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ABSTRACT
With the increasing awareness towards protecting environment,

people are paying more attention to the electric vehicles (EVs). Ac-

companying the rapid growing number of EVs, challenges raise

at the same time, about how to place EV chargers (EVC), within

a city, to satisfy multiple types of charging demand. To provide a

better EVC station deployment plan to benefit the whole society,

we propose a problem called Social-Aware Optimal Electric Vehicle
Charger Deployment (SOCD) on road network. The SOCD problem

is hard and different from existing work in three aspects, 1) we

assume that the charging demand should be satisfied not only in

urban areas but also in relatively rural areas; 2) our work is the first

one that considers an EVC station should have multiple types of

charging plugs, which is more reasonable in real world; 3) different

from the regional deployment solutions in previous literature, our

SOCD directly works on a real road network and EVC stations are

placed at appropriate POIs laying on the road network. We show

that the SOCD problem is NP-hard. To deal with the hardness, we

design two heuristic algorithms whose efficiency and effectiveness

can be experimentally demonstrated. Furthermore, we investigate

the incremental case, that is, given an existing EVC station deploy-

ment plan and extra more budget, we need to decide where and

how many to place more chargers. Finally, we conduct extensive

experiments on real road network of Shanghai to demonstrate both

effectiveness and efficiency of our algorithms.
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1 INTRODUCTION
Nowadays, the transportation sector accounts for a large propor-

tion of total energy consumption. And the rapid growth of energy

demand, especially fossil fuel, will lead to massive CO2 emission

[2]. As one of the solutions to alleviate the environmental pressure,

electric vehicles (EVs) have been planned to replace or partially

replace fossil fuel vehicles, and government incentives to increase

adoptions were also introduced, such as the ones in the United

States [18] and China [1]. However, as the predictable increase of

total number of EVs, the explosive demand of accessing EV chargers

(EVCs) in public zones becomes a new challenge at the same time.

A survey [4] points out that, although the number of public EVC

stations has grown from less than 1000 in April 2011 to 4153 in

August 2012, it is still limited compared to the 160,000 gasoline sta-

tions in the US (US Department of Energy, 2012). Moreover, [4] also

indicates that anxiety caused by too few public chargers and long

charging time is one of the deterrents to intent for purchasing an

EV. Thus, appropriate deployment of EVCs becomes a fundamental

problem for the popularization of the electric vehicles.

Figure 1: EVC distribution in Shenzhen.

In this paper, to nicely answer the optimal EVC deployment prob-

lem considering cost from a social scope, we formulate the problem

called Social-Aware Optimal Electric Vehicle Charger Deployment
(SOCD) on a large-scale road network. Based on the road network

information of a city, analysis over historical trajectory data and

other relevant features, SOCD provides an EVC deployment plan

such that the total social cost is minimized and the whole city’s

charging demand is satisfied. Note that, the deployment plan in-

cludes the location we should place an EVC station and the number

of EVCs need to be installed to satisfy the nearby EVs’ demand. The

social cost contains two parts: (1) the investment from government

and EVC providers, and (2) themeasurement of the total anxiety and

discomfort of EVC users among the whole society. Recently, EVC

positioning related problems have been investigated by research

community from interdisciplinary backgrounds. However, our work

is totally different from the previous works [8, 11, 13, 15–17, 20].

The differences are basically threefold.

1. Satisfying Demand in Rural Areas. First of all, we study
the problem of placing public EVCs instead of private EVCs, which
can only be accessed by their owners. In addition, we require the

whole road network of a city can be covered by the service region

of all EVC stations. Most works like [15, 16] return a deployment

plan such that regional charging demand is satisfied, where the

charging demand is estimated via historical EV driving trajectory

data. However, such strategy will lead to 0 EVC distributed in the

region whose charging demand is very low, which does no good

for popularizing EV among the whole city. To illustrate this point,

Figure 1 shows the current EVC distribution of Shenzhen, one of

the biggest city of China. EVCs are mainly distributed in downtown

areas such as Luohu; however, for the rural area such as Fenggang

and Pinghu, there is no any EVC station, which prevents EV driving

into these areas. Although the charging demand in rural areas is low,

it is still an important detrimental factor for potential EV drivers.
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2. Multiple Types of Charger Plug. Besides, previous works

have not taken plug types of a charger into consideration and they

assume the charging capability is identical among all the EVCs.

However, we find that plug types do influence the EVC deployment

result significantly. Table 1
1
lists some existing plug types.

Table 1: Table of the some charger plugs and charging power.

Charging Plug Power Charging Duration
Type-2

(1)
7.3 kW 8h14min

Type-2
(2)

16.5 kW 3h8min

CHAdeMO 50 kW 1h40min

Tesla Supercharger 120 kW 57min

We can find that the charging capability (charging power) varies

much from different plug types and also the cost of installing dif-

ferent types of chargers will be different. It is obviously to see that,

chargers with low-power plugs should not be installed in some

areas with high parking fee, such as shopping centers and superior

office buildings. On the other hand, these trickle chargers are suit-

able for somewhere long-time parking is allowed, such as airport

parking and other long-term parking lots for hotels or apartment.

3. Solution Granularity. Most of current works on placing

EVC returns regional result [15, 16], that is to say, these algorithms

determine the necessary number of EVC within each region or

grid cell partitioned in advance. Although some other researches

like [11] work on road network, they use a simplified or highly ex-

tracted version, which loses much information of points of interest

(POIs). Instead, we allow EVC station can be placed nearby any
POI among a city. Here, any means that, given a road network, any

node, representing a POI in a city, can be potential location of a

EVC station. The reason of such setting is that, although we can

know how many chargers are needed within some region, we must

further determine where and how many we should place these

chargers. For example, there might be some green land, a lake, a

shopping mall and a large hotel. It is more reasonable to place EVC

station at the latter two places rather than first two since shopping

mall and hotel are POIs to EV driver, whereas green land and lake

are not.

Contribution: We list our main contribution as follows.

(1) We first formulate the problem Social-Aware Optimal Elec-
tronic Vehicle Charger Deployment on a real road network.

SOCD is the first work that considers the social benefit of

rural areas, the multiple charger plug types and the influence

of POIs on the real road network.

(2) We prove our SOCD problem is NP-hard and also hard to

find any constant approximation, and then we devise sev-

eral efficient heuristic algorithms, which are novel greedy

based algorithms to solve the complex non-linear optimizing

problem.

(3) Based on the proposed solution for SOCD problem, we fur-

ther investigate the extendibility of our algorithms on the

incremental case, that is, given an existing EVC deployment

and more budget, how to place more chargers in a way con-

tributes to the whole society as much as possible.

The rest parts of our paper is organized as follows. In Section

2, we give the definitions of some key concepts, formulate the

SOCD problem and give the proof of hardness. In Section 3, we

1
The data is crawled from https://leccy.net.

Table 2: Table of notations.
Notation Description

G a road network with POIs

S a multi-plug EVC charging station

xi the number of chargers with i th type plug of charging station S
R(S ), rS the influence region of S and its radius

C(S ) total charging capacity of EVC station S
P an EVC station deployment plan

w (p) the rural degree of location p
f (S ) the total installment fee of EVC station S
D(S ) the total number of EVs choosing station S for charging

W (S ) the expected waiting time at EVC station S
Benefit the total social benefit of a given deployment plan P
Cost the total social cost of a given deployment plan P
Costt the total travel cost of a given deployment plan P
Costb the total boring time of a given deployment plan P

Social (P ) the social influence (score) of a given deployment plan P

give the solutions to the SOCD problem. More specifically, Section

3.2 introduces the Bounding&Optimizing framework; Section 3.3

presents a more efficient algorithm called Region Partition Based
Deployment; and Section 3.4 discusses about how to extend our

algorithm to the incremental scenario. Section 4 presents extensive

experimental results of our proposed algorithms under various

parameter settings. Section 5 reviews previous works on the EVC

related optimization problems. Finally, we conclude in Section 6.

