
EasyChair Preprint
№ 13354

Real Time Object Detection

Faiayaz Waris Saiyed, Narasimha Reddy Anumula and
Mahesh Babu Elchuri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 18, 2024

Real-Time Object Detection

Saiyed Faiayaz Waris
dept.of Computer

Science&Engineering
Vignan’s Foundation for

Science,Technology & Research
Deemed to be University

Guntur,India

saiyed.cse@gmail.com

A. Narasimha Reddy
dept.of Computer

Science&Engineering
Vignan’s Foundation for

Science,Technology & Research
Deemed to be University

Guntur,India
narasimhacse324@gmail.com

E. Mahesh Babu
dept.of Computer

Science&Engineering
Vignan’s Foundation for

Science,Technology & Research
Deemed to be University

Guntur,India

maheshelchuri2002@gmail.com

Abstract: This work proposes a versatile improvement of

the well-known object detection procedure called Region-

based Convolutional Neural Networks (R-CNN). Unlike

the previous methods which achieved impressive speed

but low accuracy, YOLO can be considered in a similar

category. On contrary, R-CNN involve multi-stage

pipeline that are such as region proposal generation,

feature extraction, and classification to achieve greater

object localization accuracy. R-CNN utilizes this method

to outperform YOLO in MAP scores which are an

important measure of detection accuracy. Even though it

imposes high computation demand, R-CNN proves to be

more promising in terms of false positives, especially on

complex backgrounds, which make it a more appropriate

approach for a range of applications. Interestingly, R-

CNN is not only stable, but also works better than YOLO

and the other latest approaches when we need to identify

objects in different domains, such as paintings and

natural scenes. And this is the most significant project,

which consist of both the real-time as well as the capture

image to detect the object and multi object detection is

also working properly by using the R-CNN model.

Keywords—Object Detection, Region-based

Convolutional Neural Networks (R-CNN), Real-time

Detection, Accuracy vs. Speed Tradeoff, Mean Average

Precision (MAP), Multi-stage Pipeline, Region Proposal

Generation, Feature Extraction, Classification, False

Positive Reduction, Computational Overhead,

Generalization, Diverse Domains, Artwork Detection,

Natural Scenes.

I. INTRODUCTION

Humans seemingly do not have a difficulty in discerning

images, as it is a simple feat to detect the objects, their

locations, and their interconnections. This efficiency can also
be mimicked in computer vision in order to revolutionized

such areas as autonomous driving, precision agriculture or

medical diagnostics. Modern object detection approaches

such as R-CNN are manipulated to use classifiers or region

proposal methods apart from refinement methods afterwards.

Nevertheless, this method leads to complex cascades

involving multiple components trained and optimized

individually, as a result, this approach slows the system down

and gives rise to optimization problems. In contrast, to obtain

the regression problem that is simpler, it is proposed to

change R-CNN to object detection. Straight lines revealing

coordinates of the bounding boxes and probabilities of classes

constitute the R-CNN system, which is both easier and faster

workaround. Contrary to YOLO which can handle entire

images at once while omitting pipelining R-CNN does the

same, doing away with complex pipelines. One convolutional

network model simultaneously yields a number of bounding

boxes as well as class probabilities, maximizing detection
efficiency by dealing directly with the captured full images.

R-CNN is better than the rest of the methods used before. On

the one hand, it has a high-speed owing to its regression-

based strategy, which enables real-time processing rates with

minimum computational delays. Featuring our base R-CNN

version with a speed of 45 frames per second, which develops

our faster version running more than 150 fps. It also has

greater mean average precision as compared to other real-

time systems which allowed the system to accurately detect

objects in a dynamic and changeable environment.

Mainly in this project we have particularly used the below

mentioned objects which are under-gone training with more

than 3000 images for each object by using R-CNN with

3layers of pooling and down-sampling. The objects that can

be detected by using this project are "person", "bicycle",

"car", "motorbike", "Aero plane", "bus", "train", "truck",

"boat", "traffic light", "fire hydrant", "stop sign", "parking

meter", "bench", "bird", "cat", "dog", "horse", "sheep",

"cow", "elephant", "bear", "zebra", "giraffe", "backpack",
"umbrella", "handbag", "tie", "suitcase", "frisbee", "skis",

"snowboard", "sports ball", "kite", "baseball bat", "baseball

glove", "skateboard", "surfboard", "tennis racket", "bottle",

"wine glass", "cup", "fork", "knife", "spoon", "bowl",

"banana", "apple", "sandwich", "orange", "broccoli",

"carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa",

"potted plant", "bed", "dining table", "toilet", "TV monitor",

"laptop", "mouse", "remote", "keyboard", "cell phone",

"microwave", "oven", "toaster", "sink", "refrigerator",

"book", "clock", "vase", "scissors", "teddy bear", "hair drier",

"toothbrush".

