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Abstract—The study of cardiovascular disease has always been
a popular medical topic around the world. This paper presents
a deep learning (DL) method based on a convolutional neural
network (CNN) algorithm to identify patients’ cardiovascular
arrhythmia by using a multi-lead ECG signal. In addition to
the input and output layers, the proposed CNN model includes
six layers, i.e., two convolution layers, two pooling layers, and
two fully connected layers within a residual block. The focus
of this work is to classify the ECG signals into five classes;
namely, Left Bundle Branch Block (LBBB), Right Bundle Branch
Block (RBBB), Atrial Premature Contraction (APC), Premature
Ventricular Contraction (PVC), and Normal beat(N). We eval-
uated the proposed method by using the MIT-BIH arrhythmia
dataset. According to the results, our proposed method achieved
an average accuracy of 97.8% for the classification of 13,200
instances.

Index Terms—Healthcare, cardiovascular disease, electrocar-
diogram (ECG), convolutional neural network (CNN), deep
learning.

I. INTRODUCTION

Cardiovascular diseases are a global public health problem
since they are behind about 30% of global mortality and 10%
of global diseases.
The traditional CVD diagnosis paradigm is based on an
individual patient’s medical history and clinical examinations.
These results are interpreted according to a set of quantitative
medical parameters to classify the patients based on the
taxonomy of medical diseases. Unfortunately, the traditional
rule-based diagnosis paradigm becomes inefficient to deal
with a large amount of heterogeneous data which requires
significant analysis and medical expertise to achieve adequate
accuracy. The problem is more pronounced in developing
countries where there is a lack of medical experts and clinical
equipment.
Electrocardiogram (ECG), as reachable and non-invasive mon-
itoring, is the most frequently used to screen heart activity
[4]. By scrupulously analyzing ECG morphology, various
types of heartbeats usually can be recognized. However, ECG

is not widely useful for non-stationary signals. This last’s
morphology varies for time, and these variations are shown
not only between different cases but also within the same
patient [5]. The early diagnosis of arrhythmia mainly relies
on experienced doctors to interpret the characteristics of ECG
signals. It requires high professional knowledge of doctors.
Computer-aided detection and diagnosis in ECG signals for
cardiovascular diseases are gaining expanding consideration.
However, developing and selecting the highest performing
diagnostic model suitable for clinical implications is very
difficult. Consequently, many ECG heartbeat recognition and
classification algorithms were developed based on different
techniques such as wavelet transform [6], hidden Markov
models [7], support vector machine [8], and artificial neural
networks [9]. The majority of these ECG beat classification
methods perform well on training but give poor accuracy due
to the importance of precision in the medical field. A deep
learning-based ECG classification system using convolutional
neural networks (CNNs) is proposed in this study to clas-
sify five types of heartbeat. Considering deep learning and
especially CNNs have obtained much attention in recent years
due to their remarkable performance in the field of image
processing, natural signal processing and has great potential
to recognize signals.

II. RELATED WORK

The ECG heartbeat classification is divided into four steps:
preprocessing, heartbeat segmentation, feature extraction, and
classification. The signal preprocessing targets to eliminate
various types of noise in the ECG signal including artifacts and
baseline drift in the signal. Numerous methods have been re-
ported in the literature for ECG signal denoising [10]. Among
these methods are the traditional filtering operations such as
the use of low-pass filters, Weiner filters, adaptive filters [11],
and filter banks [12]. Furthermore, many researchers have
done related work on the classification of ECG signals and



have used many traditional machine learning algorithms for
feature extraction. Moreover, some statistical methods such as
principal component analysis (PCA) [13], [14], higher-order
statistic (HOS) technique [2], and linear discriminant analysis
(LDA) were used for feature extraction of ECG signals.
Most studies affirmed that wavelet transform (WT) has a good
result for ECG signal feature extraction because it can extract
simultaneously frequency and time information [15]. In [16],
they used the WT method to classify five types of beats and
they achieved 97.29% accuracy.
Recently, most methods used the deep learning model for
classification, which combined the two steps features extrac-
tion and classification. For arrhythmia heartbeats classification,
Acharya et al. [1] applied nine layers of CNN and achieved an
accuracy of 94.03% and 93.47% with original and denoising
signals respectively. Note that, with the increase of network
layers, the learning ability of the CNN model will be upgraded.
However, simply stacking the number of network layers cannot
improve the accuracy. This problem is called the vanish-
ing/exploding gradients [3]. It has been largely solved by
normalized initialization and intermediate normalized methods
[17], [18]. Indeed, even with these techniques, the training of
deep neural networks still has the same aforementioned issue
that the accuracy decreases with the expansion of network
depth. Although, in [19], they used a simple CNN model
composed of five layers and achieved an accuracy of 97.5%.

