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Abstract 
The aim of this paper is to make available of a comprehensive review and to provide a reference of existing 
methodologies developed for enhancing of the energy efficiency of robots. In the present scenario of increased 
application of robots, the huge energy consumption is also being predicted. One of the possible solutions for 
energy consumption can be in terms of developing energy efficient robots. In the domain of energy efficient robot, 
different attempts are made in past, such as use of lightweight material, analysis of speed, identification of the least 
energy consuming trajectories and reduction of components weight by topology optimization, etc. The available 
methodologies to reduce the energy consumption of industrial robots are classified into two groups. The first group 
comprises of the different attempts of energy efficiency through trajectory optimization of the manipulator. Here, 
the energy required to perform a particular task is considered. The path is then optimized for minimum power 
consumption of the motors. This approach is applicable to task-specific cycles.  The second group comprises the 
application of topology optimization method. Topology optimization approach is developed in the last decade and 
proved to be a promising approach for minimization of the mass of a structural member of machine component. 
Presented work will be helpful to understand the advancement in this domain. 
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1. Introduction 

In the automation sector, the necessity of industrial robots is rising on account of their advanced superiority 
and productivity. According to the International Federation of Robotics (IFR) report 2018, industrial robot sales 
doubled over the past five years globally [1]. Out of different methods, trajectory and topology optimization 
approaches are reviewed because of its high improvement of energy efficiency. Trajectory optimization deals with 
the minimization of power consumption for an industrial robot. For this, optimization problem can be framed 
based on objective functions such as time to complete path, vibration, and energy consumption of robotic systems. 
Topology optimization deals with minimization of mass by creating holes in design space for an industrial robot. 
For topology optimization problem, minimum compliance is usually chosen as the objective function.  

The paper is systematized as follows: In Section 2, the different trajectory optimization for enhancing energy 
efficiency is discussed. In Section 3, the main topology optimization approach for minimizing energy consumption 
is reviewed and conclusion is drawn in Section 4. 

 
2. Trajectory optimization 

The energy consumption of the robot is also decided by the path or trajectory made during a work cycle. 
In order to minimize the joint torque, different trajectories can be evaluated for an industrial robot. The trajectory 
optimization can be classified into two major domains, i.e., point-to-point trajectory and multi-point trajectory (or 
continuous path). For a trajectory defined by point-to-point (PTP) motion, end-effector moves from a start point to 
final point in the workspace. The path in this trajectory is made through a suitable interpolation method used by the 
master controller. PTP trajectory robots are employed for pick and place, palletization, and spot welding 
operations in the industry. The various methodologies developed considering PTP trajectory optimization is based 
on direct and indirect approach. In the case of direct approach, optimal control problem is converted into a 
nonlinear programming problem. The direct approach method can be solved in two steps. In step 1, trajectory 
optimization problem discretized directly by changing it into a constrained parameter problem known as nonlinear 
programming. In step 2, solve the nonlinear programming problem using a penalty function approach or methods 
of augmented or modified Lagrangian functions. 

In the case of direct approach, the initial attempts were made by using nonlinear programming for 
trajectory optimization [2]. However, the level of accuracy from this method is lower and the issue of local minima 
is also observed. Recently, the energy consumption of robotic system considering motor losses and auxiliaries 
losses as a part of objective function were optimized for the improvement of energy efficiency [3 -5].  

In the case of indirect or inverse approach, the trajectory optimization problem can be solved in three 
steps. In the first step, the necessary and sufficient conditions for optimality are defined. In second step, 
optimization problem is formed combining the objective function and constraints. Finally the optimization 
problem is solved using calculus of variations or maximum principle methods or numerical methods. In order to 
obtain very smooth motion and optimization process, a polynomial with a degree higher has to be chosen with 
respect to the number of imposed constraints [10, 14, 15, and 18]. However, higher increment in the degree of the 
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polynomial does not lead to significant enhancement in energy saving [7], B-Splines has minimal support with the 
given degree of a polynomial [1, 11 and 16]. To obtain the coefficient of the polynomial in online trajectory 
planning genetic algorithm and real-coded genetic algorithm are used [6, 8, and 10]. As this method is efficient 
than direct method, it is also applied for different robotic systems [15-19].  

