
EasyChair Preprint
№ 4533

Machine Learning Assisted Stochastic Unit
Commitment: A Feasibility Study

Farshad Mohammadi, Mostafa Sahraei-Ardakani,
Dimitris N. Trakas and Nikos D. Hatziargyriou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 7, 2020

Abstract— Stochastic unit commitment is an effective model for

generation scheduling, in the presence of substantial uncertainty.

However, effectiveness comes with substantial computational cost.

Generally, stochastic unit commitment needs more time than other

standard methods such as deterministic, to solve the unit commit-

ment problem. In this paper, the results of initial feasibility studies

are presented aiming to find out if using machine learning-based

models can facilitate solving stochastic unit commitment prob-

lems. A real-world, large-scale test case is used to demonstrate the

capabilities and shortcomings of machine learning algorithms in

reducing the calculation time without sacrificing accuracy. Our

feasibility study reveals that while it is unlikely to train a machine

learning model to solve the problem as a standalone platform, it is

possible to use a trained machine learning model to assist in accel-

erating the solution of the stochastic model.

Index Terms— Large-scale systems, Load shedding, Machine

Learning, ML-assisted stochastic unit commitment, power outage,

power system reliability, preventive operation, scenario creation,

severe weather, stochastic optimization, transmission outage.

NOMENCLATURE

A. Sets

𝑔 Index of the generator, 𝑔 𝜖 𝐺

𝑛 Index of the bus, 𝑛 𝜖 𝑁

𝑘 Index of the transmission line and transformer, 𝑘 𝜖 𝐾

𝑚 Index of the monitored transmission line, 𝑚 𝜖 𝑀

𝑠 Index of the scenario, 𝑠 𝜖 𝑆

𝑜 Index of the outage, 𝑜 𝜖 𝑂

𝑓𝑟𝑚 Set of starting bus of lines

𝑡𝑜 Set of ending bus of lines

B. Parameters

𝑐 Cost of generation

𝑐𝑁𝐿 No-load cost for generator

𝑐𝑆𝑈 Start-up cost for generator

𝑐𝑆𝐷 Shut-down cost for generator

𝑐𝑙𝑠ℎ Load shedding and Over-generation cost (penalty)

𝜋 Scenario possibility

𝑃𝐺𝑚𝑎𝑥 Maximum generation power by generator

𝑃𝐺𝑚𝑖𝑛 Minimum generation power by generator

𝐹𝑚𝑎𝑥 Maximum thermal capacity of the line

PTDF Power transfer distribution factor matrix

C. Variables

𝐅 Line flow vector

𝐅𝐂 Flow canceling transactions vector

𝐏 Net nodal injected power vector

𝑃𝐺 Generated power of a generator

𝑃𝑑 Power demand at bus

𝑃𝑙𝑠ℎ Load shedding

𝑃𝑜𝑔 Over-generation

𝑢 Unit commitment binary variable

𝑣 Start-up binary variable

𝑥 Shut-down binary variable

I. INTRODUCTION

nit commitment (UC) is an optimization model with

applications in time-ahead generation scheduling, risk

analysis, forward market clearing, and planning in power

systems [1], [2]. Simplified versions of the unit commitment

problem, with DC power flow models, are well developed. For

these models, a variety of techniques are used to facilitate solv-

ing the problem quickly [3]. However, for large networks, even

with the simplification techniques, solving the stochastic unit

commitment problem is still challenging. Given the needs of

modern power systems, which require consideration of many

uncertainties, achieving high-quality solutions within an ac-

ceptable time by commercially available hardware. It is, thus,

necessary to develop novel approaches to handle the computa-

tional burden of stochastic unit commitment. Multiple sources

of uncertainties must be modeled to make the results comply

with the real-world standards [4], [5]. Intermittency of renewa-

ble energy resources, load uncertainties, generation and fuel

availability, and status of transmission lines are some of the un-

certainties that should be taken into account. [6].