In this work, we begin by adopting the coherent latter
approach [19], by adding two convolutional layers. To avoid
the problem of vanishing/exploding gradients, we added a
residual block that contains these two convolutional layers
hidden to classify five types of a heartbeat. As a result, we
outperformed in terms of accuracy.

III. METHODOLOGY

A. Method Overview

To classify the input ECG signal into 5 classes, the record-
ings are first filtered by moving average filter and Daubechies
4 wavelet transform with 8 levels. Each record is segmented
into 200 samples based on the MIT-BIH annotations. Then,
a reduction of dimension to 180 samples is applied before
training. Finally, the processed heartbeat segments are used
directly as input data of the CNN model to achieve the feature
extraction and classification of ECG signals. An overview of
the proposed approach is given in Figure 1.

B. Data Acquisition and Selection

In this work, we extracted data from the MIT-BIH database
[20] which is hosted at PhysioNet (http://www.physionet.org)
[21]. This database includes 48 two-channel dynamic ECG
records. Each record is up to 30 minutes with a sampling
frequency of 360HZ. The MT-BIH provides an annotation of
each beat to know to which class it belongs. The number of
beats per class in the Mit-Bih database is shown in Figure
I. 44 ECG records of the lead II (MLII) were selected from
the database to train and verify the feasibility of our method.
As indicated by the AAMI standard( 102, 104, 107, 217),

Fig. 1. Diagram of model structure

the 4 beats were excluded as a result of their helpless signal
quality for post preparation. We divided our data into two sets,
training set (50%) and test set (50%). Each set includes 13200
non-duplicate instances. Table II resumes the number of data
selected per class for each dataset.

TABLE I
A SUMMARY TABLE WITH THE BREAKDOWN OF THE 5 CLASSES OF BEAT

SUBTYPES IN MIT-BIH.

Heartbeat Types Annotation Total

Normal Rhythm N 74607
NOR
Left Bundle Branch Block L 8069
LBBB
Right Bundle Branch Block R 7250
RBBB
Premature Ventricular V 7127
Contraction PVC
Atrial Premature Contraction A 2514
APC



Fig. 2. Waveforms of five types of heartbeats in MLII lead.

TABLE II
THE NUMBER OF ECG BEATS PER CLASS USED.

Arrhythmia Types Training set Testing set

NOR 3000 3000

LBBB 3000 3000

RBBB 3000 3000

PVC 3000 3000

APC 1200 1200

C. Data Processing

In general, due to the weakness of the ECG signal and the
influence of acquisition equipment, many interference noises
would be easily mixed during the acquisition process. How-
ever, these noises are very unfavorable for the analysis of ECG
signals. Therefore, effective preprocessing of ECG signals is a
key issue before the classification of ECG. Common ECG sig-
nal interference noises include power frequency interference,
baseline drift, and electromyographic interference. To denoise
ECG signal moving average filter and Daubechies 4 wavelet
transform are applied together. In practical cases, noise signals
usually appear as high-frequency signals in signal processing,
but useful signals appear as either low-frequency or more
smooth signals. When the wavelet transform decomposes the
signals, the ones with noise get the high-frequency wavelet
coefficients. Then, the threshold processing high-frequency
wavelet coefficients to eliminate electromyographic noise and
power line interference. Finally, signals are reconstructed using
the inverse wavelet transform. While moving the average filter
eliminates the baseline drift noise. Figure 3 shows the effect
of denoising.

Fig. 3. The diagram of the denoising effect

D. Heartbeat Segmentation

The three essential components of a heart cycle are QRS
complex, T wave, and P wave which are named fiducial
focuses. The information about the R-peak locations (annota-
tions) given in the database was used for heartbeat segmenta-
tion. A single heartbeat consists of 100 samples before R-peak
and 100 samples after R-peak. This segment size contains the
maximum information of a single heartbeat as shown in Figure
4. Then we applied a down-sampling function to 180 samples
before used as an input to the CNN model.

