
EasyChair Preprint

№ 450

Video Summarization: How to Use Deep-Learned

Features Without a Large-Scale Dataset

Didik Purwanto, Yie-Tarng Chen, Wen-Hsien Fang and
Wen-Chi Wu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 24, 2018



Video Summarization: How to Use Deep-Learned
Features Without a Large-Scale Dataset

Didik Purwanto, Yie-Tarng Chen, Wen-Hsien Fang, and Wen-Chi Wu
Department of Electronic and Computer Engineering

National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C.
Email: {d10602806,ytchen,whf,m10402151}@mail.ntust.edu.tw

Abstract—This paper proposes a framework incorporating
deep-learned features with the conventional machine learning
models within which the objective function is optimized by using
quadratic programming or quasi-Newton methods instead of
an end-to-end deep learning approach which uses variants of
stochastic gradient descent algorithms. A temporal segmentation
algorithm is first scrutinized by using a learning to rank
scheme to detect the abrupt changes of frame appearances in a
video sequence. Afterward, a peak-searching algorithm, statistics-
sensitive non-linear iterative peak-clipping (SNIP), is employed
to acquire the local maxima of the filtered video sequence after
rank pooling, where each of the local maxima corresponds to a
key frame in the video. Simulations show that the new approach
outperforms the main state-of-the-art works on four public video
datasets.

Index Terms—Video summarization, key frame selection, tem-
poral evolution, CNN, ranking machine.

I. INTRODUCTION

With the proliferation of information and communication
technologies such as wearable devices, self-centered cameras,
video surveillance systems [1], the volume of video data
has grown tremendously. As reported by YouTube [2], more
than 300 hours duration of video are uploaded per minute
to YouTube. Consequently, video summarization has become
an extremely important video analysis tool and found appli-
cations in a wide range of applications like video retrieval
[3], video indexing [4], and data-management [5]. However,
video summarization is a challenging task, which needs to
deal with some related intriguing issues, including diversity,
the interestingness and the importance of videos. It is thus of
great importance to develop an efficient and efficacious video
summarization method to select the key frames to represent
the videos.

A myriad of algorithms has been addressed for video sum-
marization, including sequential determinantal point process
[6], summary transfer [7], title video based summary [8], and
online motion auto encoder [9]. Also, some unsupervised-
based approaches that utilize a clustering algorithm, such as
VSUMM [10], Delaunay Triagulation-based [11], and shot-
boundary cluster [12] were investigated to group the frames
into a set of clusters, the centroid of which was chosen as
the key frame. Recently, with the success of Convolutional
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Neural Networks (CNN), Mahaseni et al. [13] used the
generative adversarial network (GAN) which consisted of a
summarizer and a discriminator to perform the unsupervised
video summarization. Li et al. [14] proposed a model to
summarize the videos based on a weighted combination of
the importance, representativeness, diversity and smoothness
of the storylinemeasures. Zhang et al. [15] estimated the range
of inter-dependencies among frames using long-short term
memory (LSTM) to conduct supervised learning for video
summarization. However, training recurrent neural networks
such as LSTM and GAN is not an easy task and a large
annotated dataset is in general required to attain satisfactory
performance. A question naturally arises: Can we learn the
temporal evolution of deep learned features for video summa-
rization without a large scale of annotation data?

To answer this question, in this paper, we propose a
framework incorporating deep-learned features with the con-
ventional machine learning models within which the objective
function is optimized by using quadratic programming or
quasi-Newton methods instead of an end-to-end deep learning
approach which uses variants of stochastic gradient descent
algorithms. As such, the proposed approach can work well
even with a limited amount of training data. Since a shot
boundary detection algorithm is a key component for video
summarization, we, inspired by the success of rank pooling in
modeling videos for action recognition, investigate a temporal
segmentation algorithm by using a learning to rank scheme to
detect the abrupt changes of frame appearances in a video
sequence. To detect shot boundaries where the transition
between shots is gradual, the near-duplicate frames are also
detected and removed in advance by using an iterative quan-
tization (ITQ) [16] with a locality preserved hashing function
as a frame-based similarity measure. Although several deep
hashing functions for visual similarity measures have been
considered, these functions are always trained by approximate
million images. In contrast, ITQ with deep-learned features
can be directly trained by the existing benchmark datasets
with limited annotation training samples as well. Also, a
peak-searching algorithm, statistics-sensitive non-linear iter-
ative peak-clipping (SNIP) [17], is employed to acquire the
local maxima of the filtered video sequence after rank pooling,
where each of the local maxima corresponds to a key frame in
the video. Conducted simulations show that the new approach
outperforms the main state-of-the-art works on four public
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Fig. 1: Overview of the proposed video summarization.