II. EASE OF USE

The user-friendly implementation process, high-level of

accuracy, and evaluation framework for real-time object

detection using R-CNN are distinguishable from the

previously used YOLO model merely by the efficiency of this

model which outperforms the accurateness of YOLO. The

two-stage R-CNN pipeline, which includes region proposal

generation, feature extraction, and classification through a

separate sliding-window object detector such as Fast R-CNN,

provides more accurate localization of objects and cuts down

on false positives, thus reds users' confidence in the detection

results. Because of its sophisticated architecture, the R-CNN

approach has a simple implementation technique. It builds on
top of compelling models such as the pre-trained models, and

existing libraries to make the integration process effortless

into the various applications. Furthermore, R-CNN supplies

yardstick indices that are measurable, for instance, MAPs

(mean average precision) helping improvement of

performance evaluation by detection systems. Community

backing and supporting resources provided the suitable

environment for R-CNN to be realized as a convenient and

well-designed framework for real time object detection

purposes, to use the advanced computer vision capabilities as

simply as possible.

III. RELATED WORK

1.Frontend Development with React: During the initial

period of our project, we concentrated on creating user-

interface or frontend in jQuery library. With React, dynamic

development and user interaction with web applications was

readily accomplished. The interface we have designed is user

friendly and visually attractive. A system that makes objects

detection effortless on the user's part. This process of

frontend development involved structuring components,

handling of state, as well as the management of user inputs

for a rich and vivid interaction.
2.Integration of TensorFlow and R-CNN: For the sensing

an object detection feature, we have added the TensorFlow

framework and more specifically used the Region-based

Convolutional Neural Networks (R-CNN) implementation in

this case. The deep learning algorithms development was

made possible with TensorFlow which provided necessary

tools and libraries. On the other hand, R-CNN which offered

a way for object detection within images came in to provide

an effective solution. This process of integration

encompasses the work of importing as well as configuring the

appropriate modules of TensorFlow and R-CNN into our

project development environment.
3.Visual Representation of Detected Objects: Part of our

implementation involved a user interface with which

processed images displayed the detected objects. We applied

this library to the images we had captured, identified the

objects in these images, and displayed them in rectangle

shapes on the main canvas, which in turn enabled the users to

easily detect and interact with the objects. This visual

presentation enabled users to directly recognize target spots

as well as their range that then helped effective control of the

system and made the interaction with it more flexible.

4.Backend Development with TypeScript: In the context of
backend development, we leaned on TypeScript, a statically

typed super subset of JavaScript language. I found Typescript

to be much more type safe and readable, with it I was able to

produce code that was much more robust and maintainable

than my previous backend code. The backend components of

our project performed data processing, interfacing with the

frontend and if needed integrating with external APIs of

service providers.

5.Conversion to. onnx Format: After training, we submitted

a classical R-CNN model to. onnx python packages, in which

the latter is an open format that represents machine learning

models. This conversion thereby assisted us in smooth

subsuming and ensuring the workflow between provides and

application and enables us to deploy and test the object

detection functionality with proficiency. onnx format was
chosen as it enables our model to be applicable to different

frameworks and platforms, thus, expanding the ecosystem

and the accessibility of our solution.

Through the undertaken implementation described in these

subsections, we present a detailed description of the various

project dimensions, from frontend development to deep

learning framework integration, and backend processing to

model deployment. This systemic approach through simple

logical steps is targeted to focus the core elements and points

of concerns in the process of developing a real-time object

detection system by using advanced technologies that are

more accurate and usable.

IV. METHODOLOGY

The primary step consists of a collection of data sets which

will contain several images and they will be annotated with

bounding boxes for objects of the interest. And as these

images are used as training and test data for the object

detection model. The dataset is preprocessed by using

methods such as resizing, normalization, and augmentation to

deal with issues related to the general dataset’s intelligence.