2 PRELIMINARIES
In this section, we formally introduce our Social-Aware Optimal

Electronic Vehicle Charger Deployment on road network, which

aims at determining an optimal EVC deployment plan such that the

total social score is maximized. For quick reference, all the notations

used in this paper are listed in Table 2.

2.1 EVC Station on Road Network
First, since we assume that EVC stations are distributed on a given

road network, we give the formal definition of the road network of

a city as follows.

Definition 1: Road Network. A road network of a city is

defined as a quadrupleG = (V ,E,τ ,δ ), where V is the set of points

of interests (POIs), E is the set of roads bridging nodes in V , τ :

V → R2 is the function mapping vertices in V to 2D spatial space.

For a given edge e = (u,v) ∈ E, δ (e) can be regarded as the travel

cost from the start point u to the end point v of road e .
Note that, in some applications, the travel cost is modeled by

driving time instead of road distance. The computation of driving

time is more complicated because we need to consider about the

real-time traffic condition. Since the main purpose of this paper is

not to model the traveling cost on road network, we just use road

distance to compute travel cost for simplification.

Then, we give the definition of Multi-plug EVC Station located

on the road network, which has been discussed in our introduction.

Definition 2: Multi-plug EVC Station. Given a road network

G = (V ,E,τ ,δ ), an EVC station with multiple charger plugs S has

two attributes, S .pos and S .x , where S .pos is the location of station

S and possible values of S .pos are in {τ (v)|v ∈ V }, and S .x =

{x
(1)

S ,x
(2)

S , · · · ,x
(k )
S } is an array of size k denoting the numbers

of k types of chargers, where x
(i)
S is the number of chargers with

ith type plug. Besides, for a station S , the following constraint

should be satisfied,

∑k
i=1 x

(i)
S ≤ K , which means the total number

https://leccy.net
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of chargers installed at EVC station S should be bounded by K due

to the limitation of space.

Definition 3: Installment Fee. Given an EVC station, the cost

of installment fee, which is denoted by f (S), is calculated as follows,

f (S) = estate_price(S) +
k∑
i=1

x
(i)
S fi ,

where estate_price(S) is the cost of deploying an EVC station at

location S .pos and fi is the fee of installing one charger with ith

type plug.

To measure the influence of setting a new EVC station S , we
introduce the concept of Influence Region.

Definition 4: Influence Region. Given an EVC station, its in-

fluence region R(S) is a circle centering at S .pos with radius rS ,
where rS is defined as

rS = rmax ·
©« 2

1 + exp(−
∑k
i=1 x

(i)
S pi )

− 1
ª®¬ , (1)

where rmax is the maximum influential radius, and pi is the charg-

ing power of ith type charger plug and thus, C(S) =
∑k
i=1 x

(i)
S pi is

the total charging capacity of EVC station S .
Note that, when the total charging capability of a station Sv ,

C(S) =
∑k
i=1 xipi , increases from 0 to +∞, the radius of S’s influ-

ence region rS increases from 0 to rmax , which is reasonable in

real applications since the maximum influence region should be

bounded by some distance constraint. That is to say, even an EVC

station may have a very large charging capacity, it still cannot

attract users far away from it (e.g., 50km).

Next, we give the definition of EVC Deployment Plan.

Definition 5: EVC Deployment Plan. Given a road network

G = (V ,E,τ ,δ ), an EVC deployment plan is a set of Multi-plug EVC

Stations. We use symbol P = {S1, S2, · · · , Sm } to denote it.

2.2 Social Influence of EVC Deployment
In this subsection, suppose that we are given an EVC deployment

plan P , we discuss the social influence caused by this plan, which is

the core optimization goal of our problem. We divide the social in-

fluence into two main parts, Social Benefit and Social Cost, denoted

by Benefit and Cost respectively.
Before formally introducing the definition of Benefit andCost , we

first need to estimate the charging demand dv of each node in road

network. Here, the semantics of dv is the number of EVs located

near τ (v) that need to be refilled within a unit time interval (eg., 2

hours). To get dv , we collect historical trajectory data of various

types of cars. The details of how to estimate dv via trajectory data

are discussed in the Section 4.

2.2.1 Social Benefit. Given an EVC deployment plan P , the benefit
(i.e., positive social influence) gained from placing chargers as plan

P is the coverage of EVC stations’ influence regions over the whole

city, including both urban and rural areas. Formally, we have the

definition of social benefit as follows.

Definition 6: Social Benefit. Given an EVC deployment plan

P , for any S ∈ P , the corresponding influence region R(S) and the

set of nodes covered by R(S) can be calculated respectively. The

Ordinary Node of 
Road Network

ECV Station

v1

v2

v4

v3

v5 v6

v7

s1 s2

Figure 2: An example of calculation of social benefit.
total social benefit, denoted by Benefit, can be calculated as:

Benefit(P) =
∑
S ∈P

(
2

1 + exp{−w(S .pos)I1(S)}
− 1

)
, (2)

where I1(S) is the number of nodes in the road network covered by

R(S). Besides,w(S .pos) is a weight parameter to measure the “rural

degree” of the location of S . The higher the value ofw(S .pos), the
more rural of the location of S .

Figure 2 illustrates a part of road network and a simple ECV

deployment plan that S1 and S2 are two newly installed EVC stations.

The two circles in the figure are the corresponding influence regions

of S1 and S2. Suppose that,w(S1.pos) = 2 andw(S2.pos) = 1. Thus,

according to Eq. (2) the total social benefit of such deployment plan

can be calculated as: (2/(1 + exp(−2 × 7)) − 1) + (2/(1 + exp(−1 ×

5)) − 1) = 1.987.

2.2.2 Social Cost. Meanwhile, an EVC deployment plan also re-

quires some cost to implement, which we call “Social Cost”. Similar

to the assumptions in works [15, 16, 20], we take travel cost and

the boring time elapse of waiting for EV getting fully charged into

consideration when we calculate the total social cost.

Travel cost Costt . The first factor we consider that contributes
to the social cost is the total travel cost, which is defined as the

total driving distance from all EVs having charging demand to their

nearest EVC stations within a time period ∆T . Given a road network
G, an EVC deployment plan P and charging demand dv for every

node in road network, we can calculate the travel cost Costt as

follows,

Costt (P) =
∑
S ∈P

∑
v ∈V

dvdist(v, S) · y(v, S), (3)

where dist(v, S) is the length of the shortest path from v to S on

road network, andy(v, S) is an indicator function. If EVs atv choose

S for charging, y(v, S) = 1, otherwise, y(v, S) = 0.

Boring time Costb . Since we cannot install unlimited number of

chargers in an EVC station, which means the total charging capacity

of a station is limited, queueing naturally happens for all EVC

stations. And long waiting time for available chargers significantly

increases the boringness of EV drivers, which produces the social

cost. Besides, as we have already shown that the charging power

varies much from different types of plugs, the total charging time

is also considered into boring time. Thus, we define the social cost

caused by long boring time, denoted byCostb , as the sum of waiting
time and the charging time.