To address the security concerns within the UC problem, the

N-k secure UC, known as security-constrained UC (SCUC), has

been developed. While research efforts continue to focus on im-

proving the solvers through enhanced algorithms to make them

faster and more accurate, the problem is still a computationally

burdensome [5]. The problem gets even more challenging when

k includes temporal outages of more than two transmission

lines, because the topology of the network changes over time.

Farshad Mohammadi1, Student Member, IEEE, Mostafa Sahraei-Ardakani1, Member, IEEE, Dimitris

N. Trakas2, IEEE, Member, and Nikos D. Hatziargyriou2, Fellow, IEEE

Machine Learning Assisted Stochastic Unit

Commitment: A Feasibility Study

U

__
1 Farshad Mohammadi and Mostafa Sahraei-Ardakani are with the De-

partment of Electrical and Computer Engineering, University of Utah,

Salt Lake City, UT, USA (e-mails: farshad.mohammadi@utah.edu, mo-

stafa.ardakani@utah.edu.)
2 D. N. Trakas and N. D. Hatziargyriou are with the Electrical and

Computer Engineering, National Technical University of Athens, Greece

(e-mails: dtrakas@power.ece.ntua.gr, nh@power.ece.ntua.gr).

This research was funded by the NSF ECCS grant # 1839833.

mailto:farshad.mohammadi@utah.edu
mailto:mostafa.ardakani@utah.edu
mailto:mostafa.ardakani@utah.edu
mailto:dtrakas@power.ece.ntua.gr
mailto:nh@power.ece.ntua.gr

While deterministic methods are less likely to solve this type of

problem, as the solution they offer is not efficient nor reliable

when there are many sources of uncertainty, stochastic methods

seem to be a good fit for this problem.

 Stochastic Unit Commitment (SUC) has a primary advantage

of being simple to model the uncertainty explicitly, thus offer-

ing a reliable solution [7]. However, its main disadvantage that

limits its applications is the demanding calculation times. In

SUC, a set of scenarios over the uncertain future are defined

and used to model the probabilistic nature of uncertainties as a

set of deterministic formulations. To achieve quality results,

scenario generation, reduction, and aggregation must be

properly performed. In general, the higher the number of sce-

narios the better the solution; this, however, comes at the cost

of more calculations [8].

 An example of a SUC application is when a severe weather

event, such as a hurricane, is predicted to impact the network

[8], [9]. Hurricanes can cause tens or even hundreds of trans-

mission outages over the course of the impact, often in a few

hours. These outages can be predicted in advance, but the pre-

dictions include uncertainty. While scenario selection, for pre-

ventive stochastic unit commitment during hurricanes, is diffi-

cult, solving the problem within a satisfactory time can be very

challenging. An efficient method to generate scenarios, called

multidimensional scenario selection (MDSS) is introduced in

[8], where multiple aspects of information regarding each un-

certainty are used to generate the desired number of scenarios.

In [10], a new algorithm and set of equations capable of han-

dling multiple line outages are introduced to model the problem

as a preventive SUC problem. While a combination of the

MDSS and the formulation introduced in [10] delivers a high-

quality solution, the overall required time can still be very long

for many cases.

 In this article, we evaluate the feasibility of using Machine

Learning (ML) algorithms, to facilitate solving the SUC prob-

lem. ML techniques have been successfully used for more than

a decade ago to solve SCUC problems in order to determine

dynamic security constraints, e.g. [11], or to solve dynamic se-

curity problems, such as in [12], [13]. In this paper, however,

the ML application is different, since it aims to investigate how

ML can improve solution times without sacrificing accuracy by

predicting operating conditions or essential constraints. Thus, a

perfect ML model is assumed to provide final results with the

same accuracy as the solution of SUC. Using this perfect model,

this paper investigates the sensitivity of a feasible solution when

an imperfect ML model is trained and used.