The R-CNN structure is assembled leaning on a series of

processes including regions suggestion generation, feature

extraction, classification and bounding box regression. The
stage of regional proposal generation identifies possible

places where the objects are located, proceeding with

selective search or edge boxes and so on. These areas which

are indicated are then cropped and resized to the same size

for the next level of the processing step. At the same time, the

classification fetches the class label of each tried sample

based on previously described inputs. This is generally

achieved through the use of a soft max classifier or other

similar mechanisms to predict the probability of each object

class of which the image consists. Alongside this, the

bounding box regression is conducted to provide more

accurate locations of the items that were detected. The
purpose of this stage is checking the performance of the

neural network relative to the precision of the defined

bounding box coordinates as bounding boxes should

surround edges of the objects. The whole architecture is

taught using a supervised approach with labeled data that

have loss functions such as cross-entropy loss used on

classification and smoothly L1 loss used on bounding box

regression. The training process may be by the utilization of

optimization algorithms like stochastic gradient descent

(SGD) or Adam to minimized the overall loss and resulted in

the improvement of the model. The model is weighed after
finished training and examined on a separate validation

dataset for the purpose to measure its accuracy and

generalization potential. Lasty, the R-CNN model, once

trained, will be saved in a. onnx format for use in real-time

object detection in future by saving the model into. onnx

format. This gives the model an option to be deployed and

used in various situations like surveillance, automatized

vehicle systems and image recognition in video flows.

V. ARCHITECTURE

Figure 1 CNN Architecture Diagram

The architecture for an object detection model is based on a

region-based CNN (Region-based Convolutional Neural

Network), which adopts components that allow image

resolution in different sizes, for instance, 256x256 pixels and
320x320 pixels, and 640x640 pixels. The main building

blocks of the architecture are the convolutional layers which

are the ones that identify progressively high-level features

from the input images. These layers apply convolutional

filters that are basis of the visual pattern, texture, and edge

extraction strategy within the input images. Artificial neural

networks use a series of filters that can be either simple or

complex and conceptually abstract and their number and size

can increase as the initial image moves from one layer to the

other. Moreover, the architecture is not only embedded with

the convolution layers but also incorporates the pooling

modules that are capable of performing the reduction on the
feature maps generated by the convolutional layers. Pooling

shrinks down the feature maps without sacrificing the critical

information thus, decreasing the artificial neural network

behavior encumbrances and upgrading the efficiency. In a

parallel course, by utilization of convolutional and pooling

layers, the network is capable to learning the high-level

representations from the found checking objectives. These

blocks are called fully connected layers and they take the

flattened feature vectors as an input and make the necessary

adjustments and abstraction during the training to get high-

quality object classifications and location data. These
elements are the building blocks of the R-CNN architecture.

Through their combination the power of network processing

factories is used for detection of objects with diverse shape

and size, as well as at different levels of zoom.

VI. EXPEREMENTAL RESULTS

In this we have used the React JS as our front-end tool so we

have to run the project using the node commands that is npm

run dev. In the Figure 2 Output-1 we can see the structure of

the project and all the ping values we have used.

 Figure 2 Output-1

In Figure 2 Output-1 we have provided 5modules named

Capture Photo, Live Detection, Switch Camera, Change

Module and Reset modules to get more options to run. Here

when we allow the camera option in permission of the

browser, we can able to run the project. As the model changes

the accuracy values also changes based on the model. We can

use either capture image or live detection to detect the object.

Figure 3 Output-2

Here is the output of objects after the detection of person and

cellphone that is detected by RCNN of model-1. In the Figure
3 Output-2 we can also observe the accuracy of person and

cell phone as it seems that person has been giving an accuracy

of 90% whereas the cell phone is giving 65% due to not clear

detection of cell phone. As per the accuracy of the object the

box generated will be changes its colors dynamically.

Figure 4 Output-3

As you can see in the above Figure 4 Output-3 we can observe

that the dog is detected as it is in the trained model and it is

detected by capturing the image module which is included in

our react app.

VII. COMPARISION WITH OTHER MODELS

Model Accuracy

RCNN 0.85

YOLO 0.78

VGG-16 0.81

RESNET-50 0.79

Table-1

In the Table-1, we have inserted the precision metrics of

different models of real-time object identification, for R-

CNN is 85%, whereas VGG-16 is 81%, 79% for RESNET-

50, and lastly 78% for YOLO. These accuracy values suggest

that, in real-time video processes, R-CNN model can

differentiate even moving objects. By using regions- based

convolutional neural networks R-CNN justifies being

described as a more efficient and accurate tool for object

localization and classification which exceeds the other

popular models like YOLO, VGG-16, and RESNET-50 in

performance. It seems that the deeper model of R-CNN
makes it more suitable for applications where object detection

is required to be precise and reliable e.g. autonomous driving,

surveillance systems, and industrial automation.