Multi-point trajectory represents a continuous path (CP) approach, where end effector travels through 
intermediate points between start point and final point. Multipoint trajectories are used for applications such as 
welding, panting, quality inspection through moving camera, etc. Vibrational approach by inverse of Jacobian 
method minimizes the error in B- spline [20]. Focused collision avoidance path is generated by selecting cost 
function which gives a set of points joined with a suitable polynomial that gives smooth motion and minimum 
energy consumption [21]. A multi-objective function is used for minimum energy in B splines [22, 23]. Table 1 
provides the important and recent developments in this domain. In this table, the various approaches to use 
trajectory optimization is presented with respect to algorithm used, trajectory profile type, number of DOF of the 
considered manipulator, its application and experimental validation status is provided. 

 
Table 1: Point to point and multipoint trajectory optimization literature  

 
Reference Year Algorithm Trajectory Profile DOF Application Exp. 

Point to Point Trajectory optimization 
Field et al. [6] 1996 Genetic  B Spline-cubic 6 Industrial Y 

Bailón et al.  [7] 2010 Real-coded genetic  8 D Polynomial 6 Industrial N 
Fung et al.  [8] 2011 Real-coded genetic  8-12D Polynomial - LCD glass handling N 
Hsu et al.  [9] 2011 Gradient based algorithm 12 D Polynomial - - N 

Hansen et al.  [10] 2012 Inverse dynamic algorithm B Spline 6 Industrial Y 
Hsu et al.  [11] 2013 Particle Swarm optimization  7-30 D Polynomial - Toggle mechanism Y 

Hansen et al.  [12] 2013 Real coded genetic  5 D & B-Spline 2 Industrial Y 
Fung et al. [13] 2013 Genetic algorithm 3-12 D Polynomial - - Y 
Wang et al. [14] 2018 Taguchi 6 D polynomial - Robot mini Quad  Y 

Multi Point Trajectory optimization 
Hirakawa et al. [20] 1997 Steepest gradient method B-spline 4 Industrial Y 
Sengupta et al. [21] 2011 Invasive weed optimization Cubic polynomial - - N 
Fenucci et al. [22] 2016 Branch and bound B-Spline 6 Industrial Y 

He et al. [23] 2016 Multi-Objective  B-Spline 6 Industrial Y 
 
3. Topology optimization 

Topology optimization is an auspicious and efficient method to enhancing the energy efficiency of industrial 
robots. Topology optimization is a subdivision of structural optimization method useful for minimizing the 
material percentage in design space [24]. The design space is discretized by four node bi-linear square finite 
elements. The density-based modified solid isotropic material with Penalization (SIMP) approach is used for 
modeling material properties in a continuous setting through interpolation of ‘ φλ ’ as shown in equation 1. The 
modified SIMP interpolates Young’s modulus of the material and permits a straight forward execution of 
sensitivity analysis as well as additional filters techniques [25]. 

 
min min( ) ( ),          [0,1]n

φ φ φ ο φλ ρ λ λ λ λ ρ= + − ∈  (1) 

 
where ‘ ολ ’ is stiffness of the design space, ‘ minλ ’ is a small stiffness allocated to void regions for avoiding 
stiffness matrix from a singularity and  ‘n’ is a penalization aspect incorporated to ensure the design space as solid 
or void. ‘φ ’ is the design variable, ‘ φρ ’ is element density. For topology optimization problem minimum 
compliance chosen as objective function as shown in equation 2. Compliance is Compliance is the reverse of 
stiffness, mechanically it represents the amount of strain energy stored in robotic link. 
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where ‘ χ ’is the volume fraction, ‘ ( )µ φ ’ is the compliance, ‘ δ ’, ‘τ ’ and ‘κ ’are the global displacement, force 
vectors, and global stiffness matrix, respectively, ‘ zδ ’ is the element displacement vector, ‘ N ’ is the total number 
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of elements, ‘ ( )zν ’ and ‘ ον ’ are the material volume and design domain volume, respectively,  finally ‘ zγ ’ is the 
element stiffness matrix, ‘ οκ ’ is the stiffness matrix. For illustration, topology optimization process of a single 
robotic link is given here with initial boundary condition. The mechanical member of 1 DOF fixed at one end 
whereas another end is subjected to force (F), as shown in Figure 1. The height and length of the mechanical 
member are 80 mm and 300 mm respectively. While it is rotating continuously, centrifugal forces (CF) come into 
picture and gravity (GF) pulls it always vertically downwards at the centroid of the design space. The initial design 
space subjected to the topology optimization problem. Some portions of the design space are kept free from 
topology optimization process to give feasibility for assembly and measurement purposes. Mathematical gradient 
code developed in MATLAB for above stated 1 DOF robotic arm. In each iteration of the process the topology 
changes thus the center of gravity (CG) also changes dynamically. In order to apply CF and GF subroutine is 
developed to capture CG point. 
 