 The remainder of this paper is organized as follows: Section

II reviews the original SUC problem and explains the use of

machine learning algorithms, so the challenges of the original

problem, and capabilities and limitations of ML are revealed. A

feasibility study is presented in Section III to determine how

much and how ML can help to solve the problem. Section III

provides results from the application of the method on a large-

scale network as a test-case. Finally, Section IV concludes the

paper.

II. BACKGROUND

This section explains the stochastic unit commitment prob-

lem, the challenges with solving the model, and the potentials

of machine learning to facilitate solving the problem.

A. Original SUC Problem

SUC is an optimization problem defined over a set of scenarios

that represent realizations of the uncertain future. The goal of

SUC is to minimize the objective function, often operation cost,

subject to physical and reliability constraints of the network.

With high levels of uncertainties, the objective function should

include not only generation costs, but also penalized load shed-

ding (unserved load) and over-generation. Load shedding and

over-generation are allowed, since multiple outages are ex-

pected to lead to such violations due to lack of sufficient trans-

mission capacity, as well as disconnected load or generation.

The objective function is defined as:

Minimize∑ {𝜋(𝑠)𝑠 ∑ [∑ (𝑐(𝑔)𝑃𝐺(𝑠,𝑔,𝑡) + 𝑐(𝑔)
𝑁𝐿 𝑢(𝑠,𝑔,𝑡) +𝑔𝑡

𝑐(𝑔)
𝑆𝑈 𝑣(𝑠,𝑔,𝑡) + 𝑐(𝑔)

𝑆𝐷 𝑥(𝑠,𝑔,𝑡)) + ∑ 𝑐𝑙𝑠ℎ(𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ + 𝑃(𝑠,𝑛,𝑡)

𝑜𝑔
)𝑛]}.

(1)

The objective function in (1) is subject to:

𝑃𝐺(𝑔)
𝑚𝑖𝑛𝑢(𝑠,𝑔,𝑡) ≤ 𝑃𝐺(𝑠,𝑔,𝑡) ≤ 𝑃𝐺(𝑔)

𝑚𝑎𝑥𝑢(𝑠,𝑔,𝑡) ∀ 𝑠, g, t (2)

𝑃(𝑠,𝑛,𝑡) = [𝑃𝐺(𝑠,𝑛,𝑡) + 𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ]

− [𝑃(𝑠,𝑛,𝑡)
𝑑 + 𝑃(𝑠,𝑛,𝑡)

𝑜𝑔
]

∀ 𝑠, n, t (3)

−𝐹(𝑚)
𝑚𝑎𝑥 ≤ 𝐹(𝑠,𝑚,𝑡) ≤ 𝐹(𝑚)

𝑚𝑎𝑥 ∀ 𝑠, t and
∀ 𝑚 ∈ 𝑀(𝑠)

(4)

𝐹(𝑠,𝑚,𝑡)

= (𝑷𝑻𝑫𝑭(𝑚) × 𝑷(𝑠,𝑡))

+ ∑ (𝑃𝑇𝐷𝐹(𝑚,𝑓𝑟𝑚(𝑜))
𝑜∈𝑂(𝑠,𝑡)

− (𝑃𝑇𝐷𝐹(𝑚,𝑡𝑜(𝑜))) 𝐹𝐶(𝑠,𝑡,𝑜)

∀ 𝑠, 𝑡 and
∀ 𝑚 ∈ 𝑀(𝑠)

(5)

(𝑷𝑻𝑫𝑭(𝑜) × 𝑷(𝑠,𝑡)) − 𝐹𝐶(𝑠,𝑡,𝑜)

+ ∑ (𝑃𝑇𝐷𝐹
(𝑜,𝑓𝑟𝑚

(𝑜′)
)𝑜′∈𝑂(𝑠,𝑡)

− (𝑃𝑇𝐷𝐹
(𝑜,𝑡𝑜

(𝑜′)
)
) 𝐹𝐶(𝑠,𝑡,𝑜′) = 0

∀ 𝑠, 𝑡 and
∀ 𝑜 ∈ 𝑂(𝑠,𝑡)