video datasets.
In summary, the contributions of this paper include:
• A new framework for video summarization is devised

based on modeling the temporal evolution of deep-learned
features by rank pooling. The concept of learning to rank
has been used for video summarization in a number of
works [18, 19, 20]. The proposed approach, however, is
entirely different from their methods in the following two
aspects: First, we use the rank machine to enforce tem-
poral evolution of CNN-learned frame features instead of
scoring the importance of each frame trained based on
the users preference. Second, the previous works require
tedious annotation labels for scoring the importance of
each frame. In contrast, we leverage the natural ordering
of frames in a video to get rid of this.

• The removal of near-duplicate frames by ITQ and an
effective key frame selection scheme based on SNIP are
invoked to select a discriminative subset of key frames.

II. THE PROPOSED APPROACH

In this section, we begin with the introduction of the overall
pipeline in Sec. II-A. We then describe the iterative quantiza-
tion to reduce the similar frames in Sec. II-B. Afterward, we
explain the temporal encoding with rank pooling in Sec. II-C.
Finally, we produce the final video summaries by utilizing the
peak-searching algorithm, SNIP in Sec. II-D.

A. Overall Methodology

For easy illustration, the overall structure of the proposed
method is as shown in Fig. 1, which consists of the following
three main building blocks:
Iteration Quantization: Firstly, we use the generic CNN
features as the input to ITQ, and a locality-preserved hashing
function is used as a similarity measure for adjacent frames.
If the hamming distance between the outputs of ITQ from two
adjacent frames is less than a prescribed threshold, then one
of them is regarded as redundant and removed from the video
sequence.
Temporal Encoding: Secondly, the remaining CNN features
are encoded by rank pooling to capture the temporal evolution
of the frame-to-frame appearance.

Peak-Searching Algorithm: Finally, the predicted scores for
the trimmed video sequence by rank pooling are regarded as
a time series. SNIP is applied to search for the peak values
and the corresponding frames are considered as key frames.
The final video summary is obtained by summarizing these
selected key frames.

B. Iteration Quantization

A video usually contains some similar frames, especially
for the nearby or adjacent frames. These near-duplicate frame
inevitably impact the performance of the video summaries.
One approach to resolve this issue is to employ a preprocessing
scheme to remove these near-duplicate frames. In this paper,
we use ITQ [16] to remove the redundant frames by first hash-
ing the CNN features into a set of binary codes for the purpose
of efficiency. Afterward, ITQ computes the hamming distance
between the two binary hashing codes corresponding to the
two adjacent frames. If the distance is less than a prescribed
threshold, the frame is considered as a near-duplicate frame
and removed from the video.

To follow, we briefly describe how to use ITQ to learn the
similarity between the adjacent frames. Suppose we have a
set of n CNN features, {xi}ni=1 and are zero-centered, i.e.
,
∑n
i=1 xi = 0. Next, we learn a binary code matrix B ∈

{−1, 1}
n×c

, where c denotes the code length. Afterward, we
perform PCA to reduce the dimension of the features. For a
code of c bits, we obtain W by taking the c eigenvectors of
the data covariance matrix XTX, where X = [x1, x2, . . . , xn].
If W is an optimal solution for PCA, so is W̃ = WR for
any c× c orthogonal matrix R. Based on a specific B and R,
the quantization error can be expressed as [16]

Q(B,R) = ‖B−VR‖2F
= ‖B‖2F + ‖V‖2F − 2tr

(
BRTVT

)
(1)

where ‖·‖F denotes the Frobenius norm and T is the matrix
transposition. The direct solution of (1) is a formidable task.
Thereby, we resort to a suboptimal, yet more feasible k-means-
like ITQ procedure to find a suboptimal solution. ITQ is
comprised of two steps: First, we fix R and determine B.

Next, we fix B and update R. The overall procedure
iterates between these two steps in a round-robin manner until



Algorithm 1 The peak searching algorithm

1: Input: A time series, S(i) for i = 1 . . . n
2: Output: A clipping signal, V (i) for i = 1 . . . n
3: Step 1. Initialization:
4: Set m = 1 and the clipping signal, V1(i) = S(i) for i =

1 . . . n
5: Step 2. Compute new clipping signal Vm+1(i) from the

current clipping signal Vm(i) and the clipping window,
Vm(i−m) and Vm(i+m), using Eq. (6) for i = m,m+
1 . . . n−m.