 

 

Figure 1: Design space before and after topology optimization 
 

For realistic and accurate topology, mesh independency filter and grayscale removal filters are also included 
in the topology optimization routine. In order to confirm the accuracy of results, a mesh independency test is 
performed here. At grid size 2100 × 560 both Von-Mises stress and deflection values are converged as shown in 
Table 2. The link is considered to be made of mild steel (density 7700 kg/m3, Poisson’s ratio 0.3, Young’s 
modulus 200 GPa) with a volume reduction of 50% i.e. volume fraction of 0.5.     

Topology optimization method gained popularity in the research community in late 1990. Significant research 
on the application of topology optimization on industrial robots was started in 2006. A few structural components 
of the 22 DOF humanoid were optimized for at least 30% reduction in mass experimentally by means of topology 
[26-28]. Further, the hydride multibody system, simulation analysis, and topology optimization approach was 
selected flexible bodies, objective function kept as maximization of mechanical stiffness and minimization of mass 
at least 15% [29-32]. Industrial serial robots of 6 DOF were optimized by multi-objective topology method for 
reduction of weight 7.1%, the applied load was analyzed dynamically, and this study was carried out by 
considering worst-cases of applied force [33, 34]. 5 DOF industrial robots were topologically optimized by SIMP 
approach considering static loading conditions for mass reduction of 44.4% [35-39]. Integrated optimal design 
approaches were used for 6 DOF serial industrial robots by use of part-level topology optimization and system 
level optimization for mass distribution in the design space [40, 41]. The actuating torque and dynamics was 
optimized by mass redistribution of 2 DOF planar robotic for mass reduction of 32.8% [42]. Recently topology 
optimization approach adopted to five bar mechanism of an industrial robot and ram structure of friction stir 6 
DOF industrial welding robot for decrease the computational time and enhancing energy efficiency by reducing 
mass by 62.6% respectively [43,44]. 
 

Table 2: Mesh independency of Von-Mises stress and deflection at different grid sizes. 
 

S. No. Grid Size Von-Mises stress (MPa) Deflection (mm) Time (min) 

1 300 × 80 3.52 0.00967 0.43 

2 600 × 160 3.34 0.00973 1.78 

3 900 × 240 3.20 0.00974 4.58 

4 1200 × 320 3.45 0.00976 8.51 

5 1500 × 400 3.41 0.00978 13.82 

6 1800 × 480 3.37 0.00980 21.07 

7 2100 × 560 3.35 0.00980 26.18 

8 2400 × 640 3.35 0.00980 39.51 

9 2700 × 720 3.35 0.00980 52.25 

10 3000 × 800 3.35 0.00980 56.57 
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4. Conclusion 
The electrical power requirement is increasing in industrial sector with the application of robots. Various 
techniques and methodologies are proposed in this domain to reduce energy consumption. In the present paper, the 
available methodologies and prominent developments towards the reduction of energy consumption by the 
industrial manipulator were revised. The methodologies were grouped into the major domains. Conventionally the 
trajectory of a robot is focused to optimize the cycle time and energy consumption. In the recent year, topology 
optimization method is also proved as an important tool to achieve this objective. In this paper, the brief review of 
these two methodologies was summarized. In addition to the methodology, the optimization of a robotic link 
through conventional topology optimization was demonstrated. From the available literature is evident that 
topology optimization method help to save more power compared to the trajectory optimization method. Also, the 
cycle time of the process remains untouched. The present review will be helpful to choose and understand the 
methodologies that are used to reduce the energy consumption of an industrial robot. 
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