(6)

∑ [(𝑃𝐺(𝑠,𝑛,𝑡) + 𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ) − 𝑃(𝑠,𝑛,𝑡)

𝑑 + 𝑃(𝑠,𝑛,𝑡)
𝑜𝑔

]𝑛 =

0
∀ 𝑠, t (7)

𝑢(𝑠,𝑔,𝑡) = 𝑢(𝑠′,𝑔,𝑡) ∀ 𝑠, 𝑠′ ∈ 𝑆 (8)

𝐴𝑠,𝑡(𝑥𝑠,𝑡 , 𝑢𝑠,𝑡) ≤ 0, (9)

𝐵𝑠,𝑡(𝑥𝑠,𝑡 , 𝑢𝑠,𝑡) = 0, (10)

Eq. (2) applies generation maximum and minimum limits, (3)

calculates the nodal net injection power, while load shedding

and over-generation are modeled as generator and load,

respectively. (4) keeps line flows within the acceptable range

for each transmission line. Note that, while 𝑀(𝑠) can include all

lines, it can be any subset of lines that are selected to be

monitored. Later it is shown that this selection of lines can be

made through a trained ML model.

When a set of possible line outages is noted by 𝑂, (5) and (6)

together calculate the power flow for monitored lines that are

defined by 𝑀(𝑠), by considering the effects of line outages

defined by 𝑂. Note that (5) and (6) are defined based on power

transfer distribution factor [14], 𝑷𝑻𝑫𝑭, and flow-cancelling

transaction concepts [15], and model any number of line

outages. (7) extends (3) to apply power balance in the network

where load shedding and over-generation are modeled as

generators and loads, respectively. The last equation forces the

commitment status of generation units to be the same for all

scenarios, which means the commitment variable is modeled as

a first-stage variable in the defined multi-stage stochastic

optimization problem.

 It should be mentioned that (2) to (8) represent the constraints

of interest in this study, while other standard constraints, such

as ramping up/down, minimum up/down times for generators,

constraints regarding allowed values of load shedding and over-

generation, and other network constraints are considered as

well. Those equality and inequality constraints are modeled

through (9) and (10), respectively. Interested readers are

referred to [10] for the complete formulation and algorithm

description.

 The power transfer distribution factor is among the most

efficient methods to solve the power flows in UC problems.

However, when it is used for large-scale networks with multiple

outages, the number of variables and constraints becomes

extremely large. Notably, (5) and (6) are the main equations

responsible for growing constraints in numbers and complexity,

as they combine standard power flow calculations considering

the effects of outages. Moreover, load shedding and over-

generation increase the size of the defined problem, as each

such condition should be modeled as a load or generation unit.

A promising fact in solving the SUC problem is that, while the

original problem includes a large number of variables and

constraints, not all variables are necessary to be calculated

within the optimization process, nor all the constraints reach

their limits. This suggests that if it is possible to distinguish

between the essential variables and constraints to be included

in the optimization problem and those that are not, the problem

could be solved easier by removing unnecessary variables and

constraints. It is worth mentioning that variables and constraints

that are excluded from the optimization problem, can be

calculated outside the optimizer so that the complete set of

results is verified.

B. Machine Learning Concept

Nowadays, the capability of ML algorithms is no longer lim-

ited to only pattern recognition, when enhanced ML models

make computers capable of learning to do scientific tasks [16],

[17]. Increasing amounts of data analyzed by ML methods, can

provide solutions of high accuracy and increased speed in

power system problems, such as UC [18].

Supervised machine learning algorithms can learn through

examples known as observations. Each observation consists of

inputs paired with the corresponding output(s) [19]. The train-

ing algorithm searches for patterns and correlations between in-

puts and outputs. After training, a supervised learning algorithm

for any new unseen inputs determines/predicts the outputs. At

its basic form, a supervised learning algorithm can be written

as:

Y = f(x), (11)

where Y represents the predicted output(s) that is determined by

a mapping function, f, over the value of x. The mapping func-

tion used to connect inputs/features to a predicted output(s) is

created during training.