For an EVC station S , to analyze thewaiting time and the charging
time at S , we first estimate the total number of EVs coming S for
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charging within a unit time interval as the following formula,

D(S) =
∑
v ∈V

1

dist(v, S)
dvy(v, S), (4)

which is a weighted sum over the charging demanddvy(v, S)where
the weight value 1/dist(v, S) implies the attraction of S to EVs at

location τ (v). Note that, the attraction can be quantified by any

decaying function of dist(v, S) and here we adopt the inverse of

dist(v, S).
Charging time. Note that, the total charging capacity as C(S) =∑k
i=1 x

(i)
S pi , where pi is the power of charger with ith type plug.

Thus, the expected charging time of station S , here, can be calculated
as the inverse of the total charging capacity, that is, 1/C(S). Then,
we evaluate the total charging time among all the stations in a given

deployment plan P as:

charging time =
∑
S ∈P

C(S)D(S) =
∑
S ∈P

∑
v ∈V

1

C(S)dist(v, S)
dvy(v, S)

Waiting time. For the waiting time, we first model the waiting

time at an EVC station as an M/D/1 queue [5], where “M” means

the coming event of EV follows a Poisson process, “D” means the

service time (i.e., the charging time) is a deterministic function and

“1” stands for that there is one queue for a station. The expected

value of waiting time at station S is given by Pollaczek-Khintchine

formula [5] as follows,

W (S) =
ρSτS

2(1 − ρS )
, if ρS ≤ 1 (5)

where τS is the average charging time and ρS = θSτS , θS being the

EV arrival rate of EVC station S . Here, we estimate τS as 1/C(S)
and estimate θS as the summed charging demand within a circular

region, denoted by Rmax (S), which is centering at S .pos with radius
rmax , that is, ρS =

∑
τ (v)∈Rmax (S ) dv/C(S). Note that, ρS must be

less than 1, otherwise, the length of queue at station S will go to

infinity. Then, we can estimate the total waiting time at all stations

in a given plan P as follows,

waiting time =
∑
S ∈P

D(S)W (S) =
∑
S ∈P

∑
v ∈V

W (S)

dist(v, S)
dvy(v, S).

Thus, the total boring time, denoted by Costb , over the whole
society can be calculated as the sum of total waiting time and total

charging time, which is shown in Eq. (6),

Costb (P) = waiting time + charging time

=
∑
S ∈P

∑
v ∈V

dvy(v, S)

dist(v, S)
·

(
W (S) +

1

C(S)

)
.

(6)

Definition 7: Social Cost. Suppose that we are given a road

network G = (V ,E,τ ,δ ) and the charging demand dv for each

nodes in G, for an EVC deployment plan P , the total social cost of
P is defined as,

Cost (P ) = αCostt (P ) + (1 − α )Costb (P )

=
∑
S∈P

∑
v∈V

dvy(v, S )
(
αdist (v, S ) +

1 − α
dist (v, S )

(
W (S ) +

1

C(S )

))
where α is the parameter tuning the relative importance among

these two kinds of social cost.

2.3 Problem Definition
With all the concepts defined above, we can formulate our Social-

Aware Optimal Electric Vehicle Charger Deployment problem.

Definition 8: Social-AwareOptimal ElectricVehicleCharger
Deployment (SOCD). Given road networkG = (V ,E,τ ,δ ), charg-
ing demand {dv |v ∈ V }, and the total budget B for deploying EVC

stations, SOCD solves the optimization problem as follows,

max

P,y
Social = λBenefit − (1 − λ)Cost (7)

subject to: ∑
S ∈P

f (S) ≤ B (8a)∑
S ∈P

y(v, S) = 1 for ∀v ∈ V (8b)

k∑
i=1

x
(i)
S ≤ K for ∀S ∈ P (8c)∑

τ (v)∈Rmax (S ) dv

C(S)
≤ 1 for ∀S ∈ P (8d)

where λ is the parameter tuning the relative importance between

social benefit and social cost, f (S) is the installment fee of S which

is shown in Definition 3, x
(i)
S is the number of ith type of charger

at station S . Eq. (8a) is the constraint on total installment fee not

exceeding the expected budget B; Eq. (8b) requires that one node
with charging demand can only choose one station for charging;

Eq. (8c) gives a upper-bound K to the number of chargers an EVC

station can install; and Eq. (8d) is for avoid waiting queue at each

EVC station increasing to infinity.

Note that, similar to the well-known facility location problem

[10], the decision variables in our SOCD can be divided into two

sets, one is the optimal EVC station deployment plan P , and the

other is the demand assignment y representing the EVs’ choices of

EVC station at each location τ (v).
Hardness Analysis. Our SOCD problem can be proved as NP-

hard by using a reduction from the KNAPSACK problem.

Theorem 2.1. (Hardness of the SOCD problem) The problem of
Social-Aware Optimal Electric Vehicle Charger Deployment (SOCD)
is NP-hard.

Due to the NP-hardness, it is impossible to solve the SOCD

problem in polynomial time. Besides, designing heuristics or greedy

algorithms for SOCD also differs from the classical combinatorial

optimization problems since in SOCD, we not only determine where

to place an EVC station, but also should give the numbers of each

type of chargers. Besides, our SOCD problem cannot be solved by

common-used LP solvers such as LINDO since the optimization

objective and the constraints such as the queuing constraint in

Eq. (8d) are complex and non-linear.

3 METHODOLOGY
As stated in the last section, it is very hard to design exact and

approximated algorithms for SOCD, in this section, we propose

several efficient and effective heuristics to solve the problem. We

introduce two algorithms for solving SOCD, Bounding & Optimizing
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Greedy Deployment and Region-Partitioning-Based Group Deploy-
ment. Before formally introducing the algorithms, we first discuss

how to assign charging demand given the incumbent EVC station

deployment plan P . Note that, for a given EVC deployment plan P ,
to evaluate its total social influence defined in Eq. (7), it is necessary

to determine which station will be chosen by an EV for charging

(namely, y(v, S)). Since retrieving the optimal solution to y(v, S) is
intractable, we first give an heuristic algorithm solving the problem

called EVC Station Seeking Algorithm.

3.1 EVC Station Seeking Algorithm
As shown the Definition 8, SOCD determines not only charger

deployment plan P , but also the optimal charging demand assign-

ment y(v, S) for ∀v ∈ V and ∀S ∈ P . The first problem we want

to answer is that, given an existing EVC station deployment plan

P , how the nodes in the road network with charging demand will

choose EVC stations, that is, evaluating y(v, S) forv ∈ V , S ∈ P . We

first re-investigate some similar problems. In the greedy algorithm

for facility location problem in [10], nodes with demand always

choose their nearest facility in each greedy iteration. However, in

our SOCD problem, we consider multiple social influence factors

and travel cost is only one of them. Besides, some other works like

[12, 16] formulate this procedure as a bi-level linear programming.

They regard demand assignment as a sub-problem and iteratively

invoke LP solver to solve it. Unfortunately, we cannot borrow this

idea either because as we show in Definition 8, the formation of

social influence is very complex and decision variables are coupled

together, which prevents us from using all currents LP solvers.

