, p2=0.006874 meanSD1
= 1.211205, meanSD2= 1.428754, p2 = 0.000144 while for normal distribution,
meanSR1 =0.730871e-5, meanSR2=0.291341e-9, p1 = 0.033512, meanSD1 =
18.211205, meanSD2= 928.754145, p2 = 0.724534), for gamma prior, both SD
and SR(norm1 and norm 2) gives small differences and according to the ttest
result, the difference between two synthetica data (generated separately after
resampling) and the real data both follows the same distribution. However,
for the Gaussian prior, the SD gives abnormal result with real data and the
ttest also reports significantly different distribtion for the SD although the SR
difference is still of the same distribution. The possible reason might be the
error caused in preprocess with parameter mu and sigma setting.

For 2D case, the amplitude difference of love and rayleigh wave after burn
in under SR1, SR2, SD1 and SD2 measurements are shown in pixels.(The
convergence is measured through RMSE(Appendix B, and all the auto-correlation
function are made sure with time lag smaller than 0.2) being 0.7144, 0.4126,
0.0105, 0.0103)
The convergence for the 1D realization is of not too much difference among
the 2 measurements. However, for the MCMC inversion on 2D grids 5m*4m
field size, because 5 independent MCMC chains are run parallelly with 0.15
perturbation as noise to the parameters, the independent Gaussian realization is
thus of significant difference(rho1 = 0.00041, rho2 = 0.00214) between different
measures. The depth metrics are smoother than the roughness metrics while
the 1-norm and 2-norm does not give significant difference.(rho1=0.4814, rho2
=0.3325)

5 Application on high dimension problem: Single-
cell RNA Sequencing[8]

As the structure information is also quite useful in dna or protein alignment, Bayes
Inference can also be applied on alignment combining diffusive structure infor-
mation which is modeled with Hidden Markov[12] combining RNN[2]as sequence
data.Xn. The predicted dna/proteinYn is processed based on simialrly again
forward status αcell = P (Ysj ;θ), and backforward status: βcell = P (Yt+1:t|sj+1;θ)
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and the posterior is thus γ = αt∗βt
P (t)

. Since our interest here is to show the advantage of the model with high
dimensional RNA sequencing data, this work is not introduced here.Instead,
we are going to discuss the scRNA sequencing problem with the t-SNE with
modified BIC.
As the RNA sequence data are usually of high dimension, instead of MCMC,
the variational method is usually utilised. Variational inference can be regarded
as the optimization problem whcih thus is of lower computation consumption.
The criteria is usually based on the minimisation of the Kullback-Leiber(KL)
divergence , the log difference between observed and approximated posterior
distribution. The method we use is modified on t-Distributed Stochastic Neigh-
bor Embedding(t-SNE) which converts pairwise distances in high dimensional
space with data points xi, to corresponding embedding points yi pairwise join
distributions in low dimensional spaces, which respectively follows:
qi,j=(1+|yi−yj |2)−1∑

(1+|ys−yt|2)−1

while high dimensional one is defined in symmetrical conditions: pi,j = (pi|j +
pj|i)/2n), where

pi|j =
exp(−|xi−xj |2/2σj2 )∑
exp(−|xs−xt|2/2σj2)) and the KL to be optimised is thus:

KL(P ||Q) =
∑
pi,j ∗ log pi,jqi,j

Note that the σj is optimized through bisectional
search automatically with the pre-specified perplexity Perplex(pj) = 2H(pj),
where H(Pj) = −σjpi|j ∗ log

i|j
2 ao that Perplex(pj) = Perplex, where Perplex

is the hyperparameter of the t-SNE central to the final cluster.
Large Perplex usually leads to the embedding suboptimal in detecting the pattern
of the data(In the limit, when the Perplex goes to the number of data points, the
corresponding embedding form a Gaussian or uniform like distribution and fails
to be useful for structure detection at all) and thus, we design a new criteria:
S(Perplex) = KL(P ||Q) + log(n) ∗ Perplexn
with inspiration of the Bayesian Information Criteria(BIC):
BIC = −2 ∗ log(L) + log(n) ∗ k
, where the first term stands for the goodness-of-fit of the maximum-likelihood-
estimation and the second controls the complexity of the model with penalty k
scaled by log(n). Intuitively, when Perplex increases, differences among points
will become less and less significant with regard to the length of the kernel in
distribution P, and P will tend to uniform.The forward form of KL has large cost
for under-estimating probability but not for over-estimating. That is, if pi,j is
large and qi,j is small, KL divergence is large while in the opposite direction, KL
is not affected. Increasing Perplex leads to larger σj and more uniform pi,j so it
is easier is for the student-t distribution in low dimensional space to assign mass
for all probability points sufficiently. This is the so called crowding problem:
When projecting from high to low dimensional space, there is not enough room
in lower dimensional space.Generally, increasing Perplex relaxes the problem
and reduces the amount of structure to be modelled with less error according to
KL while pays a cost in the second term.