SUC, as a mixed-integer linear programming model, has two

types of variables: continuous variables such as scheduled gen-

eration power, line flow, and integer variables such as commit-

ment status. However, it is possible to assume another set of

imaginary integer variables that determines whether each con-

straint (such as line flow) is binding. Only binding (or near-

binding) constraints should be included in the SUC. Among

variables, most of the required calculations concern the com-

mitment status of generation units and line constraints. In other

words, solving SUC when commitment status is known, and

without line constraints is as simple as solving an economic dis-

patch problem and can be done very fast.

The supervised machine learning classification seems prom-

ising if we want to choose which constraints should be included

in the calculations. In a perfect condition, when there is enough

training data to cover the whole operating spectrum of the SUC

problem, it is possible to train the supervised mapping function

in (11), f, in order to obtain these essential constraints. Using

the trained model, by providing the input data, such as network

information, expected uncertainties, and demand data, any de-

sired Y can be acquired rapidly with no need to run SUC again.

III. FEASIBILITY STUDY

The objective of this section is to evaluate different inputs

and outputs variables to discover which ones are most suitable

to be considered as input features and outputs for the ML model.

In order to achieve the objective, possible candidates are inves-

tigated to find the best candidates. Then as a feature engineering

process, some are rejected, and the list is narrowed down to a

few primary candidates. Next, a feasibility analysis is per-

formed for each candidate to determine the best options.

A. SUC cannot be Replaced with Machine Learning

As any ML model must be trained with a set of solved SUC

cases, the accuracy of the trained ML can never be better than

the original SUC solution. Hence, the primary motivation for

using a trained ML model is to reduce the calculation time or

hardware requirements, while maintaining the same accuracy

as the original SUC. A large number of variables require a large

number of solved cases to train the ML model. Since the solu-

tion time of SUC is long, obtaining a large enough data set in

order to train the ML becomes a real bottleneck. On the other

hand, if the solution time of the SUC problem is short enough,

there is no reason to use ML for its solution.

Due to strict SUC constraints, and considering the fact that it

is unlikely to train an ML model to perfectly predict every out-

put exactly the same as solving original SUC, a potential solu-

tion is to use a machine learning as an assistant to SUC to facil-

itate the solution process. This way, not only is the result accu-

rate similar to the original SUC, but also perfect ML perfor-

mance is not necessary. This would translate in a reduced need

to training data.

Recognizing the fact that high accuracy in UC problem solu-

tions are required and the limited number of solved cases that

can be practically used to train the ML model, an ML assisted

SUC method is proposed in this paper. The objective is to use

the trained ML to guess/predict the entire or a part of the final

solution. Next, this possible solution is implemented into the

SUC as a warm start (advanced start or MIP-start) to solve the

case accurately and at increased speed. However, before mak-

ing it possible to use trained ML to predict the output, one more

question should be answered: what inputs can be used as input

features, and what output should be predicted to help solve the

SUC problem, if possible at all? The next subsections offer

some answers to this question.

B. Candidate Inputs and Outputs

In SUC, the desired outputs are the commitment status (bi-

nary), the scheduled generated power (continuous), line flow

(continuous). Candidate inputs that can be used as features for

ML are the network topology, data for generators, loads (nodal

with hourly profile), and data expressing uncertainties.

 Each ML will especially be trained for defined network to-

pology and generation/load units, and variations can be mod-

eled through uncertainties. For example, assume that there are

100 lines in a network vulnerable to failure due to a hurricane.

To train the ML model, thousands of SUC problems, known as

observations in ML, should be defined and solved, each of

which represents a possible hurricane and chance of damage to

some of those 100 lines. Then the trained model can predict the

SUC solution in response to any unseen hurricane. Note that,

the trained ML model can be used for a considerable time as the

network topology evolves slowly over time, requiring re-train-

ing when the network changes drastically.