S1

S2

r1 r2EV1

EV2

EV3

Seeking

Charging

Driving

Station

Figure 3: An example of EVC station seeking.
Now, we formally introduce the sub-problem, called Station Seek-

ing, of SOCD. Given the current deployment plan P , since Benefit, in
the SOCD optimization objective shown in Eq. (7), is fixed when P
is fixed, maximizing Social is equivalent to minimizing Cost . Thus,
we have the following definition of Station Seeking problem.

Definition 9: Station Seeking. Given current deployment plan

P , the Station Seeking problem is formulated as follows,

min

y
Cost =

∑
S∈P

∑
v∈V

dvy(v, S )
(
αdist (v, S ) +

1 − α
dist (v, S )

(
W (S ) +

1

C(S )

))
subject to: ∑

S∈P

y(v, S ) = 1, for ∀v ∈ V .

To solve this problem, we propose a StationSeeking algorithm,

which is a greedy algorithm but yields the optimal solution. The

algorithm is shown in Algorithm 1, in each iteration, for a node in

road network v , we calculate the assignment cost for v choosing

station S , denoted by Costa (v, S), as:

Costa (v, S ) = dv

(
αdist (v, S ) +

1 − α
dist (v, S )

(
W (S ) +

1

C(S )

))
, (9)

andwe assignv to station S (i.e., lety(v, S) = 1) such thatCosta (v, S)
is minimized.

Algorithm 1: StationSeeking
Input: EVC station deployment plan P , road network G = (V , E, τ , δ ),

charging demand {dv |v ∈ V }
Output: demand assignment {y(v, S ) |y(v, S ) ∈ {0, 1}, v ∈ V , S ∈ P }

1 for v in V do
2 calculate Costa (v, S ) as Eq. (9) for all S ∈ P ;
3 S ′ ← argminS∈P Costa (v, S );
4 y(v, S ′) ← 1;

5 return {y(v, S ) |y(v, S ) ∈ {0, 1}, v ∈ V , S ∈ P };

We give an example in Figure 3. There are two EVC stations in

the example, S1 and S2, suppose that EV1, EV2 and EV3 are three EVs
that need to be refilled soon. By following the greedy EVC Station

Seeking manner, EV1, EV2 and EV3 are assigned to S1, S2 and S1
respectively. The following theorem indicates that such greedy

algorithm yields the optimal solution for Station Seeking problem.

Theorem 3.1. The greedy algorithm shown in Algorithm 1 yields
the optimal solution for the Station Seeking problem.

3.2 Bounding & Optimizing Based Greedy
In this subsection, we introduce an algorithm based on greedily

selecting a location to build an EVC station such that the gain of

Social is maximized in every step. However, as we have mentioned

in Section 2.3, SOCD problem cannot borrow ideas from common

combinatorial optimization problems since we need to determine

both where to deploy EVC stations and how many chargers are

needed. Thus, very different from the common greedy algorithm

design pattern, which is to make the locally optimal choice at each

stage, we devise a strategy called Bounding & Optimizing Based
Greedy.

The basic idea is that, in the Bounding Stage, we evaluate the
upper-bound of the gain to Social for setting one EVC station Si at
every possible location τ (vi ) and pick the location with the highest

upper-bound to deploy an EVC station in this step; then, in the

Optimizing Stage, assuming that the location of station has been

decided in the Bounding Stage, we determine the numbers of each

types of chargers to try to reach the upper-bound; and then, we

repeat the above greedy picking procedure until there is no budget

left to build a new EVC station.

Framework. The framework of Bounding & Optimizing Based
Greedy Deployment is shown in Algorithm 2. We start from an

empty EVC station deployment plan P and B, the initial total budget.
The Bounding Stage are shown in lines 4-5, where we greedily select
the location to place an EVC station maximizing the upper-bound

to the gain of Social . Denoting the station newly placed as Si , line 6
updates the demand assignment y(v, S). Then, in line 7, we invoke

the Knapsack Based Optimizing in Algorithm 3 to determine the

number of each type of chargers at station Si . Then, Si will be
inserted into current plan P and remained B will be updated. The

algorithm will terminate if budget is exhausted. In the sequel, we

will introduce the Bounding Stage and Optimizing Stage in details.

Bounding Stage.Given the incumbent EVC station deployment

plan P , let Social(P) be the total social influence of P , which is

calculated by Eq. (7). For deploying an EVC station Si at location



SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Yuxiang, et al.

Algorithm 2: Bounding&Optimizing
Input: road network G = (V , E, τ , δ ), charging demand {dv |v ∈ V }
Output: an EVC station deployment plan P

1 P ← ϕ ;
2 B ← initial total budget;

3 while B>0 do
/* Bounding Stage */

4 calculate social efficiency upper-bound ub_д(v) for every node v in road

network;

5 pick the location τ (vi ) with highest ub_д(v) to build an EVC station Si ;
6 invoke StationSeeking (Algorithm 1) to update demand assignment y(v, S );

/* Optimizing Stage */

7 invoke KnapsackBasedOpt (Algorithm 3) to get {x (1)Si , x
(2)

Si
, · · · , x (k )Si

};

8 Si .pos ← τ (vi ); Si .x ← {x
(1)

Si
, x (2)Si , · · · , x

(k )
Si
};

9 P ← P ∪ {Si };
10 B ← B − f (Si );

11 return P ;

Si .pos ∈ {τ (v)|v ∈ V }, we define its social efficiency (i.e., the gain

of social value per budget cost), denoted by д(Si ), as follows,

д(Si ) =
Social(P ∪ {Si }) − Social(P)

f (Si )
, (10)

where f (Si ) is the installment fee of station Si , which is defined in

Definition 3. Then, we evaluate the upper-bound of social efficiency

when we place station Si at location τ (v), which is denoted by

ub_д(v). Note that, ub_д(v) indicates the potential social efficiency

of setting Si at τ (v). ub_д(v) is given by Lemma 3.2.

Lemma 3.2. (Upper-Bound) Suppose that we are deploying an EVC
station Si at location Si .pos = τ (v), the upper-bound of Si ’s social
efficiency д(Si ), denoted by ub_д(v), is given by

д(Si ) ≤ ub_д(v) =
λ∆Bene f it∗

estate_price(Si )
, (11)

where ∆Bene f it∗ is:

∆Benefit ≤
2

1 + exp{−w(Si .pos)[I
∗
1
(Si )]}

− 1, (12)

where I∗
1
(Si ) is the number of nodes in the road network covered by

the circular region centering at Si .pos with radius rmax .

Optimizing Stage. Suppose that we have decided to deploy an

EVC station Si at location τ (v), then, we discuss howmany chargers

of different types are needed to increase the social efficiency д(Si )
to the greatest extent. The problem can be formulated as:

minд(Si ) =
Social (P ∪ {Si }) − Social (P )

f (Si )

=
λBenefit(P ∪ {Si }) − (1 − λ)Cost (P ∪ {Si }) − Social (P )

estate_pr ice(Si ) +
∑k
i=1 fix

(i )
Si

(13)

such that, ∑k

i=1
x (i )Si ≤ K (14a)

estate_pr ice +
∑k

i=1
x (i )Si fi ≤ B (14b)∑k

i=1
x (i )Si pi ≥

∑
τ (v )∈Rmax (Si )

dv (14c)

Note that, the optimization goal shown in Eq. (13) is fractional.

According to [9], the linear fractional programming (LFP) problems

are usually transformed to standard linear programming to use LP

solver. But unfortunately, Eq. (13) is non-linear fraction due to the

term Benefit, which currently has no effective solution. Thus, we

propose a heuristic algorithm called KnapsackBasedOpt to solve it.

