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Abstract

For any two vertices x and y in a non-trivial connected graph G, the monophonic

distance dm(x, y) is the length of a longest monophonic path joining the vertices x

and y in G. The monophonic eccentricity of a vertex x is defined as em(x) = max

{dm(x, y) : y ∈ V (G)}. A vertex y in G is a monophonic eccentric vertex of a ver-

tex x in G if em(x) = dm(x, y). A set S ⊆ V in a graph G is a total monophonic

eccentric dominating set if every vertex of G has a monophonic eccentric vertex in S.

The total monophonic eccentric domination number γtme(G) is the cardinality of a

minimum total monophonic eccentric dominating set of G. A set S ⊆ V in a graph G

is a connected total monophonic eccentric dominating set if S is a total monophonic

eccentric dominating set and the induced subgraph 〈S〉 is connected. The connected

total monophonic eccentric domination number γctme(G) is the cardinality of a mini-

mum connected total monophonic eccentric dominating set of G. We investigate some

properties of connected total monophonic eccentric dominating sets. Also, we determine

the bounds of connected total monophonic eccentric domination number and find the

same for some standard graphs.
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1 Introduction

Let G = (V,E) be a finite undirected connected graph with |V | = p and |E| = q. We

refer [1, 4] for basic graph theoritic concepts and notations. The distance between any two

vertices x and y is the length of a shortest path (geodesic) joining the vertices x and y, and

it is denoted by d(x, y). If d(x, y) = 1, then x is a neighbor of y and vice versa. A subset S

of the vertex set V is called a dominating set if every vertex in V − S has a neighbor in S.

The domination number of G is defined as γ(G) = min{|S| : S is a dominating set of G}.

The idea of domination was introduced in [1] and further studied in [6]. Recently there are

some new parameters introduced based on domination, and a text book [5] on domination

was published in 1998. Also, total domination in graphs was introduced in [3].

The detour distance between any two vertices x and y is the length of a longest path

(detour) joining the vertices x and y, and it is denoted by D(x, y). A vertex y is called a

detour neighbor of a vertex x if D(x, y) ≤ D(x, z) for any z ∈ V − {x, y}. A subset S of

the vertex set V is called a detour dominating set if every vertex in V − S has a detour

neighbor in S and the detour domination number is defined as γD(G) = min{|S| : S is a

detour dominating set of G}. The concept of detour domination was introduced and studied

in [2].

A chordless path is also called as a monophonic path. Themonophonic distance between

any two vertices x and y is the length of a longest monophonic path joining the vertices x

and y, and it is denoted by dm(x, y). For any vertex x in G, the monophonic eccentricity of

a vertex x is defined as em(x) = max {dm(x, y) : y ∈ V }. A vertex y in G is a monophonic

eccentric vertex of a vertex x in G if em(x) = dm(x, y). The monophonic radius radm(G)

is the minimum monophonic eccentricity among the vertices of G and the monophonic

diameter diamm(G) is the maximum monophonic eccentricity among the vertices of G. In
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[7, 8], Santhakumaran and Titus initiated the study of monophonic distance and further

related results.

The monophonic eccentric dominating set and the monophonic eccentric domination

number of a graph were introduced and studied in [9, 10]. The total monophonic eccentric

domination number was introduced and studied in [11]. The parameters monophonic ec-

centric domination number and total monophonic eccentric domination number have many

useful applications in channel assignment problems in radio technologies. Further, these

concepts have huge amount of application in molecular problems in theoretical chemistry.

The following definitions will be used in the sequal.

Definition 1.1 [9] A set S ⊆ V in a graph G is a monophonic eccentric dominating

set if every vertex in V − S has a monophonic eccentric vertex in S. The monophonic

eccentric domination number γme(G) is the cardinality of a minimum monophonic eccentric

dominating set of G.

Definition 1.2 [11] A set S ⊆ V in a graph G is a total monophonic eccentric dominating

set if every vertex in G has a monophonic eccentric vertex in S. The total monophonic

eccentric domination number γtme(G) is the cardinality of a minimum total monophonic

eccentric dominating set of G.

2 Connected Total Monophonic Eccentric Domination

Number

Definition 2.1 Let G = (V,E) be a non-trivial connected graph. A set S ⊆ V is a

connected total monophonic eccentric dominating set if S is a total monophonic eccentric

dominating set and the induced subgraph 〈S〉 is connected. The connected total monophonic

eccentric domination number γctme(G) is the cardinality of a minimum connected total

monophonic eccentric dominating set of G.

Example 2.2 Consider the graph G given in Figure 2.1. The set {v2, v5} is a minimum

monophonic eccentric dominating set of G so that γme(G) = 2. The set {v2, v4, v5} is a
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minimum total monophonic eccentric dominating set of G and so γtme(G) = 3. Also, the

set {v2, v3, v4, v5} is a minimum connected total monophonic eccentric dominating set of G

and so γctme(G) = 4. Thus the parameters γme(G), γtme(G) and γctme(G) are different.

b

b

b b

b

bb
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v4
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v5

v7

Figure 2.1: G

Next theorem gives the bounds of the connected total monophonic eccentric domination

number of a graph.