It should be noted that continuous variables are harder to pre-

dict, meaning that more solved cases are required. Alterna-

tively, an economic dispatch can be used to calculate generated

power and line flow easily when the commitment variable is

known (easy in comparison with original SUC). Hence, we use

ML to predict integer variables as a supervised classification

machine learning model.

C. Test Cases and Software Selection

In this feasibility study, we use as test case a synthetic grid on

the footprint of South Carolina with 500 buses, 597 lines, and

90 generation units. The complete information can be found in

[20], [21]. For the load profile, we used a daily load profile, as

in [22].

The main code that handles the MIP-SUC problem is devel-

oped on the Java platform trough ELSIPSE IDE [23], and im-

plements IBM CPLEX optimization studio ver. 12.10 [24] as a

solver. The whole software-package runs on a system with 128

GB of DDR4 memory, and AMD 3900X as a processor unit. It

should be mentioned that, while the CPU has 24 processing

cores, we only utilize 4 to reduce the impact of background pro-

cess on the solution time.

D. Commitment Status as Output

In this subsection, the goal is to determine how much calcu-

lation could be saved if generators’ commitment status could be

predicted accurately. In the feasibility test, it is assumed that a

trained ML exists, which can predict the commitment status at

different levels of accuracy from perfectly accurate to partly in-

accurate. Then, the predicted commitment is implemented as a

warm-start to SUC, and the accuracy of the results and solu-

tion time are compared with a cold-start solutions, meaning

that the unit commitment status is calculated from scratch with-

out trained ML assistance. This way, it is possible to evaluate

how much time can be saved by predicting commitment status

with various levels of error. Note that cold-start with all relevant

constraints in effect serves as a reference for benchmarking the

other solutions.

 The original SUC consists of 10 scenarios, including ten lines

with failure chance, and takes 206 seconds to solve. Next, by

using the commitment obtained by solving the original SUC, a

certain percentage of generator statuses is randomly changed.

This percentage is varied from 0% to 100%, where each case

represents a simulation of the accuracy of ML. Next, the trained

ML with different prediction accuracies of commitment status

is used to solve the SUC problem as a warm start model. While

all cases result in accurate optimal value for the objective func-

tion, the solution time is highly sensitive to errors that may exist

in the predicted commitment variable. The results are shown in

Table 1.

Table 1. Effect of Predicting Commitment Variable on Solution Time for

SUC, when Prediction Includes Different Levels of Error

Case
Solution Time

(Sec.)

Original SUC 206

Assisted with commitment variable with 0.0% error 196

Assisted with commitment variable with 0.1% error 197

Assisted with commitment variable with 0.2% error 202

Assisted with commitment variable with 0.3% error 216

Assisted with commitment variable with 0.5% error 225

Assisted with commitment variable with 1.0% error 231

Assisted with commitment variable with 5.0% error 239

Assisted with commitment variable with 10.0% error 240

Assisted with commitment variable with > 10% error 240~250

 If commitment status could be predicted with 100% accu-

racy, the solution time could be improved by 5%, which is not

a significant improvement. On the other hand, even small errors

in prediction (more than 0.3%) will increase the solution time

compared to the original SUC. This can be justified considering

the time CPLEX needs to implement warm-start, verify if the

solution is feasible, and then calculate the other variables of the

problem. In case the provided warm-start solution is not accu-

rate, CPLEX will try to fix the solution. The overall time for

implementation, verification, doing other calculations, and fix-

ing the solution in cases of errors, is longer than what is required

to calculate a first feasible solution with cold-start.

E. Suspected Limit Violating Lines as Output

As mentioned before, if the trained ML can predict variables

that do not violate their constraints in all conditions, those con-

straints could be removed from the model without an impact on

final results. Equations (4) to (6) enforce not only many con-

straints to the problem, but also more complex than others.