The motivation of KnapsackBasedOpt is that, we start from an ini-

tial deployment {x
(1)

Si
,x
(2)

Si
, · · · ,x

(k )
Si
} and repeatedly add chargers

with ith type plug such that the social efficiency д(Si ) is maximized.

To do that, we first generate a feasible solution {x
(1)

Si
,x
(2)

Si
, · · · ,x

(k )
Si
}

such that the total installment fee is minimized satisfying the total

charging capacity constraint in Eq. (14c). We describe this problem,

which is an unbounded knapsack problem (UKP), as follows,

min

∑k

i=1
x
(i)
Si

fi

s.t.

∑k

i=1
x
(i)
Si
pi ≥

∑
τ (v)∈Rmax (Si )

dv

(15)

Algorithm 3: KnapsackBasedOpt
Input: road network G = (V , E, τ , δ ), charging demand {dv |v ∈ V }, station

selected in Bounding Stage Si , current deployment plan P
Output: numbers of each type of chargers {x (1)Si , x

(2)

Si
, · · · x (k )Si

}

/* get initial solution via unbounded knapsack */

1 using dynamic programming to solve the unbounded knapsack problem shown

in Eq. (15) and denote the result as x [1 · · · k ];
/* start adding chargers */

2 while
∑k
i=1 x [i] ≤ K do

3 G(j) ← difference of д(Si ) after and before adding one jth type charger;

4 j∗ ← argmaxj G(j);
5 if budget B is enough for adding j∗th charger and G(j∗) ≥ 0 then
6 x [j∗] ← x [j∗] + 1;

7 else return Fail ;

8 return x [1], x [2], · · · , x [k ];

The pseudo code of KnapsackBasedOpt is shown in Algorithm

3. Line 1 solves the knapsack problem in Eq. (15) to get an initial

feasible solution. Line 3 defines a valueG(j) to denote the difference
of social efficiency д(j) after and before increasing one charger with

jth type plug at station Si . In line 4, we pick the j∗th type charger

such that it can increaseG(j) to the greatest extent. Lines 5-8 further
determines whether we can add one j∗. If current budget is enough

for deployment of one more charger with j∗th type plug and there

is positive gain of д(Si ) if adding j∗th charger (i.e., G(j∗) > 0), we

add 1 to x[j∗]; otherwise, the algorithm terminates. Note that, there

are totally three stop conditions of KnapsackBasedOpt algorithm,

and when we invoke it in our Bounding&Optimizing framework,

we should check which reason leading to termination of Knap-
sackBasedOpt. If total budget B is exhausted, the whole loop in

Bounding&Optimizing terminates; whereas, if the other two stop

conditions are triggered, we only break KnapsackBasedOpt and
continue to select another site to build an EVC station in Bound-
ing&Optimizing.

Complexity Analysis. We analyze the worst case time com-

plexity of our Bounding&Optimizing algorithm as follows. The

worst run time corresponds to the case that initial total budget is

very large, which means the algorithm will terminate after travers-

ing all the possible locations (namely,O(|V |) nodes in road network)
to build an EVC station. The Bounding Stage, which is shown in

lines 4-5 of Algorithm 2, takes time O(|V |) since we need to evalu-

ate all the social efficiency. After deciding where to place an EVC

station, in the Optimizing Stage, solving the unbounded knapsack

problem via dynamic programming takes timeO(KD∗), where K is
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the upper-bound of total number of chargers at one station and D∗

is the total demand within a circular region centering at a station

with radius rmax . Note that K and D∗ are constant, which means

line 7 takes time O(1). Besides, lines 8-10 take time O(1). Thus, the
time complexity of the worst case is O(|V |2).

3.3 Region Partition Based Algorithm
Although our Bounding&Optimizing framework shown in Algo-

rithm 2 can return an EVC deployment plan with high Social value,
the time complexity,O(|V |2), is still high. The reason is that, in each
iteration, such a greedy algorithm suffers from |V | times compar-

isons in lines 4-5 in Algorithm 2. To reduce the total time complexity,

an intuitive way is to partition the road network intom sub-regions

and independently conduct the Bounding&Optimizing framework

within each sub-region. Finally, we integrate all the results on each

sub-region to get an EVC station deployment plan.

Figure 4: Illustration of Voronoi-based region partition.
We use Voronoi diagram [3] to partition the road network. Specif-

ically, we selectm major nodes (e.g., center points in administrative

districts among a city) in road networkG with each corresponding

to one Voronoi cell. The distance from any location in a Voronoi cell

to the corresponding seed is less than that to any other seed. Thus,

we can partition the original road networks into several sub-regions

represented by different Voronoi cells. An example of Voronoi dia-

gram based region partition is shown in Figure 4 by using Shanghai

road network, where blue markers are seeds of Voronoi cells.

The pseudo code of our region partition based algorithm is pre-

sented in Algorithm 4. Line 1 partitions the input road network

intom sub-regions based on the selectedm seeds {S1, S2, · · · , Sm }.
Lines 2-4 are initialization steps, where line 3 sets the total bud-

get of each sub-region as the total budget B divided by m and

line 4 initializes the EVC station deployment plans in each sub-

region as empty sets. Then, for each sub-regionGi , we conduct the

Boundinд&Optimizinд in Algorithm 2 to get regional deployment

plan Pi and then update the remained budget Bi . After getting all
regional plans, we evaluate the total remained budget (i.e.,

∑m
i=1 Bi )

which is used for deploying more extra stations on the whole road

networkG , whose corresponding deployment plan is denoted by P ′.
Finally, we return the whole deployment plan P , which is the union

of all regional plans P1, · · · , Pm and the plan P ′ which utilizes the

total remained money.

Time complexity. For Algorithm 4, given m Voronoi seeds

{S1, S2, · · · , Sm }, line 1 partitions the whole space into m parts

within timeO(m logm) by using Fortune’s algorithm [7]. Denote the

number of nodes in ith sub-region as |Vi |. Then, lines 6 takes time

Algorithm 4: RegionPartition
Input: road network: G = (V , E, τ , δ ), set ofm seeds of Voronoi diagram:

{S1, S2, · · · , Sm }, charging demand {dv |v ∈ V }
Output: an EVC station deployment plan P
/* Divide original region into m sub-regions */

1 using Voronoi diagram to partition the road network G according to seeds

{S1, · · · , Sm } and let G1, · · · , Gm be them sub-regions after partitioning;

/* Initialization */

2 for i = 1 tom do
3 Bi ← B/m;

4 Pi ← ϕ ;

/* place stations in each sub-region */

5 for i = 1 tom do
6 invoke Bounding&Optimizing framework with total budget Bi to determine

EVC deployment plan Pi over sub-region Gi ;
7 update the remained budget Bi ;

8 use total remained budget

∑m
i=1 Bi to place extra stations among road network

G according to the same greedy algorithm and denote the result as P ′;
9 return P1 ∪ · · · ∪ Pm ∪ P ′;

O(
∑m
i=1 |Vi |

2). Suppose that in the partition step, we evenly divide

the whole region, that is to say, |V1 | = |V2 | = · · · = |Vm | = |V |/m.