6: Set m = m + 1; go to Step 2 until m = M
7: Step 3. V (i) = VM (i) for i = 1 . . . n

convergence. Also note that such an alternating minimization
process is ensured to converge at least to a local optimal
solution.

As the end of ITQ, we obtain a binary feature for every
frame. Thereafter, we calculate the hamming distance between
the two adjacent frames to detect their similarity. If the
distance is less than a prescribed threshold, these frames are
regarded as similar frames and removed from the video.

C. Temporal Encoding

After obtaining the filtered video sequence by ITQ, in this
subsection, we attempt to capture the temporal evolution of the
frame appearances with rank pooling [21] to summarize the
videos. Given a set of m selected frames, say {x1, x2, . . . , xm},
we intend to model the chronological order of these selected
feature vectors, i.e. xm � . . . � x2 . . . � x1, which can be
derived as a pairwise ordering, xt+1 � xt, i.e. if xa � xb and
xb � xc ⇒ xa � xc.

To this end, we can formulate this problem as a constrained
minimization problem with pairwise ordering constraints.
Specifically, we learn a linear function ϕ (x;u) = uTx with
u ∈ RD by pairwise linear rank pooling so as to satisfy the
maximal margin constraint to avoid the over-fitting problems.
Here, the score in rank pooling with respect to xt can be
computed by ϕ (xt;u) and ϕ (xt+1;u) � ϕ (xt;u) to satisfy
the pairwise constraints xt+1 � xt. In other words, we
need to learn a parametric vector u by solving the following
constrained optimization problem [21]:

argmin
u

1

2
‖u‖2 + C

1∑
∀i,jxti

�xtj

εij

s.t. uT
(
xti − xtj

)
≥ 1− εij , εij ≥ 0

(2)

where εij represents a slack variable and C denotes a hyper-
parameter, which can be determined by the cross-validation
scheme.

This optimization problem can be readily solved by a linear
rankSVM solver [22]. Afterward, the temporal evolution of
a video sequence is encoded in the parameter vector u.
Alternatively, we can employ a vector-valued function, vi, of
the CNN features of each frame as an input to rank pooling
instead of the frame feature xt. The vector-valued function can

be classified as the independent frame representation and the
moving average representation, which are defined respectively
as follows.
• Independent frame representation: this function directly uses
each independent frame as the output and is defined as

vt =
xt
‖xt‖

(3)

• Moving average representation: this function aims at ex-
tracting the average behavior of the features within a temporal
window with a fixed length to smooth the original features and
is defined as

mt =
1

K

t∑
τ=t−K+1

xτ (4)

and
vt =

mt

‖mt‖
(5)

where K is the length of the temporal window.
Based on the learned ranking function derived above, we

obtain a time series with the frame number in the x-axis
and the associated predicted score in the y-axis. This time
series encodes the video-wise temporal evolution of frame
appearances. We choose the local maxima of this time series
as the key frames we are interested in. This is based on
the observation that a local maximum of this time series
indicates a dramatic change between the adjacent frames in its
appearance, as it violates a pair-wise order constraint. Finally,
a low-pass filter is employed to filter out the noise in the time
series. As a result, we select those frames associated with the
local maxima of the signal as key frames.

D. Peak-Searching Algorithm

Next, we describe an efficient peak-search algorithm, SNIP,
[17] to find the local maxima of the time series. The rationale
of SNIP is to iteratively invoke a clipping operation on a
window, which is automatically adjusted to the width of the
identified peak area, as summarized in Algorithm 1.

At the mth iteration, we first sequentially select a value
of the clipping signal Vm (i) with a sampling interval
[Vm (i−m) , Vm (i+m)], called the clipping window. There-
after, we compute the value of the new clipping signal Vm+1(i)
by using the smaller of Vm(i) and the average of the values
at two ends, i.e. Vm (i−m) and Vm (i+m) [17]. More
specifically, Vm (i) is updated by

Vm+1 (i) = min

{
Vm (i) ,

Vm (i−m) + Vm (i+m)

2

}
(6)

for i = m. . . n − m, where n is the number of points in
the scoring signal. The new clipping signal, Vm+1, becomes
smoother than Vm derived in the previous iteration, and the
maximum number of iterations M can be determined by
averaging key frames intervals from the training data or the
key frame percentage from a video.

The main advantage of the SNIP algorithm is its capability
to cope with the background shapes with a large variety.
We can then determine the peak regions by overlapping the



TABLE I: Performance comparison of the proposed method
with various setting.