Theorem 2.3 For any non-trivial connected graph G of order p, 2 ≤ γctme(G) ≤ p.

Proof. It is clear that every vertex in G has at least one monophonic eccentric vertex in G.

Therefore, connected total monophonic eccentric dominating set of G contains at most p

vertices and so γctme(G) ≤ p. Also, every connected total monophonic eccentric dominating

set of G contains at least two vertices and so γctme(G) ≥ 2. Hence 2 ≤ γctme(G) ≤ p.

Remark 2.4 The bounds in Theorem 2.3 are sharp. For the complete graph Kp (p ≥ 2),

γctme(Kp) = 2 and for the cycle C4, γctme(C4) = 4.

In the following theorem we establish the relationship between the monophonic ec-

centric domination number, the total monophonic eccentric domination number and the

connected total monophonic eccentric domination number of a graph.

Theorem 2.5 For any connected graph G, γme(G) ≤ γtme(G) ≤ γctme(G).

Proof. Since any total monophonic eccentric dominating set of G is also a monophonic

eccentric dominating set of G, it follows that γme(G) ≤ γtme(G). Since any connected total
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monophonic eccentric dominating set is necessarily a total monophonic eccentric dominating

set, it follows that γtme(G) ≤ γctme(G). Hence γme(G) ≤ γtme(G) ≤ γctme(G).

Remark 2.6 The bounds in Theorem 2.5 are sharp. For any tree T with diamm(T ) ≥ 3,

any pair of antipodal vertices will form a minimum monophonic eccentric dominating set

and also form a minimum total monophonic eccentric dominating set of T . Therefore

γme(T ) = γtme(T ). For the cycle C4, γtme(C4) = γctme(C4). Also, all the inequalities in

Theorem 2.5 are strict. For the path P3, γme(P3) = 1, γtme(P3) = 2 and γctme(P3) = 3 so

that γme(P3) < γtme(P3) < γctme(P3).

Theorem 2.7 If G = H + Kn, where H is any connected graph, then γctme(G) =

γctme(H).

Proof. Let S be a minimum connected total monophonic eccentric dominating set ofH and

let v1, v2, . . . , vn be the vertices of Kn. Clearly, any vertex in H is a monophonic eccentric

vertex of vi (1 ≤ i ≤ n). Since all the vertices of Kn are adjacent to every vertex of H, any

monophonic eccentric vertex of a vertex, say u, in H is again a monophonic eccentric vertex

of u in G. Hence S is also a minimum connected total monophonic eccentric dominating

set of G and so γctme(G) = γctme(H).

Now we proceed to characterize graphs for which the bounds in Theorem 2.3 are attained.

For this, we introduce the following definition.

Definition 2.8 A graph G is called a unique monophonic eccentric graph if each vertex

of G has a unique monophonic eccentric vertex.

Theorem 2.9 Let G be a connected monophonic self-centered graph of order p. Then

γctme(G) = p if and only if G is a unique monophonic eccentric graph.

Proof. Let G be a connected monophonic self-centered graph of order p. Let v1, v2, . . . , vp

be the vertices of G. Assume that γctme(G) = p. Suppose that G is not a unique monophonic

eccentric graph. Then there exists a vertex, say v1, such that v1 has two monophonic

eccentric vertices, say vl and vk (2 ≤ l < k ≤ p). Since G is a monophonic self-centered
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graph, it is clear that the vertices vl and vk are monophonic eccentric dominated by the

vertex v1. Hence S = V (G) − {vk} is a total monophonic eccentric dominating set of G.

Since G is a monophonic self-centered graph, no vertex of G is a cut vertex of G and so

the induced subgraph 〈S〉 is connected. Hence S is a connected total monophonic eccentric

dominating set of G and so γctme(G) ≤ p− 1, which is a contradiction. Hence G is a unique

monophonic eccentric graph.

Conversely, let G be a unique monophonic eccentric graph. Then every vertex of G is

a monophonic eccentric vertex of some vertex in G. Let x, y ∈ V (G). Now, claim that x

is a monophonic eccentric vertex of y if and only if y is a monophonic eccentric vertex of

x. Let x be a monophonic eccentric vertex of y. Then em(y) = dm(x, y). Suppose that y is

not a monophonic eccentric vertex of x. Then there exists a vertex w 6= y such that w is a

monophonic eccentric vertex of x. Then em(x) = dm(w, x) > dm(y, x) = em(y), which is a

contradicton to G a connected monophonic self-centered graph. Hence x is a monophonic

eccentric vertex of y if and only if y is a monophonic eccentric vertex of x. Therefore, since

G is a connected monophonic self-centered graph, all the vertices of G will form a minimum

total monophonic eccentric dominating set of G and so γtme(G) = p. Thus by Theorem 2.5,

γctme(G) = p.