Thus, the run time of lines 5-7 is O(
∑m
i=1 |Vi |

2) = O(|V |2/m). For
line 8, the time complexity is influenced by the remained total

budget and the number of nodes without placing any charger. Note

that, in real applications, the remained budget should be so small

that we cannot place many extra stations. Thus, the total time

complexity of our region partition based algorithm is O(|V |2/m).
Note that, the total number of sub-regionsm makes a tradeoff

between total Social value and run time of algorithm. Largem leads

to faster termination of the RegionPartition algorithm with some

loss of the Social value. This is natural to understand since we

conduct greedy station placing over each partitioned sub-region

independently, that is to say, interaction between different sub-

regions is ignored.

3.4 Extend to Incremental Case
Above we have discussed the solutions to the SOCD problem on

a real road network, however, there exists another kind of EVC

station deployment problem where the budget will not be totally

disbursed at initial time and extra more budget will be available

some day in the future. We call such special case the Incremental
SOCD problem. To avoid ambiguity, we call the original SOCD prob-

lem “Static SOCD” and without specific clarification, “SOCD” only

means “Static SOCD” but not “Incremental SOCD”. The following

is an example that illustrates such an application scenario.

Example: Incremental SOCD. Shanghai government is putting
efforts on promoting the development of electric vehicles and they
have already granted funding to place some EVC stations. However,
with the increasing number of EVs, the current EVC stations cannot
provide enough charging service, which leads to the negative social
influence. Thus, after careful investigation, Shanghai government
decides to give more extra budget on deploying more EVC stations.
The incremental SOCD problem is that, based on the extra budget and
the previous EVC station deployment plan, how to place more EVC
stations such that the total Social value is maximized?

For the incremental SOCD problem, [15] investigated a relevant

problem, that is, determine how to arrange the chargers based on a

historical deployment plan and a number K which is the number

of extra EVC stations we want to install. Our incremental SOCD
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problem is different from that of [15] since we add constraint on

total budget instead of number of EVC stations. And comparing

with [15], the most distinguished point of our SOCD problem under

incremental setting is that, again, we maximize the total influence

from a whole social perspective.

Algorithm 5: IncrementalSOCD
Input: road network: G = (V , E, τ , δ ), charging demand: {dv |v ∈ V },

previous EVC station deployment plan: P , extra budget: Bi

Output: the incremental EVC station deployment plan: P i
1 curr_pos ← {S .pos |S ∈ P };
2 V ′ ← V − {v |τ (v) ∈ curr_pos };
3 invoke Algorithm 2 or 4 on the remained candidate node set V ′ to get the

incremental EVC station deployment plan P i ;
4 return P i ;

Fortunately, the algorithms we proposed, Bounding&Optimizing
in Algorithm 2 and RegionPartition in Algorithm 4, can both be ex-

tended to the incremental case naturally since these two algorithms

are based on greedy strategy where in each time we pick one best

location to build a station. To retrieve an incremental deployment

plan based on the existing deployment, we invoke either Bound-
ing&Optimizing or RegionPartition on the road network without

nodes that have been deployed a station previously. We denote this

road network as V ′. The framework for solving the incremental

SOCD problem is shown in Algorithm 5. Note that, the time com-

plexity of Algorithm 5 depends on the selection of Algorithm 2 or

Algorithm 4 in line 3. If we select Algorithm 2, it takes O(|V ′ |2);
however, if Algorithm 4 is selected, time complexity is O(|V ′ |2/m),
wherem is the partition number in Algorithm 4.

4 EXPERIMENTAL STUDY
In this section, we conduct experiments on both real and synthetic

datasets under various parameter settings. To demonstrate the ef-

ficiency and effectiveness, we report both the CPU time and the

Social value of algorithms introduced in Section 3. All of the ex-

periments were conducted on a server with Intel(R) Xeon(R) CPU

E5-2650 @ 2.60GHz and 32GB main memory, and all the algorithms

were implemented in C++ and executed on Ubuntu 16.04.

4.1 Experiment Setup
We first introduce experiment configurations, including data prepa-

ration, parameter setting, and competitor algorithms.

Data preparation. We conduct all the experiments on Shang-

hai road network data
2
, which contains 20,337 nodes and 106,870

edges. For convenience, we pre-calculate all the pairwise shortest

distances (i.e.,dist(u,v) for anyu,v ∈ V ) via a distributed Dijkstra’s

algorithm. To estimate the rural degree which is used to evaluate

social benefit in Eq. (2), we select 17 major center points, denoted by

p1,p2, · · · ,p17, from 17 administrative districts of Shanghai. Then,

for any node v in the road network, we estimate the rural degree

of this node by,

w(τ (v)) = д( min

i=1· · ·17
| |τ (v) − pi | |

2), (16)

where | | · | | is 2-norm and д(·) is a function used for normalization.

2
Download from https://figshare.com/articles/Urban_Road_Network_Data.

To calculate Benefit andCost , we collect massive trajectory data
3

to estimate the charging demand dv of all nodes in road network.

Different from some works like [15, 16] using taxi trajectories, we

collect trajectories of various types of vehicles which can better

simulate the real traffic condition and demand of charging. We

assume that the charging demand dv is proportion to the volume of

traffic flow nearby location τ (v). First, for each node v , we retrieve
trajectories which have location records whose distance from τ (v)
is less than 1 km. Note that EV drivers will not travel too far to

seek a station for charging and we assume 1 km is an appropriate

value. Then, for the retrieved trajectories, assuming that tj (v) is the

time stamp of jth trajectory travelling to somewhere nearby τ (v),
we set a time window whose length is 5 min to filter out all the

trajectories with tj (v) out of the window. We select 5 min as the

length of time window since the GPS sampling interval in the raw

trajectory data is 4-6 min. To smooth the result, we set 10 different

time windows, count the number and regard the average number

as the estimation of dv .
Besides, for the estate_price at each location τ (v), here, we use a

Gaussian distribution to generate samples. Specifically, we assume

that estate_price ∼ N(µ,σ 2)where µ is the expected estate price of
Shanghai and σ 2

is fixed to 400,000 which is achieved by analyzing

Shanghai estate price data. Note that, in real application, decision

makers can manually modify the distribution of estate price to

adapt to different real world applications.

Algorithm 6: baseline
Input: road network: G = (V , E, τ , δ ), charging demand: {dv |v ∈ V }
Output: an EVC station deployment plan P

1 P ← ϕ ;
2 B ← initial total budget;

3 sort all the nodes v ∈ V by dv in descending order;

4 while B > 0 do
5 pop v with highest dv from V ;

6 S .pos ← τ (v);
7 start adding chargers in S from the chargers with highest power to lower

ones if budget is sufficient;

8 P ← P ∪ {S } update remained budget B ;

9 return P ;

SOCD Approaches and Baseline.We implement the twomain

algorithms for solving SOCD problem, one is Bounding&Optimizing
in Algorithm 2 and another is RegionPartition in Algorithm 4, which

are denoted by B&O and RP respectively for brevity. Specifically,

in algorithm RP, to partition the whole region via Voronoi diagram,

we select seeds as p1,p2, · · · ,p17, which are the major center points

in 17 districts of Shanghai used for estimating the rural degree. The

partition results are already shown in Figure 4.

For the baseline algorithm, as our work is the first one taking

comprehensive social influence into consideration, and the opti-

mization goal is too complex to use existing LP solvers, here, we

propose a demand-first greedy baseline algorithm (denoted by “base-

line” in short) shown in Algorithm 6. Since in the worst case, the

baseline algorithm scans all the nodes to set EVC stations, which

leads to highest running timeO(|V |). However, intuitively, it is easy
to see that baseline algorithm will exhaust all the budget much

faster than B&O and RP, which produces low Social value since we

3
All the trajectory data is provided by SAIC Motor Co. Ltd.

https://figshare.com/articles/Urban_Road_Network_Data
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lose the chance to investigate many possible locations to build an

EVC station in very early stage.