Frame representation OVP YouTube SumME TVSum
Independent Frame

256-dim 74.0% 62.3% 42.2% 56.3%
512-dim 77.6% 62.0% 42.8% 56.8%

1024-dim 75.9% 61.8% 42.5% 56.9%
Moving Average

256-dim 74.2% 62.7% 42.8% 56.7%
512-dim 78.5% 63.1% 43.5% 57.4%

1024-dim 76.0% 62.4% 43.3% 57.0%

clipping signal produced by SNIP with the original time
series, and the key frames will be selected based on this
overlapping region.

III. EXPERIMENTAL RESULTS

In this section, we first explain the details of the four video
summarization datasets employed, and experimental setup in
Sec. III-A. Sec. III-B assesses the performance of the proposed
method, followed by a comparison with the state-of-the-art
works through exhaustive computer simulations based on four
public datasets in Sec. III-C.

A. Datasets and Experimental Setup

We conduct our experiments using four public video sum-
marization datasets: Open Video Project [23, 10], YouTube
datasets [10], SumMe datasets [24] and TVSum dataset [8].
Those datasets contain 25-50 videos with the length varying
from 1 to 10 minutes. The simulations mainly follow the
protocols and evaluation metrics provided in [11] in which the
total key frames are less than 15% of the original frames. For
each dataset [25, 10, 24, 8], we select 80 % of the videos for
training and take the rest for testing. We run the experiments
100 times to obtain the final results. All of the simulations
are implemented in the MATLAB environment on a computer
with an Intel i7-6700 CPU, a 32 GB RAM, and a GTX 1080ti
GPU. Finally, we use the Precision, Recall, and F -score to
assess the performance of our work.

We use CNN fc-7 features as the input of our scheme.
The RGB images are trained by using a pre-trained model
by ImageNet and re-sized into 227 x 227 x 3. For temporal
encoding, we use the moving average as an input scheme for
the value vector function. The length of the binary code for the
CNN feature space is set as 64 bits. For ITQ, the maximum
number of iterations is set as 100.

B. Performance Evaluation

Assessment of Various Frame Representations: We compare
the F -scores of our approach with a different frame represen-
tation of temporal encoding, as shown in Table I, from which
we can see that encoding with the moving average can attain
better performance than the independent frames on all four
datasets because the independent frame representation cannot
fully learn the temporal evolution of the video sequence.
On the other hand, the moving average representation can
produce smoother signals with less noise compared with the

TABLE II: Performance comparison of the proposed work
using rank pooling with and without ITQ and SNIP.

ITQ SNIP OVP YouTube SumMe TVSum
77.0% 60.5% 41.1 55.7√
77.5% 62.0% 41.8 56.3√ √
78.5% 63.1% 43.1 56.9

independent frame representation. Also, we investigate the
performance in terms of F -score with various dimensions
of ITQ features, as shown in Table I, from which we can
see that 512-dim can achieve the best performance. This is
perhaps due to the fact that smaller or higher dimensions
cannot represent the features precisely - smaller dimensions
may lose some important information while higher dimensions
may contain more noise. Therefore, we use 512 dimensions
in the remainder of this paper.
Combination of Rank Pooling with and without ITQ
and SNIP: We also inspect the performance of the proposed
method with and without ITQ and SNIP to demonstrate the
advantage of this combination. The comparison of the F -
scores with a different combination is as shown in Table
II, from which we can note that together with SNIP our
approach which uses rank pooling can only obtain 0.5% to
1.5% performance improvement because SNIP can capture
more distinct frame information. Next, with the additional
incorporation of ITQ, the performance of the new approach
can be further boosted by 0.6 % to 1.3 %. This is due to
the fact that the removal of the redundant frames in the first
stage can alleviate the false positive when performing video
summarization.

For a vivid illustration, Figs. 2 - 4 show the selected key
frames with and without ITQ and SNIP, from which we can
see from these figures that together with ITQ and SNIP, the
number of false negative indicated by black frames and that of
false positive by the red cross is less than that without using
these two schemes. As shown in Fig. 2, the results based on
rank pooling only has a false positive, where a similar person
with a different pose is selected. With ITQ in the preprocessing
step, this frame can be removed.

C. Comparison with State-of-the-Art Methods

In this subsection, we compare the proposed approach with
some recently reported works in terms of F -score on the
four publicly available datasets. As a whole, eleven baselines
are employed here for comparison, including: STIMO [26],
VSUMM [10], SumTransfer [7], SUM-GAN [13], SeqDPP
[6], LSTM [15], TVSum [8], Li et al. [14], MSDS-CC [27],
LLR-SDS [28], and Online Motion AE [9]. The results from
all of the baselines [26, 10, 6, 7, 13, 14, 15, 8, 27, 28, 9] are
obtained from those reported in their papers.