Theorem 2.10 Let G be a connected graph of order p ≥ 2. Then γctme(G) = 2 if and

only if G = Kp.

Proof. Let γctme(G) = 2. Let S = {x, y} be a minimum connected total monophonic

eccentric dominating set of G. Then x is monophonic eccentric dominated by the vertex y,

y is monophonic eccentric dominated by the vertex x, and all the remaining vertices of G

are monophonic eccentric dominated by either x or y in G. Since the induced subgraph 〈S〉

is connected, x and y are adjacent in G and so dm(x, y) = 1. Hence dm(x, z) = dm(y, z) = 1

for all z ∈ V (G)−S and so em(x) = em(y) = 1. Now claim that em(u) = 1 for every vertex

u in G. If not, there exists a vertex, say v, in G with em(v) ≥ 2. Then v is not monophonic

eccentric dominated by both x and y in G, which is a contradiction. Thus em(u) = 1 for

every vertex u in G and so G = Kp.

Conversely, let G = Kp. Since every vertex of the complete graph Kp (p ≥ 2) is a
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monophonic eccentric vertex of other vertices in Kp, any two vertices will form a minimum

total monophonic eccentric dominating set of Kp and its induced subgraph 〈S〉 is connected.

Thus γctme(Kp) = 2.

3 Connected Total Monophonic Eccentric Domination Num-

ber of Some Standard Graphs

Theorem 3.1 For any tree T , γctme(T ) = diamm(T ) + 1.

Proof. Let r = radm(T ) and d = diamm(T ). Let P : v0, v1, . . . , vr, vr+1 . . . , vd be a

diametral path of T . It is clear that a vertex u with dm(v0, u) ≥ r is monophonic eccentric

dominated by the vertex v0 and a vertex u with dm(u, vd) ≥ r is monophonic eccentric

dominated by the vertex vd. It is clear that V (P ) is a minimum connected total monophonic

eccentric dominating set of T and so γctme(T ) = diamm(T ) + 1.

Corollary 3.2 Let P be any path of order p ≥ 2. Then γctme(P ) = p.

Theorem 3.3 If G = Kr,s is a complete bipartite graph of order at least 3, then

γctme(G) =















3 either r = 1 or s = 1

4 if r, s ≥ 2.

.

Proof. Let V1 = {u1, u2, ..., ur} and V2 = {v1, v2, ..., vs} be the partite sets of Kr,s. We

prove this theorem by considering two cases.

Case 1. r = 1 or s = 1.

Then G is a star and hence by Theorem 3.1, γctme(G) = 3.

Case 2. r, s ≥ 2.

It is clear that no two element subset of the vertex set of G will form a total monophonic

eccentric dominating set of G. Let S = {ui, uj , vl, vm} (i 6= j, l 6= m, 1 ≤ i, j ≤ r and

1 ≤ l,m ≤ s). It can be easily seen that every vertex in V1 − {ui} has a monophonic

eccentric vertex ui and the vertex ui has a monophonic eccentric vertex uj . Similarly, every

vertex in V2−{vl} has a monophonic eccentric vertex vl and the vertex vl has a monophonic
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eccentric vertex vm. Hence S is a total monophonic eccentric dominating set of G. Since the

induced subgraph 〈S〉 is connected, S is a minimum connected total monophonic eccentric

dominating set of G and so γctme(G) = 4.

Theorem 3.4 If G = K1 + ∪mjKj , then γctme(G) =















2 if
∑

mj = 1

3 otherwise.

Proof. Let G = K1 + ∪mjKj and let u be the vertex of K1. We prove this theorem by

considering two cases.

Case 1.
∑

mj = 1.

The graph G = K1+∪mjKj is a complete graph. Then by Theorem 2.10, γctme(G) = 2.

Case 2.
∑

mj ≥ 2.

It is clear that u is the cut-vertex of G and hence u is not a monophonic eccentric vertex

of any vertex in G. Since u is the cut-vertex of G, G− u has at least two components. Let

S = {v, w}, where v and w belong to two different components, say G1 and G2, respectively.

Then every vertex of G−G1 is monophonic eccentric dominated by the vertex v and every

vertex of G − G2 is monophonic eccentric dominated by the vertex w. But the induced

subgraph 〈S〉 is not connected. Therefore, we choose a set S1 = S∪{u}. It is clear that the

induced subgraph 〈S1〉 is connected. Hence S1 is a minimum connected total monophonic

eccentric dominating set of G and so γctme(G) = 3.

Theorem 3.5 If G = Cp is a cycle of order p, then γctme(G) =































2 if p = 3

4 if 3 < p < 8

p− 4 if p ≥ 8 .