Parameter Setting. There are mainly 6 parameters in our so-

lution: 1) λ: the relative importance between Benefit and Social ; 2)
α : the relative importance between Costt and Costb ; 3) B: initial
total budget; 4) K : the maximal number of chargers that an EVC

station can install; 5) rmax : the maximal radius of influence region;

6) µ: expected value of Shanghai real estate price. The parameters

settings are shown in Table 3. Each time, we vary one parameter,

while other parameters are set to the underlined default values.

Table 3: Table of parameter settings.

Parameter Value
λ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
α [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
B [30, 35, 40, 45, 40] (million)

K [2, 4, 6, 8, 10]
rmax [500, 1000, 1500, 2000, 2500]
µ [1.2, 1.3, 1.4, 1.5, 1.6] (million)

4.2 Effectiveness Demonstration
Aswe have proved in Section 2.3, exact evaluation of SOCD problem

is extremely costly due to the NP-hardness. Thus, it is impossible

to compare our heuristic algorithms with the optimal solutions

on large-scale data. To demonstrate the effectiveness of our SOCD

approaches, we compare the results achieved by our solutions to

SOCD (i.e., B&O and RP) with the optimal one (OPT) which is

calculated via brute enumeration on a small-scale SOCD instance

with 20 major nodes sampled from the real road network. The

results are shown in Table 4. The optimal Social value is 0.345253
and our B&O algorithm can achieve 0.322983, which is very close

to the optimal. In addition, the Social value of the RP algorithm is

0.157776, which is nearly half of that of OPT. Note that, since there

are only 20 nodes in the small-scale SOCD instance, the region

partition based approach RP cannot achieve relative good result

since it is very hard to find a reasonable cut on the small road

network. Particularly, B&O and RP run nearly 10
5
times faster than

the brute enumeration based algorithm. The seed up ratio of our

heuristics will be much higher than 10
5
when the data size increases.

Table 4: Results on a small-scale SOCD instance.

Algorithms Social value CPU time
B&O 0.322983 <0.001

RP 0.157776 <0.001

OPT 0.345253 73.930

4.3 Experimental Result of Static SOCD
In this section, we report the Social value and CPU time of our

solutions to SOCD problem, B&O, RP and baseline, on real dataset

and synthetic dataset. All the experimental results under different

parameter settings are shown in Figure 5 (results of incremental

case are shown in Figure 6).

Result Overview. Figures 5(a), 5(c), 5(e), 5(g), 5(i) and 5(k)

report the Social value of different parameters shown in Table 3;

on the other hand, Figures 5(b), 5(d), 5(f), 5(h), 5(j) and 5(l) report

the CPU time under different parameter settings. We can see that,

B&O always has the highest Social comparing with baseline and RP.

However, B&O takesmuchmore time than the other two algorithms,

where the run time of RP is very close to that of baseline, which

is the most efficient algorithm. The reason is that, RP is based on

sub-region partition in which we regard each sub-region as an

independent part and conduct greedy placing strategy.
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Figure 5: Results of static SOCD w.r.t. λ, α , B, K , rmax and µ.

Effect of B. B is the initial total budget which are granted for

building EVC stations among a city. Figures 5(e) and 5(f) show

the Social value and CPU time of three algorithms by varying

B = 30, 35, 40, 45, 40 (million RMB). With the increase of B, Social
values of all the three algorithms increase. The reason is natural,

more initial budget means more chargers, which leads to the in-

crease of social Benefit and the decrease of both Costt and Costb .
Besides, for the running time, we can see in Figure 5(f), the CPU

time of algorithm B&O increases when B increases. According to

the complexity analysis in Section 3.2, the more initial budget, the

more iterations are needed before the termination of B&O. In the

worst case, if B → +∞, the time complexity will be |V |2 where |V |
is the total number of nodes in the road network.

Effect of K . K denotes the maximal number of chargers can

be installed per station. Figures 5(g) and 5(h) report the results by

setting K = [2, 4, 6, 8, 10]. Social value of RP and baseline decreases

whenK increases; whereas that of B&O remains stable even slightly

increases. We give the reasons as follows. For baseline, higher value

of K means that we can set more chargers at a single EVC station,

indirectly leading to faster spending of budget, which is one of the

factors leading to low value of Social according to the analysis in

the discussion of baseline algorithm. For RP, since each sub-region

is independent with each other, it is easy to fall into local optimal
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and not taking good use of K . However, B&O does not suffer from

this point which makes it robust to K . Besides, for the run time, it

remains stable for all of three algorithms sinceK is not the influence

factor of time complexity.

Effect of rmax . We also test the influence of the maximal radius

of influence region rmax and the results are presented in Figures 5(i)

and 5(j) where rmax is set to [500, 1000, 1500, 2000, 2500]. For the

three algorithms, Social increases when rmax increases. The reason

is straightforward, there would be more nodes covered by influence

region of a newly deployed EVC station when rmax increases. As

for the run time, it is similar to result parameter K , total run time

of all the three algorithms remains stable w.r.t. rmax since rmax is

not influential to time either.

Effect of µ. In Figures 5(k) and 5(l), we experimentally study

the effect of the expectation of estate price µ, which we have dis-

cussed above in the data preparation part. We find that, when µ
increases, Social value of three algorithms, baseline, B&O and RP,

decreases. That is because, high expected estate price will lead to

large proportion of initial budget is spent for buying estate, instead

of installing chargers, which will decrease the Benefit and increase

the Cost , and finally decrease the Social value. Besides, CPU time

of B&O also decreases as µ decreases since high estate price will

increase the total budget cost for setting up one EVC station, which

will use up all the initial budget very soon to end the iteration.

In summary, on the real road network data, B&O can always

achieve the highest overall Social value, but it has the highest run
time among all the approaches. The baseline which is based on

demand-first greedy strategy is always the fastest one but suffers

from relative low Social value. Instead, the region partition based

algorithm RP is a good compromise between run time and Social
value; namely, RP can reach high Social value within time close

to baseline. Decision makers can select different solutions based

on the realistic conditions. Note that, due to the space limit, we

only report the experimental results w.r.t. the parameters shown in

Table 3. Other parameter settings such as different distribution of

charging demand dv and variance of the distribution of estate price

have similar results to Figures 5 and 6, and thus are omitted here.

4.4 Experiment Results of Incremental SOCD
In Section 3.4, we have discussed how to extend our solutions to

static SOCD problem to solve the Incremental SOCD problem and

the basic framework is shown in Algorithm 5. In this section, we

conduct experiments to test the performance of our solutions under

such case by varying different parameters as the same setting shown

in Table 3. To simulate an incremental SOCD scenario, we divide the

total budget into 4 parts: B million, 1 million, 1 million and 1 million.

The B million budget is used to get an initial EVC deployment plan

and 1 million extra budget is granted incrementally for three times

to add new EVC stations. For the three SOCD approaches, we also

denote their corresponding incremental version as B&O, RP and

baseline respectively. In Figure 6, we report the experiment results

of incremental SOCD. Since the performance and the trend w.r.t.

each parameter is similar to that of the static case which has been

analyzed in Section 4.3, we omit the redundant analysis. Besides,

we also test the performance of the incremental SOCD by varying

the extra budget in 1, 2, 3, 4 and 5 million and this result is shown

in Appendix ?? due to the space limit.