With the practical test, we apply it on the MC GC cell expression classification
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with t-SNE

Figure 2:

The top figure left is the trajectory of the gcs and mc classified under 10
groups while the top right figure gives the result classified with 5 groups and the
perplex are given as 8 and 6 separately as can be seen in the bottom figure.(The
optimization is based on KL minimization with fast-gradient search)

The modified BIC v.s.perplexity shows the best classification is with 10
classifications with perplexity being 8. Both of the figures are shown on the first
2 dimensions of the embedding and it can be observed that since the reduction
of the perplex is sharper, the classifications are also more easily separable
non-linearly (closer within one classification while more alienated with inter
classifications.) In fact, the standard deviation are all not too large along the
whole tested perplex domain showing the good-to-fitness of the t-SNE which is
as well of certain stability. As it being said, t-SNE performs generally well on
high dimension classification with the modified BIC.

6 Conclusion and Discussion
As deep learning[7] is a deterministic method which cannot consider the uncer-
tainty during computation, mainly more models depend largely on regulation
and dropouts with trim to avoid overfitting problem. However, for practical
problem, especially those requires efficiency and accuracy at the same time, the
combination of stochastic modeling[3], such as Bayes inference models is unas-
sailable important. For the two problems discussed in this paper, we first imply
Bayes combining MCMC to randomize the sampling of the data for getting better
estimation without bias and robustly against noise. As for EEG data(seismic
here),it is especially easy to get white noise disturbing the identification of ’real’
information. Thus, our model based on MCMC sampling aims at working against
noise both brought by measurement as well as inverse computation. To improve
in the future, the neuro-network with mixed density might be considered as
it can also learn non-linearly through the hidden units in the dark box which
can contain more factors which is also important to the inference of interior
structure and do not requires the knowing of the sources and mechanisms. It
might be easier for generalizing onto more complex model especially with 3D
wave equations. For the sequencing problem, the t-SNE is discussed here with
modification on the BIC criteria. Comparing to the MCMC, the computation
with variation is faster. The advantage of reducing high dimension can also be
observed according to the small uncertainty. With the Bayesian inference, the
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best perplexity is chosen automatically. Improvement can be made on searching
process which for now is on basis of gradient while it will be faster and better in
avoiding local optimization with second-order-gradient-search. However, consid-
ering different requirement or criteria, future exploration might explore more on
adding some prior as well.

7 AppendixA: The design of M-H MCMC accep-
tance ratio

The M-H algorithm sample a unique stationary odf: m, because it fulfills the
following two conditions:
(1)Detailed balance(or reversibility) is a sufficient condition for a random walk to
asymptotically reach a stationary pdf, requiring each transition(mi− > mapprop)
to be reversible and it can be stated as: given a transition matrix T (mapprop|mi)
a stationary distribution (m) is T (mapprop|mi)(mi) = T (mi|mapprop)(mapprop)
(2)Ergodicity of the Markov process requires that every state must be aperi-
odic(e.g., the system does not return to the same status at fixed intervals),
positive recurrent(e.g., the expected number of steps for returning to the same
state is finite) and irreducible(e.g., each status is accessible in a finite nunmers).
The condition guarantees the uniqueness of the staionary pdf (m).
As mentioned, the central aspect of MCMC theory is to define transition kernels,
such that the sequence of samples drawn will converge to the target pdf (m).If
the chain proposes a move from mi to mapprop , such that
ρ(mi) ∗ q(mi− > mapprop) > ρ(mapprop) ∗ q(mapprop− > mi), then this implies
that the chain moves too often from mi to mapprop and too rarely in the other
direction. To counteract this tendency, the M-H algorithm reduces the num-
ber of moves from mi to mapprop to achieve detailed balance. This is done by
introducing a probability (0 < α(mi,mapprop) < 1 that the proposed move is
executed. The resulting transition is defined as:
T (mapprop|mi) = q(mi− > mapprop)alpha(mi,mapprop) The probability alpha(mi,mapprop)is
calculated to ensure that T ((mapprop|mi)satisfies the detailed balance criterion,
as
ρ(mi)T ((mapprop|mi) = ρ(mapprop)T ((mi|mapprop) and thus, we have
ρ(mi)q(mi− > mapprop)alpha(mi,mapprop) = ρ(mapprop)q(mapprop− > mi)alpha(mi,mapprop)
According to the inequality of ρ(mi) ∗ q(mi− > mapprop) > ρ(mapprop) ∗
q(mapprop− > mi), the move from mappropto mi is not made often enough.
Setting alpha(mi,mapprop) = 1, the final acceptance ratio without data can be
achieved:
α = min(1,

ρ(mapprox)∗p(mapprox−>mi)
ρ(mi)∗p(mi−>mapprox) )
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8 AppendixB: Some quantities for evaluation the
2D MCMC acceptance

RMSE
M

= 1
M
∗ ||mact−m

mact
||2

r(τ) =
E[(mi

t
−µ)(mit+

τ

−µ)] σ2

, where E[-] is the expected value operator, mi

t

and mi
t+τ

are states of the ith
model parameter at time t and t+τ

9 AppendixC: The seimic data from
IRIS(descriptive review and pre-process)

Seimic wave on NS, WE and z axis are used. Prerocess as baseline correc-
tion,different transformation onto frequency domain and normaliation are con-
ducted before forward and inverse process.

Figure 3:

10 AppendixD: forward problem of seimic wave

Figure 4:
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