Proof. Let G : v1, v2, . . . , vp, v1 be a cycle of order p. If p = 3, then G is a complete

graph K3 and so by Theorem 2.10, we have γctme(G) = 2. If 3 < p < 8, it is clear

that any 4 consecutive vertices will form a minimum connected total monophonic eccentric

dominating set of G and so γctme(G) = 4. If p ≥ 8, then any p − 4 consecutive vertices

will form a minimum connected total monophonic eccentric dominating set of G and so

γctme(G) = p− 4.
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Theorem 3.6 Let G be a wheel of order p ≤ 13. Then

γctme(G) =































2 if p = 4

4 if 4 < p < 9

p− 5 if 9 ≤ p ≤ 13.

Proof. Let G = Wp = Cp−1 + K1 be the wheel of order p ≤ 13. Let v1, v2, . . . , vp−1 be

the vertices of Cp−1 and let vp be the vertex of K1. It is clear that vp is not a monophonic

eccentric vertex of any vertex inG but any vertex in Cp−1 is a monophonic eccentric vertex of

vp. If p = 4, then G is a complete graph K4 and so by Theorem 2.10, we have γctme(G) = 2.

If 4 < p < 9, then any four consecutive vertices of Cp−1 will form a minimum connected

total monophonic eccentric dominating set of G and so γctme(G) = 4. If 9 ≤ p ≤ 13, then

any p − 5 consecutive vertices of Cp−1 will form a minimum connected total monophonic

eccentric dominating set of G and so γctme(G) = p− 5.

Theorem 3.7 Let G be a wheel of order p > 13 and let p ≡ l(mod 8). Then

γctme(G) =































p

2
+ 1 if l is even

p+ l

2
if l = 1, 3 or 5

p+ 3

2
if l = 7.

Proof. Let G = Wp = Cp−1 + K1 be the wheel of order p > 13 and let p ≡ l(mod 8).

Let v1, v2, . . . , vp−1 be the vertices of Cp−1 and let vp be the vertex of K1. We prove this

theorem by considering two cases.

Case 1. l is even.

Subcase (i) l = 0.

Let S = {v1, v2, v3, v4; v9, v10, v11, v12; . . . ; vp−7, vp−6, vp−5, vp−4}. It is easily verified that

the vertices v3 and vp−1 are monophonic eccentric dominated by the vertex v1, the vertices

v4 and vp are monophonic eccentric dominated by the vertex v2, the vertices v1 and v5 are

monophonic eccentric dominated by the vertex v3, the vertices v2 and v6 are monophonic

eccentric dominated by the vertex v4, . . . , the vertices vp−5 and vp−9 are monophonic ec-

centric dominated by the vertex vp−7, the vertices vp−4 and vp−8 are monophonic eccentric

dominated by the vertex vp−6, the vertices vp−3 and vp−7 are monophonic eccentric domi-
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nated by the vertex vp−5, the vertices vp−6 and vp−2 are monophonic eccentric dominated

by the vertex vp−4. It is clear that S is a minimum total monophonic eccentric dominating

set of G, but the induced subgraph 〈S〉 is not connected. Therefore, we consider a set

S1 = S ∪{vp}. Clearly, S1 is a minimum connected total monophonic eccentric dominating

set of G and so γctme(G) =
p

2
+ 1.

Subcase (ii) l = 2.

Let S = {v1, v2, v3, v4; v9, v10, v11, v12; . . . ; vp−9, vp−8, vp−7, vp−6} ∪ {vp−1, vp}. By an ar-

gument similar to Subcase (i), it can be easily seen that S is a minimum connected total

monophonic eccentric dominating set of G and so γctme(G) =
p

2
+ 1.

Subcase (iii) l = 4.

Let S = {v1, v2; v9, v10; . . . ; vp−3, vp−2} ∪ {v4, v12, . . . , vp−8} ∪ {v7, v15, . . . , vp−5} ∪ {vp}.

By an argument similar to Subcase (i), it can be easily seen that S is a minimum connected

total monophonic eccentric dominating set of G and so γctme(G) =
p

2
+ 1.

Subcase (iv) l = 6.

Let S = {v1, v2; v9, v10; . . . ; vp−5, vp−4} ∪ {v4, v12, . . . , vp−2} ∪ {v7, v15, . . . , vp−7} ∪ {vp}.

By an argument similar to Subcase (i), it can be easily seen that S is a minimum connected

total monophonic eccentric dominating set of G and so γctme(G) =
p

2
+ 1.

Case 2. l is odd.

Subcase (i) l = 1.