Figure 5

Here in Figure 5, you can see the comparison pie chart

between our existing YOLO and proposed RCNN which is

giving more accuracy that our old YOLO. So here there is a

difference of more than 6% in both the models. This can be

increased when we use more neural networks while training

this RCNN model.

VIII. CONCLUSION AND FUTURE WORK

Finally, we conclude that we propose R-CNN, a powerful and

accurate model for object detection which outperforms other
existing methods in terms of accuracy. The R-CNN offers the

unified architecture of direct training on full images that are

different from the traditional classifier-based methods. The

R-CNN works by a sophisticated loss function which

optimizes detection performance comprehensively and trains

the entire model jointly for better outcomes. Evidently, R-

CNN outperforms other models in terms of accuracy as

documented during experiments. Also, R-CNN’s flexibility

and applicability contribute to its success in real-time object

detection tasks across different areas. The generalizability

potential of R-CNN towards novel datasets and domains

makes it the most appropriate model for applications using
fast and accurate object detection.

IX. ACKNOWLEDGMENT

We would like to express our sincere gratitude to Saiyed

Faiayaz Waris . They were incredibly helpful to us, and the

Real-Time object detection project would not have been

possible without their assistance and expertise.

X. REFERENCES

[1] M. B. Blaschko and C. H. Lampert. Learning to localize

objects with structured output regression. In Computer

Vision– ECCV 2008, pages 2–15. Springer, 2008.

[2] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3d human pose annotations. In International

Conference on Computer Vision (ICCV), 2009.

[3] H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-

depiction problem: Computer vision algorithms for

recognizing objects in artwork and in photographs. arXiv

preprint arXiv:1505.00110, 2015.
[4] N. Dalal and B. Triggs. Histograms of oriented gradients

for human detection. In Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 1, pages 886–893. IEEE, 2005.

[5] T. Dean, M. Ruzon, M. Segal, J. Shlens, S. Vijaya

Narasimhan, J. Yagnik, et al. Fast, accurate detection of

100,000 object classes on a single machine. In Computer

Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, pages 1814–1821. IEEE, 2013.

[6] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E.

Tzeng, and T. Darrell. Decaf: A deep convolutional

activation feature for generic visual recognition. arXiv
preprint arXiv:1310.1531, 2013.

[7] J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified

object detection and semantic segmentation. In Computer

Vision–ECCV 2014, pages 299–314. Springer, 2014.

[8] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov.

Scalable object detection using deep neural networks. In

Computer Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on, pages 2155–2162. IEEE, 2014.

[9] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal visual

object classes challenge: A retrospective. International
Journal of Computer Vision, 111(1):98–136, Jan. 2015.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan. Object detection with discriminatively trained

part-based models. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 32(9):1627–1645, 2010.

[11] S. Gidaris and N. Komodakis. Object detection via a

multiregion & semantic segmentation-aware CNN model.

CoRR, abs/1505.01749, 2015.

[12] S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting

people in cubist art. In Computer Vision-ECCV 2014

Workshops, pages 101–116. Springer, 2014.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic

segmentation. In Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on, pages 580–587. IEEE,

2014.

[14] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083,

2015.
[15] S. Gould, T. Gao, and D. Koller. Region-based

segmentation and object detection. In Advances in neural

information processing systems, pages 655–663, 2009.

[16] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik.

Simul- ´ taneous detection and segmentation. In Computer

Vision– ECCV 2014, pages 297–312. Springer, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid

pooling in deep convolutional networks for visual

recognition. arXiv preprint arXiv:1406.4729, 2014.

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,

and R. R. Salakhutdinov. Improving neural networks by

preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[19] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing

error in object detectors. In Computer Vision–ECCV 2012,

pages 340–353. Springer, 2012.

[20] K. Lenc and A. Vedaldi. R-cnn minus r. arXiv preprint

arXiv:1506.06981, 2015.

	I. INTRODUCTION
	II. EASE OF USE
	III. RELATED WORK
	IV. METHODOLOGY
	V. ARCHITECTURE
	VI. EXPEREMENTAL RESULTS
	VII. COMPARISION WITH OTHER MODELS
	VIII. CONCLUSION AND FUTURE WORK
	IX. ACKNOWLEDGMENT
	X. REFERENCES