Hence, a trained ML that removes unnecessary constraints in

these two equations reduces calculation times. In the following,

it is assumed that a trained ML model can predict which line

violates its thermal limit, represented by 𝑀 in the formulation

(4). The feasibility study is done in the following steps:

1- SUC is solved with only suspected lines included in

(4) to (6).

2- After SUC is solved, a power flow is solved, and all

lines are compared with their corresponding limita-

tions to find, if any violation happened.

3- On case of violation, lines with flows exceeding their

thermal limits are added to 𝑚.

4- SUC is solved repeatedly with new constraints until

there is no new violation.

Table 2 presents results. Note that, original SUC problem is

the same as is the one used in Table 1.

Table 2. Effects of Predicting Lines violating their constraints with Different

Levels of Errors

Case Solution Time (Sec.)

Original SUC 206

Assisted, suspected lines with 0.0% error 8

Assisted, suspected lines with 10% error 25

Assisted, suspected lines with 25% error 52

Assisted, suspected lines with 50% error 89

Assisted, suspected lines with 60% error 108

Assisted, suspected lines with 75% error 149

Assisted, suspected lines with 100% error 405

According to Table 2, predicting suspected lines with good

accuracy can significantly save the computational time, while

the quality of the final solution is the same as the original solu-

tion. Moreover, saving is not as sensitive to errors as it was with

the commitment variable. Thus, predicting lines suspected to

violate their limits is a good candidate as output of the trained

ML. It should be mentioned that, while combining both com-

mitment and suspected lines as outputs of the trained ML model

can reduce the calculation time even further (when both are cor-

rectly predicted calculation time is as low as 7 seconds), this is

useful only when the predictions are perfectly accurate due to

the high sensitivity of the solution time on the commitment sta-

tus accuracy.

F. Input Features

The input features to train the ML model should be the same

as used as inputs when we use the trained ML to predict desired

outputs. As explained before, the input features for ML training

should not include network topology data; instead, they should

include data related to uncertainties. As the prime goal is to as-

sist solving the SUC problem, and by knowing that in SUC, un-

certainties are represented by scenarios, the input features

should be scenarios or data derived from them.

While the part of data that is the same among various scenar-

ios, carries no useful information that can be used in predic-

tions, the useful part concerns changes over scenarios and dif-

ferent conditions. For example, assume there are 100 lines out

of a total of 999 lines in the network that are vulnerable to dam-

age. In different conditions, some of those 100 will have a

chance to fail. If any of those conditions are modeled in the

SUC problem, the only difference between scenarios is related

to those 100 lines and not all the 999 lines. Hence, scenarios

regarding different conditions should be worked out before

used as input features.

Hence, the input feature set should include those elements of

the network that are vulnerable to uncertainty. The input may

be defined on integer or continuous variables. For example, if

the uncertainty is related to the failure of lines, it can be defined

as a binary variable (classification) with its value as 0 if a line

has a chance to fail, and its value as 1 if no chance for the failure

of the line exists. The same uncertainties could be defined with

continuous variables as temporal failure chance. While the bi-

nary definition may seem less accurate than actual temporal

failure chance, it includes much fewer variables (as it is not a

function of time) and needs less number of solved case for train-

ing the ML model. Moreover, ML trained for classification with

binary variable (only 2 classes), can be much more accurate

than a continuous variable. Choosing each of methods to define

variables, ultimately depends on the design of the ML algorithm

and application for the trained model.

IV. CONCLUSION

Recently, variations of stochastic unit commitment have

been used for enhanced operation under complex conditions,

such as changing network topology. Multiple sources of uncer-

tainties must be considered, to ensure the obtained results are

reliable and efficient. Stochastic unit commitment offers accu-

rate solutions at the cost of long computational times and some-

times advanced hardware. This paper presented a feasibility

study on using ML algorithms to assist stochastic unit commit-

ment solvers, with the aim of reducing the computation time

and hardware requirements. Although the full replacement of

the original SUC by ML algorithms is debatable, we argue that

a trained ML model can assist the SUC solution by providing

initial predictions, i.e., through a warm-start process. Initial

tests show that predicting lines that are likely to reach their flow

limits can significantly reduce the computational time. The re-

sults also showed that predicting generation commitment status

is likely not effective.