Let S = {v1, v2, v3, v4; v9, v10, v11, v12; . . . ; vp−8, vp−7, vp−6, vp−5}. It is easily verified that

the vertices v3 and vp−1 are monophonic eccentric dominated by the vertex v1, the vertices

v4 and vp are monophonic eccentric dominated by the vertex v2, the vertices v1 and v5 are

monophonic eccentric dominated by the vertex v3, the vertices v2 and v6 are monophonic

eccentric dominated by the vertex v4, . . . , the vertices vp−10 and vp−6 are monophonic ec-

centric dominated by the vertex vp−8, the vertices vp−9 and vp−5 are monophonic eccentric

dominated by the vertex vp−7, the vertices vp−8 and vp−4 are monophonic eccentric domi-

nated by the vertex vp−6, the vertices vp−7 and vp−3 are monophonic eccentric dominated

by the vertex vp−5. It is clear that S is a minimum total monophonic eccentric dominating

set of G, but the induced subgraph 〈S〉 is not connected. Therefore, we consider a set

S1 = S ∪{vp}. Clearly, S1 is a minimum connected total monophonic eccentric dominating
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set of G and so γctme(G) =
p+ 1

2
=

p+ l

2
.

Subcase (ii) l = 3.

Let S = {v1, v2, v3, v4; v9, v10, v11, v12; . . . ; vp−10, vp−9, vp−8, vp−7} ∪ {vp−2, vp−1, vp}. By

an argument similar to Subcase (i), it is clear that S is a minimum connected total mono-

phonic eccentric dominating set of G and so γctme(G) =
p+ 3

2
=

p+ l

2
.

Subcase (iii) l = 5.

Let S = {v1, v2, v3, v4; v9, v10, v11, v12; . . . ; vp−4, vp−3, vp−2, vp−1} ∪ {vp}. Then S is a

minimum connected total monophonic eccentric dominating set of G and so γctme(G) =

p+ 5

2
=

p+ l

2
.

Subcase (iv) l = 7.

Let S = {v1, v2, v3, v4; v9, v10, v11, v12; . . . ; vp−6, vp−5, vp−4, vp−3} ∪ {vp}. Then S is a

minimum connected total monophonic eccentric dominating set of G and so γctme(G) =

p+ 3

2
.

Theorem 3.8 For the Petersen graph G, γctme(G) = 4.

Proof. It can be easily verify that any vertex v in the Petersen graph G has monophonic

eccentricity 4 and any non-adjacent vertex of v is a monophonic eccentric vertex of v. Let

S = {x, y}. If x and y are adjacent vertices in G, then dm(x, y) = 1 and so x is not a

monophonic eccentric vertex of y and y is not a monophonic eccentric vertex of x. If x

and y are non-adjacent vertices in G, then N(x) ∩N(y) 6= φ. Let z ∈ N(x) ∩N(y). Then

dm(x, z) = dm(y, z) = 1 and so both x and y are not monophonic eccentric vertices of

z in G. Hence in both cases S is not a total monophonic eccentric dominating set of G

and so γtme(G) ≥ 3. Let S
′
= {u, v, w}, where u and v are adjacent vertices. Suppose

w ∈ N(u). Then u has no monophonic eccentric vertex in S
′
. Similarly, if w ∈ N(v), then

v has no monophonic eccentric vertex in S
′
. Therefore, w /∈ N(u) ∪N(v). It is clear that

any vertex in V − S
′
is monophonic eccentric dominated by a vertex in S

′
, u and v are

monophonic eccentric dominated by w, and w is monophonic eccentric dominated by both

u and v in G. Hence S
′
is a minimum total monophonic eccentric dominating set of G, but

the induced subgraph
〈

S
′
〉

is not connected. Therefore, we consider a set S
′′
= {p, q, r, s}
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such that p, q, r, s is an arbitrary path of length three and s /∈ N(p) ∪ N(q). It is clear

that S
′′
is a minimum connected total monophonic eccentric dominating set of G and so

γctme(G) = 4.

4 Realization Results

In view of Theorem 2.3, we have the following realization result.

Theorem 4.1 If n and p are integers such that 2 ≤ n ≤ p and p− 5l− 6 ≥ 0, where l =
⌊n

3

⌋

, then there exists a connected graph G of order p and the connected total monophonic

eccentric domination number n.

Proof. If n = 2, letG be a complete graph of order p. Then by Theorem 2.10, γctme(G) = 2.

Now, let n ≥ 3 and let l =
⌊n

3

⌋

. We construct a graph G with the desired properties as

follows:

Case 1. n = 3l.

Let Ci : ui, vi, wi, xi, yi, ui (1 ≤ i ≤ l) be l copies of a cycle of order 5 and let K1,p−5l−1

be a star with the cut-vertex x and the set of all end vertices Z = {z1, z2, . . . , zp−5l−1}. Let

G be the graph obtained from the cycles Ci (1 ≤ i ≤ l) and the star K1,p−5l−1 by (i) joining

every vertex in Ci (1 ≤ i ≤ l) with the vertex x in K1,p−5l−1, and (ii) joining the vertices

vl and xl in Cl. Then the graph G has order p and it is shown in Figure 4.1.