Fig. 4. the diagram of heartbeat segmentation

E. CNN architecture

Traditional machine learning methods use different hand-
engineered features to obtain representations of input data. In



Fig. 5. CNN architecture

the case of deep learning, there is an automatic learning pro-
cess from the low-level representations obtained from multiple
layers to the higher abstract representations [22] as shown in
Figure 5.
CNN is one of the most commonly used types of artificial
neural networks. Conceptually, a CNN resembles a multilayer
perceptron (MLP). An MLP becomes a deep MLP when more
than one hidden layer is added to the network. In MLP each
perceptron is connected with every other perceptron which
makes the problem that the number of total parameters can
grow very high. This is inefficient because there is redundancy
in such high dimensions. Another disadvantage is that it
disregards spatial information. It takes flattened vectors as
inputs. The CNN model resolved these problems by taking
into account local connectivity. Also, all layers are partially
connected rather than fully connected.
In CNN architecture, there are 3 basic layers– convolution
layer, pooling layer, and fully-connected layer. As well, it is
composed of two parts: the first one is a feature extractor,
which automatically learns the features from raw input data,
while the second part is a fully connected multi-layer percep-
tron (MLP). The feature extractor includes the first two-layer:
the convolution layer and the pooling layer. The first layer uses
filters and performs convolution operations as it is scanning
the input with respect to its dimensions. Its hyper-parameters
include the filter size and stride. The resulting output, called
feature map or activation map, is added by a bias and then put
through the activation function to produce a feature map for
the next layer. Let x0i = [X1, X2....Xn] as the beat samples
data input vector, where n is the number of samples per beat.

The output of the convolution layer is:

cl,ji = σ(bj +ΣM
m=1w

j
mx

0j
i+m−1), (1)

where l is the layer index, σ is the activation function, b is the
bias term for the jth feature map, M is the kernel/filter size,
wj

m is the weight for the jth feature map and mth filter index.
The layer just after the convolution layer is the pooling layer.
It is a down-sampling operation. It serves to reduce the size of
the activation map that results in the generation of medium-
level features. The pooling of a feature map in a layer is given
by

P l,j
i = max

r∈R
(cl,ji×T+r), (2)

where R is the size of the pooling window and T is the
pooling stride. The last layer is the fully connected layer
(FC). It operates on a flattened input where each input is
connected to all neurons. In each neural, an activation function
was applied which is a mathematical equation that determines
the output of a neural network. The function is attached to
each neuron in the network and determines whether it should
be activated or not, based on whether each neuron’s input
is relevant for the model’s prediction. In this study, ReLu
[23] is used as an activation function. Considering It has
become the default activation function for many types of
neural networks. there is no complicated math. Therefore The
model can take less time to train or run. Mathematically, it is
defined as: y = max(0, x). Visually, it looks like Figure 6:
For beat classification, a simple softmax classifier is used and
is placed at the last of CNN architecture. It is a mathematical
function that converts a vector of numbers into a vector



Fig. 6. Rectified linear activation function(ReLu)

of probabilities, where the probabilities of each value are
proportional to the relative scale of each value in the vector
[24]. When the predicted output is obtained by the forward
propagation, the prediction error is calculated using the loss
function. Then Backpropagation is performed in which the
predicted error propagates back on each parameter of each
layer and weights are adjusted by computing the gradient of
the convolutional weights as shown in Figure 5. Forward and
backward propagation is repeated until specific numbers of
epochs are reached.
The depth of the deep learning network is an important factor
that affects the final classification and recognition results. The
usual idea is to make the design of the neural network as deep
as possible. However, at a certain point increasing the depth
will degrade the performance of the deep learning network.
This problem is known as vanishing/exploding gradients,
which makes network training more difficult. This challenge
was solved by adding a residual block. It is a stack of layers
set in such a way that the output of a layer is taken and added
to another layer deeper in the block. It is an improved deep
learning algorithm for CNN, which avoids these problems by
using ”shortcut connections” that skip multiple network layers
[25].
The proposed model is an improvement of the model proposed
in [19] by adding two convolutional layers. To avoid the afore-
mentioned issue, we added the two layers in a residual block.
Our proposed model architecture starts with an Input layer
which is a segment of ECG signals with 180 sampling points.
It contains 2 convolutional layers (the size of kernels, the
strides, and the number of filters are 3, 2, and 18 respectively),
2 pooling layers (the pooling size and the strides are 2 and
2 respectively), 2 fully connected layers, and a softmax layer.
After each convolutional layer rectified Linear function(ReLu)
was applied. As shown in Figure 7, there is a residual block
that contains 2 convolutional layers (18 convolution kernels
with a length of 7 and stride 2).