5 RELATEDWORKS
To the best of our knowledge, this paper is the first one considering

about maximizing the social influence of EVC stations deployment

plan. In this section, we investigate some previous literatures which

are related to our topic.

Facility Location Problem. Facility location (FL) problem is

one of the fundamental theoretical problems which has been inves-

tigated in [6, 10, 14]. Given a set of candidate facilities’ locations,

such as warehouses and gas stations, and a set of nodes with de-

mand that can be satisfied by traveling to some facility, a general

facility location problem is to decide the location of facilities, to

minimize the total travel cost from nodes with demand to their

selected facilities. Specifically, [10, 14] studied the case whose dis-

tances between facilities and nodes are in a metrics space, which is

called “metric facility location” (MFL) problem. [10] pointed that it

is hard to approximate within any constant ratio less than 1.463 and

[14] achieves the current best ratio, which is 1.488. However, as we

have discussed above, our SOCD problem is much more complex

than FL both from optimization objective and constraints, which

prevents us using current solutions to facility location problem.

EVC Related Optimization Problem. As we have mentioned

in the Introduction, most current literatures about EVC related op-

timizing problem focus on partitioned regions of a city [8, 15, 20].

These works return the deployment of EVC stations within a region

or a cell, instead of some concrete location. Note that, the mean-

ing of “partitioned region” is totally different from what we use

in the algorithm Region Partition Based Deployment in Section 3.3.

Specifically, [8] estimates the optimal charger distribution within a

region such that the total EV drivers’ discomfort can be minimized.

[15] considers how to place extra K EVC stations based on a given

EVC distribution. Another perspective provided by [20] is using

game theory to model the interaction between EVC deployment

and EV’s selection to EVC station. Note that, unfortunately, we

cannot borrow ideas from these EVC related works due to the fol-

lowing reasons. First, we focus on deciding the concrete location

on road network where an EVC station should be installed. Second,

we propose more realistic assumption to an EVC station, where a

station might have multiple types of charging plugs with different

charging power and price. Third, we define the optimization objec-

tive as social influence, which is much more complex than any other

previous works with similar topics. Besides, for the incremental

SOCD, we consider extra budget instead of extra K stations, which

is more reasonable since the number K is usually hard to decide.

6 CONCLUSION
With the continuously increasing charging demand of electric ve-

hicles, how to place EV chargers (EVC), within a city, to achieve

positive social influence is becoming urgent challenges. In this

paper, we propose a new EVC station placing problem called Social-
Aware Optimal Electric Vehicle Charger Deployment (SOCD) which
considers multiple complex social influence of EVC arrangement.

Since SOCD problem is both NP-hard and hard to approximate

within any constant, we propose two efficient heuristic algorithms,
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Figure 6: Experimental results of incremental SOCD w.r.t. λ, α , B, K , rmax and µ.

Bounding&Optimizing Based Greedy Deployment and Region Par-
tition Based Deployment. Finally, by conducting extensive experi-

ments on a real road network, we demonstrate both efficiency and

effectiveness of our proposed algorithms.
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A PROOF OF THEOREM 2.1
Proof. We reduce the 0-1 Knapsack problem [19], which is

a well-known NP-complete problem, to our SOCD problem. An

instance of the 0-1 Knapsack problem is as follows: given a set

ofm items associated with weights {wi } and values {vi } where
i = 1, · · · ,m, we aim to decide whether there is a subset of items S
with total weight ≤W , so that the total value is equal to a given

value V .

For notational simplicity, let maxv = max({vi }
m
i=1) and obvi-

ously, vi ≤ maxv holds for ∀vi ∈ V . Then we can construct an

instance of the SOCD problem from the instance of the 0-1 Knapsack

problem as follows:

• Form items in the 0-1 Knapsack problem, the road network

G containsm nodes and each node corresponds to an item.

Note that, the edge information of G, including connection

and length, is set randomly since it does no influence on the

reduction.

• For each node i in the graph G, the rural degree in Eq. (2),

w(τ (vi )), is set to log
1+vi /maxv
1−vi /maxv .

• We suppose the maximum number of chargers in an EVC

stationK is 1 and the cost of installing one charger is fixed to

f . Then, for each node i in the graphG , the cost of deploying
an EVC station at this node, which is estate_price + f , is set

towi , exactly the same as the weight of ith item.

• Themaximum influential radius rmax of the influence region

in Eq. (1) is set to a value less than the minimum distance

between all pairsm nodes in the graph G.
• The total budget B for deploying EVC stations is equal to

the weight of the knapsackW .

• We set λ = 1 of the optimization objective shown in Eq. (7).

Given an instance of the above problem, we want to decide

whether there exists an EVC deployment plan P such that Social =
V

maxv and

∑
s ∈P costs ≤W .

Next, we prove that an instance of the 0-1 Knapsack problem

is YES if and only if an instance of the decision version of SOCD

problem is YES. Since λ = 1, then Social = Benefit. So we only

consider the social benefit in Eq. (2). Besides, we set rmax less than

the minimum distance between all pairs of distance. Then, it is

obvious that any node in the graph can only be covered by the EVC

station built at the same node. Since each item in the instance of 0-1

Knapsack problem corresponds to one node in the road network

of SOCD problem, without loss of generality, let {v1,v2, · · · ,v |P |}
denote the node(s) at which we deploy the EVC stations in the

deployment plan P . Accordingly, the social influence of P , Social ,

in the instance of our SOCD problem is,

Social = λ · Bene f it − (1 − λ) ·Cost

= 1 · Bene f it − 0 ·Cost

=
∑
vi ∈P

©« 2

1 + exp{− log
1+vi /maxv
1−vi /maxv }

− 1
ª®¬

=
∑
vi ∈P

©« 2

1 +
1−vi /maxv
1+vi /maxv

− 1
ª®¬

=
∑
vi ∈P

(
1 +

vi
maxv

− 1

)
=

∑
vi ∈P vi

maxv

Therefore, given V , if there exists an EVC deployment plan P such

that Social = V
maxv and

∑
s ∈P costs ≤ W , then there should an

subset of items {v1,v2, · · · ,v |P |} in the 0-1 Knapsack problem such

that the total weight ≤W and the total value is equal to the given

value V .

From the justification above, the decision version of the SOCD

problem is NP-complete and the optimization version of the SOCD

problem is NP-hard. □

B PROOF OF THEOREM 3.1
Proof. Since each nodev must select one and only one station S ,

the lower bound of the optimization goal shown in Definition 9 is ev-

ery node taking the station with lowest assignment costCosta (v, S)
defined in Eq. (9). Thus, greedy yields the optimal naturally. □

C PROOF OF LEMMA 3.2
Proof.

д(Si ) =
Social(P ∪ {Si }) − Social(P)

f (Si )

=
λ∆Benefit − (1 − λ)∆Cost

estate_price(Si ) +
∑k
i=1 x

(i)
Si

fi

≤
λ∆Benefit

estate_price(Si )
,

(17)

where ∆Benefit is the difference of Benefit after and before deploy-

ing EVC station Si at location τ (vi ).
Then, for ∆Benefit, the highest value of ∆Benefit corresponds to

the case that the radius of Si ’s influence region reaches rmax . Thus,

let I∗
1
(Si ) be the number of nodes covered by the circular region

centering at Si .pos with radius rmax , and the inequality shown in

Eq. (12) always holds. □
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