It is clear that the monophonic eccentricity of any vertex in Ci (1 ≤ i ≤ l−1) is 3, the

monophonic eccentricity of any vertex in {ul, wl, yl} is 3, the monophonic eccentricity of any

vertex in Z ∪ {vl, xl} is 2, and the monophonic eccentricity of the vertex x is 1. Therefore,

any two non-adjacent vertices in Ci (1 ≤ i ≤ l−1) are mutual monophonic eccentric vertices,

any two non-adjacent vertices in {ul, wl, yl} are mutual monophonic eccentric vertices, every

vertex in Ci (1 ≤ i ≤ l) is a monophonic eccentric vertex of any vertex in Z, any vertex

x ∈ {vl, xl} is monophonic eccentric dominated by any non-adjacent vertex of x in G and

every vertex in V (G) − {x} is a monophonic eccentric vertex of x in G. Hence it is easy

to verify that S =

(

l−1
⋃

i=1

{ui, wi, yi}

)

∪ {ul, wl, x} is a minimum connected total monophonic

eccentric dominating set of G and so γctme(G) = 3l = n.
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Figure 4.1: G

Case 2. n = 3l + 1.

Let Ci : ui, vi, wi, xi, yi, ui (1 ≤ i ≤ l) be l copies of a cycle of order 5 and let K1,p−5l−1

be a star with the cut-vertex x and the set of all end vertices Z = {z1, z2, . . . , zp−5l−1}. Let

G be the graph obtained from the cycles Ci (1 ≤ i ≤ l) and the star K1,p−5l−1 by joining

every vertex in Ci (1 ≤ i ≤ l) with the vertex x in K1,p−5l−1. Then the graph G has order

p and it is shown in Figure 4.2.
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x
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xl

z2

Figure 4.2: G

It is clear that the monophonic eccentricity of any vertex in Ci (1 ≤ i ≤ l) is 3, the

monophonic eccentricity of any vertex in Z is 2 and the monophonic eccentricity of the ver-

13



tex x is 1. Then by an argument similar to Case 1, S =

(

l
⋃

i=1

{ui, wi, yi}

)

∪{x} is a minimum

connected total monophonic eccentric dominating set of G and so γctme(G) = 3l + 1 = n.

Case 3. n = 3l + 2.

Let Ci : ui, vi, wi, xi, yi, ui (1 ≤ i ≤ l + 1) be l + 1 copies of a cycle of order 5

and let K1,p−5l−6 be a star with the cut-vertex x and the set of all end vertices Z =

{z1, z2, . . . , zp−5l−6}. Let G be the graph obtained from the cycles Ci (1 ≤ i ≤ l + 1) and

the star K1,p−5l−6 by (i) joining every vertex in Ci (1 ≤ i ≤ l + 1) with the vertex x in

K1,p−5l−6, (ii) joining the vertices vl and xl in Cl, and (iii) joining the vertices vl+1 and

xl+1 in Cl+1. Then the graph G has order p and it is shown in Figure 4.3.
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Figure 4.3: G

Then by an argument similar to Case 1, S =

(

l−1
⋃

i=1

{ui, wi, yi}

)

∪{ul, wl, ul+1, wl+1, x} is

a minimum connected total monophonic eccentric dominating set of G and so γctme(G) =

3l + 2 = n.

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [8] that every two

positive integers a and b with a ≤ b are realizable as the monophonic radius and monophonic

diameter, respectively, of some connected graph. This theorem can also be extended so

that the connected total monophonic eccentric domination number can be prescribed when

radm(G) + 2 < diamm(G).
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Theorem 4.2 For any three positive integers r, d and n ≥ 6 with r+2 < d, there exists

a connected graph G such that radm(G) = r, diamm(G) = d and γctme(G) = n.

Proof. We prove this theorem by considering two cases.

Case 1. r = 1 .

Subcase 1. n is even.

let Pi : wi,1, wi,2, wi,3, wi,4 (1 ≤ i ≤ n−6

2
) be

n− 6

2
copies of a path of order 4, let

Q : u1, u2, . . . , ud+1 be a path of order d+1, and let C : v1, v2, . . . , v6, v1 be a cycle of order

6. Let G be the graph obtained from the paths Pi (1 ≤ i ≤ n−6

2
), the path Q and the

cycle C by (i) joining every vertex in Pi (1 ≤ i ≤ n−6

2
) with the vertex v1 in C, (ii) joining

every vertex in Q with the vertex v1 in C, (iii) joining the vertices v2 and v6 in C, and (iv)

joining each vertex vi (3 ≤ i ≤ 5) in C with the vertex v1 in C. The graph G is shown in

Figure 4.4.
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b
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u1 u3u2 udu4 ud+1
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v1

v3

v4

v5

v6
w1,2

w1,1

w1,3

w1,4

wn−6

2
,2wn−6

2
,1

wn−6

2
,4

wn−6

2
,3

Figure 4.4: G

It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G, em(v1) = 1 and em(u1) = d.