Fig. 7. Proposed CNN model

IV. EXPERIMENTAL RESULTS

We have trained our model on a workstation with Intel(R)
Core(TM) i5 6200U CPU @2.30GHz processor and 8GB
RAM. Our experimental data came from the international
standard ECG database MIT-BIH. It has a precise and com-
prehensive expert annotation and generally utilized in ECG



research. This data was divided into two sets for training and
testing, each contains 13200 instances. The number of epochs
for training was 300. In each epoch, the batch size used for the
dataset was 32, and it was extended over all input data. Also,
the learning rate used is 0.001. we use signal rescaling to the
range [-1,1] of data before training which gives better accuracy
than without normalization. The accuracy and loss curves
for training and validation are shown in figures 8 and 9. To
evaluate our model we used the following metrics: accuracy,
specificity, and sensitivity as depicted by the equations (3),
(4), and (5) where TP is the true positive, TN is the true
negative, FP is the false positive and FN is the false negative.
The proposed CNN model achieved 97.8% of accuracy, 97.0%
of sensitivity, and 97.32% of specificity after experimental
verification.

accuracy =
TP + TN

TN + FP + TP + FN
× 100 (3)

specificity =
TN

TN + FP
× 100 (4)

sensitivity =
TP

TP + FN
× 100 (5)

Fig. 8. Accuracy of the trained model

The confusion matrix of ECG beat classification for test
data is given in Figure 10.
The comparison of the current work with other existing
algorithms is given in Table III. We can show that the proposed
method improves the accuracy of ECG classification compared
to the other proposed methods by using moving average
filter and wavelet transform for preprocessing step and 1D-
CNN with residual block for classification. The five heartbeat
types in this study are ”N.L.R.A.V”. Each type represents a
single arrhythmia signal. However, the AAMI standard rules
classified ECG signals into five types: normal beats (N),
supraventricular ectopic beats (S), ventricular ectopic beats
(V), fusion beats (F), and unclassifiable beats (Q).

Fig. 9. Loss of trained model

Fig. 10. Confusion matrix

V. CONCLUSION

The proposed model is sound to be introduced into clinical
as an adjunct tool to help the cardiologists to recognize
patients’ cardiovascular arrhythmia. In clinical use, this model
will reduce the patient waiting time and the cost of ECG
signal processing in hospitals. We should emphasize that a
model with high accuracy in diagnosing cardiovascular disease
will reduce medical errors. In this work, we used moving
average filter and wavelet transform 4 in 8 levels for denoising
signal. In addition to input and output layers, our CNN model
includes 6 layers with a residual block to classifier five types
of heartbeat. In the experimental results, we used the standard
Mitbih database (lead II) to test the trained model which
achieved an accuracy of 97.8%. In future work, we aim to
improve accuracy by using residual architecture like ResNet
or DenseNet.



TABLE III
COMPARISON WITH OTHER METHODS

Article Class Preprocessing Feature Extraction Classification Accuracy

Acharya et al. [1] N,S,V,F,Q Wavelet transform CNN Softmax 94.03%

Zubair et al. [29] N,S,V,F,Q Band pass filter CNN Softmax 92.7%

Thomas et al. [26] N,L,R,V,P Band pass filter DWT ANN 91.23%

DTCWT 94.64%

Isin and Ozdalili [27] N,R,P moving average filter transferred deep Softmax 92%

Band-stop filter learning(AlexNet)

Li et al. [28] N,S,V,F,Q low-pass finite impulse WPE + RR RF(Random Forests) 94.61%

response (FIR) filter

R.J.Martis et al. [14] N,L,R,V,A Wavelet transform Pan Tompkins + PCA NN+LS-SVM 93%

Li et al [19] N,L,R,V,A Wavelet Combination 1D-CNN Softmax 97.5%

Proposed method N,L,R,V,A Moving average filter 1D-CNN + Softmax 97.8%

Wavelet transform Residual Block
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