For the OVP dataset, we compare our method with five base-
lines, STIMO [26], VSUMM [10], SumTransfer [7], SUM-
GAN [13], and SeqDPP [6], in terms of the F -score, as
shown in Table III, from which we can see that [10, 26]
cannot provide satisfactory performance as they only use the
handcrafted color features. SeqDPP [6] learned the natural



Fig. 2: Summarization results of Oceanfloor Legacy in the OVP dataset, where the black box represents the false positive.

Fig. 3: Summarization results of Drift Ice as a Geologic Agent in the OVP dataset, where the red cross represents the false
negative.

Fig. 4: Summarization results on Base jumping video in the SumMe dataset, where the black box represents the false positive.

TABLE III: Performance comparison with the state-of-the-art
works on the OVP, YouTube, SumMe, and TVSum datasets,
where the best results are bold-faced.

Methods OVP YouTube SumMe TVSum
STIMO [26] 63.4 - - -

VSUMM [10] 70.3 - 32.8 -
SumTransfer [7] 76.5 61.8 40.9 -
SUM-GAN [13] 77.3 62.5 41.7 56.3

SeqDPP [6] 77.7 58.7 - -
LSTM [15] - - 41.8 54.7
TVSum [8] - - - 51.3

Li et al. [14] - - - 52.7
MSDS-CC [27] - - 40.6 52.3
LLR-SDS [28] - - 40.4 49.7

Online Motion AE [9] - - 37.7 51.5
Ours 78.7 63.2 43.5 57.4

order of the temporal structure in videos to obtain better per-
formance. More recent approaches like SumTransfer [7] and
SUM-GAN [13] are based on the CNN features and thus can
attain superior performance compared with the aforementioned
methods. Our approach, which uses rank pooling to learn the

evolution of frame appearances with the removal of redundant
frames beforehand, provides the best performance. Also, since
this dataset consists of edited videos instead of raw videos,
rank pooling can learn how the frame is evolving over the
time and capture more significant changes at the moment of
scene changes.

The comparison is also made on the YouTube dataset. Three
baselines, SumTransfer [7], SUM-GAN [13], and SeqDPP [6],
are compared, as shown in III, from which we can note that
[13, 16], which treat the issue as a supervised learning prob-
lem, can attain satisfactory performance. SumTransfer [7] and
SUM-GAN [13] outperform SeqDPP [6] as they use potent
features extracted by the deep neural networks. Our method
which uses rank pooling to learn the temporal evolution of the
CNN features again can attain superior performance over all
of the other works on this dataset.

For the SumMe dataset, we compare the proposed method
with seven baselines, VSUMM [10], SumTransfer [7], SUM-
GAN [13], LSTM [15], MSDS-CC [27], LLR-SDS [28], and



Online Motion AE [9] as shown in Table III, from which we
can see that both VSUMM [10] and SumTransfer [7] cannot
provide satisfactory performance, as employ the handcrafted
features instead of more discriminative descriptors and thus
cannot provide satisfactory performance. Also, we can find
that our approach yields the best performance. It is because
the SumMe dataset contain videos which have a slow changing
shot scene. Thereby, ITQ, which can remove near-duplicate
frames, is of importance to deal with this type of videos.
Lastly, we compare the proposed method with seven baselines
on the TVSum dataset, including, SUM-GAN [13], LSTM
[15], TVSum [8], Li. et al. [14], MSDS-CC [27], LLR-
SDS [28], and Online Motion AE [9] as shown in Table
III. Our approach which combines the temporal encoding by
rank pooling, near-duplicate frame removal by ITQ and peak-
searching by SNIP can attain the best performance.

Note that in the above simulations, many works like
SUM-GAN [13], Online Motion AE [9], LLR-SDS [28],
MSDS-CC [27], Li et al. [14] and LSTM [15] are all based on
the deep-learned features. They, however, require a large-scale
annotated training videos to attain their best performance. On
the other hand, the new approach combines the deep-learned
features with the conventional rank pooling to circumvent
this limitation and thus can outperform the aforementioned
works on all four datasets.

IV. CONCLUSIONS

This paper has developed a CNN-based key-frame selection
framework for video summarization. The new approach first
removes redundant frames via ITQ and then performs rank
pooling to acquire temporal evolution information. Finally,
an iterative learning scheme, SNIP, is employed to capture
the outliers which are regarded as key frames in the videos.
By combining the deep-learned features with the conventional
machine learning models, the new approach works well even
with limited training data. Simulations show that the proposed
method is superior to the state-of-the-art works on four public
datasets.
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