Then radm(G) = 1 and diamm(G) = d. Also, the vertex ui (1 ≤ i ≤
⌈

d+1

2

⌉

) is monophonic

eccentric dominated by the vertex ud+1 and the vertex ui (
⌈

d+1

2

⌉

+ 1 ≤ i ≤ d + 1) is

monophonic eccentric dominated by the vertex u1, the vertex v1 is monophonic eccentric

dominated by any vertex in V (G)− {v1}, the vertices v4 and v5 are monophonic eccentric

dominated by the vertex v2, the vertices v2 and v3 are monophonic eccentric dominated

by the vertex v5, the vertex v6 is monophonic eccentric dominated by the vertex v3, the
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vertices wi,1 and wi,2 (1 ≤ i ≤ n−6

2
) are monophonic eccentric dominated by the vertex

wi,4, and the vertices wi,3 and wi,4 (1 ≤ i ≤ n−6

2
) are monophonic eccentric dominated by

the vertex wi,1. Hence S =

(

n−6

2
⋃

i=1

{wi,1, wi,4}

)

∪ {u1, ud+1, v2, v3, v5} is a total monophonic

eccentric dominating set of G and its induced subgraph 〈S〉 is not connected. It is clear

that S′ = S ∪ {v1} is a minimum connected total monophonic eccentric dominating set of

G and so γctme(G) = n.

Subcase 2. n is odd.

let Pi : wi,1, wi,2, wi,3, wi,4 (1 ≤ i ≤ n−3

2
) be

n− 3

2
copies of a path of order 4 and let

Q : u1, u2, . . . , ud+1 be a path of order d+ 1. Let G be the graph obtained from the paths

Pi (1 ≤ i ≤ n−3

2
) and the path Q by (i) joining every vertex in Pi (1 ≤ i ≤ n−3

2
) with the

new vertex v, and (ii) joining every vertex in Q with the vertex v. The graph G is shown

in Figure 4.5.
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w1,3

w1,4
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2
,2

wn−3

2
,1

wn−3

2
,4

wn−3

2
,3

Figure 4.5: G

It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G, em(v) = 1 and

em(u1) = d. Then radm(G) = 1 and diamm(G) = d. Also, the vertex ui (1 ≤ i ≤
⌈

d+1

2

⌉

)

is monophonic eccentric dominated by the vertex ud+1 and the vertex ui (
⌈

d+1

2

⌉

+ 1 ≤ i ≤

d + 1) is monophonic eccentric dominated by the vertex u1, the vertex v is monophonic

eccentric dominated by any vertex in V (G) − {v}, the vertices wi,1 and wi,2 (1 ≤ i ≤

n−3

2
) are monophonic eccentric dominated by the vertex wi,4, and the vertices wi,3 and

wi,4 (1 ≤ i ≤ n−3

2
) are monophonic eccentric dominated by the vertex wi,1. Hence S =
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(

n−3

2
⋃

i=1

{wi,1, wi,4}

)

∪ {u1, ud+1} is a total monophonic eccentric dominating set of G and its

induced subgraph 〈S〉 is not connected. It is clear that S′ = S∪{v} is a minimum connected

total monophonic eccentric dominating set of G and so γctme(G) = n.

Case 2. r > 1 .

Subcase 1. n is even.

Let Pi : wi,1, wi,2, . . . , wi,d+1 (1 ≤ i ≤ n
2
− 2) be

n

2
− 2 copies of a path of order d+1, let

P : v1, v2, . . . , vr+1 be a path of order r + 1 and let Q : u1, u2, . . . , ud be a path of order d.

Let G be the graph obtained from the paths Pi (1 ≤ i ≤ n
2
− 2), the path P and the path Q

by (i) joining every vertex in Pi (1 ≤ i ≤ n
2
− 2) with the vertex v1 in P , (ii) joining every

vertex in Q with the vertex v1 in P , and (iii) joining the vertices vj (2 ≤ j ≤ r + 1) in P

with the vertex ud in Q. The graph G is shown in Figure 4.6.
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b b bb bb
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Figure 4.6: G
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It is easily verified that r ≤ em(x) ≤ d for any vertex x in G, em(v1) = r and em(u1) = d.

Then radm(G) = r and diamm(G) = d. Also, the vertex v1 is monophonic eccentric

dominated by the vertex vr+1 and the vertex vj (2 ≤ j ≤ r + 1) is monophonic eccentric

dominated by the vertex u1. If r+ 3 ≤ d ≤ 2r, the vertex ui (1 ≤ i ≤ r+ 1) is monophonic

eccentric dominated by the vertex vr+1, the vertex ui (r+2 ≤ i ≤ d) is monophonic eccentric

dominated by the vertex u1, the vertex wi,j (1 ≤ i ≤ n
2
− 2, 1 ≤ j ≤ d − r) is monophonic

eccentric dominated by the vertex wi,d+1, the vertex wi,j (1 ≤ i ≤ n
2
− 2, d − r + 1 ≤

j ≤ r + 1) is monophonic eccentric dominated by the vertex vr+1 and the vertex wi,j
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(1 ≤ i ≤ n
2
− 2, r + 2 ≤ j ≤ d+ 1) is monophonic eccentric dominated by the vertex wi,1.

If d > 2r, the vertex ui (1 ≤ i ≤
⌈

d
2

⌉

) is monophonic eccentric dominated by the vertex

vr+1, the vertex ui (
⌈

d
2

⌉

+ 1 ≤ i ≤ d) is monophonic eccentric dominated by the vertex

u1, the vertex wi,j (1 ≤ i ≤ n
2
− 2, 1 ≤ j ≤

⌈

d
2

⌉

) is monophonic eccentric dominated by

the vertex wi,d+1 and the vertex wi,j (1 ≤ i ≤ n
2
− 2,

⌈

d
2

⌉

+ 1 ≤ j ≤ d + 1) is monophonic

eccentric dominated by the vertex wi,1. Hence S =

(

n

2
−2
⋃

i=1

{wi,1, wi,d+1}

)

∪ {u1, vr+1} is

a total monophonic eccentric dominating set of G and its induced subgraph 〈S〉 is not

connected. It is clear that S′ = S ∪ {v1, ud} is a minimum connected total monophonic

eccentric dominating set of G and so γctme(G) = n.

Subcase 2. n is odd.

Let Pi : wi,1, wi,2, . . . , wi,d+1 (1 ≤ i ≤ n−5

2
) be

n− 5

2
copies of a path of order d+ 1, let

P : v1, v2, . . . , vr+2 be a path of order r + 2 and let Q : u1, u2, . . . , ud be a path of order d.

Let G be the graph obtained from the paths Pi (1 ≤ i ≤ n−5

2
), the path P and the path Q

by (i) joining every vertex in Pi (1 ≤ i ≤ n−5

2
) with the vertex v1 in P , (ii) joining every

vertex in Q with the vertex v2 in P , and (iii) joining the vertices vj (3 ≤ j ≤ r + 2) in P

with the vertex ud in Q. The graph G is shown in Figure 4.7.
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Figure 4.7: G

It is easily verified that r ≤ em(x) ≤ d for any vertex x in G, em(v2) = r and em(u1) = d.

Then radm(G) = r and diamm(G) = d. Also, the vertex vj (3 ≤ j ≤ r + 2) is monophonic

eccentric dominated by the vertex u1 and the vertex vj (j = 1, 2) is monophonic eccentric
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dominated by the vertex vr+2. If r+3 ≤ d ≤ 2r, the vertex ui (1 ≤ i ≤ r+1) is monophonic

eccentric dominated by the vertex vr+2, the vertex ui (r+2 ≤ i ≤ d) is monophonic eccentric

dominated by the vertex u1, the vertex wi,j (1 ≤ i ≤ n−5

2
, 1 ≤ j ≤ d − r) is monophonic

eccentric dominated by the vertex wi,d+1, the vertex wi,j (1 ≤ i ≤ n−5

2
, d−r+1 ≤ j ≤ r+1) is

monophonic eccentric dominated by the vertex vr+2 and the vertex wi,j (1 ≤ i ≤ n−5

2
, r+2 ≤

j ≤ d + 1) is monophonic eccentric dominated by the vertex wi,1. If d > 2r, the vertex

ui (1 ≤ i ≤
⌈

d
2

⌉

) is monophonic eccentric dominated by the vertex vr+2, the vertex ui

(
⌈

d
2

⌉

+ 1 ≤ i ≤ d) is monophonic eccentric dominated by the vertex u1, the vertex wi,j

(1 ≤ i ≤ n−5

2
, 1 ≤ j ≤

⌈

d
2

⌉

) is monophonic eccentric dominated by the vertex wi,d+1 and the

vertex wi,j (1 ≤ i ≤ n−5

2
,
⌈

d
2

⌉

+ 1 ≤ j ≤ d + 1) is monophonic eccentric dominated by the

vertex wi,1. It is clear that S =

(

n−5

2
⋃

i=1

{wi,1, wi,d+1}

)

∪ {v1, v2, vr+2, u1, ud} is a minimum

connected total monophonic eccentric dominating set of G and so γctme(G) = n.

Problem 4.3 For any three positive integers r, d and n ≥ 6 with d = r, r + 1 or r + 2,

does there exist a connected graph G with radm(G) = r, diamm(G) = d and

γctme(G) = n ?
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