FUTURE WORK

Our future research plan includes using a real-world, large-

scale network with multiple uncertainty sources to train an ML

model. The trained ML model will, then, be used to solve dif-

ferent unseen SUC problems to determine its accuracy and the

savings on solution time.

REFERENCES

[1] B. Saravanan, S. Das, S. Sikri, and D. P. Kothari, “A solution to the

unit commitment problem-a review,” Front. Energy, vol. 7, no. 2, pp.

223–236, 2013, doi: 10.1007/s11708-013-0240-3.

[2] A. Bhardwaj, V. K. Kamboj, V. K. Shukla, B. Singh, and P. Khurana,

“Unit commitment in electrical power system - A literature review,”

in 2012 IEEE International Power Engineering and Optimization

Conference, PEOCO 2012 - Conference Proceedings, 2012, pp. 275–

280, doi: 10.1109/PEOCO.2012.6230874.

[3] B. Stott, J. Jardim, and O. Alsaç, “DC power flow revisited,” IEEE

Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, 2009, doi:

10.1109/TPWRS.2009.2021235.

[4] S. Bahrami and V. W. S. Wong, “Security-Constrained Unit

Commitment for AC-DC Grids with Generation and Load

Uncertainty,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2717–

2732, May 2018, doi: 10.1109/TPWRS.2017.2749303.

[5] Y. Fu and M. Shahidehpour, “Fast SCUC for large-scale power

systems,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2144–2151,

Nov. 2007, doi: 10.1109/TPWRS.2007.907444.

[6] P. A. Ruiz, C. R. Philbrick, E. Zak, K. W. Cheung, and P. W. Sauer,

“Uncertainty Management in the Unit Commitment Problem,” IEEE

Trans. Power Syst., vol. 24, no. 2, pp. 642–651, May 2009, doi:

10.1109/TPWRS.2008.2012180.

[7] E. Du, N. Zhang, C. Kang, and Q. Xia, “Scenario Map Based

Stochastic Unit Commitment,” IEEE Trans. Power Syst., vol. 33, no.

5, pp. 4694–4705, Sep. 2018, doi: 10.1109/TPWRS.2018.2799954.

[8] F. Mohammadi and M. Sahraei-Ardakani, “Multidimensional

Scenario Selection for Power Systems With Stochastic Failures,”

IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4528–4538, Nov. 2020,

doi: 10.1109/TPWRS.2020.2990877.

[9] A. Arab, A. Khodaei, S. K. Khator, K. Ding, V. A. Emesih, and Z.

Han, “Stochastic pre-hurricane restoration planning for electric

power systems infrastructure,” IEEE Trans. Smart Grid, vol. 6, no. 2,

pp. 1046–1054, Mar. 2015, doi: 10.1109/TSG.2015.2388736.

[10] F. Mohammadi and M. Sahraei-Ardakani, “Tractable Stochastic Unit

Commitment for Large Systems During Predictable Hazards,” IEEE

Access, vol. 8, pp. 115078–115088, 2020, doi:

10.1109/ACCESS.2020.3004391.

[11] K. A. Papadogiannis and N. D. Hatziargyriou, “Optimal Allocation

of Primary Reserve Services in Energy Markets,” IEEE Trans. Power

Syst., vol. 19, no. 1, pp. 652–659, Feb. 2004, doi:

10.1109/TPWRS.2003.820702.

[12] E. S. Karapidakis and N. D. Hatziargyriou, “Online preventive

dynamic security of isolated power systems using decision trees,”

IEEE Trans. Power Syst., vol. 17, no. 2, pp. 297–304, May 2002, doi:

10.1109/TPWRS.2002.1007896.

[13] E. M. Voumvoulakis and N. D. Hatziargyriou, “Decision trees-aided

self-organized maps for corrective dynamic security,” IEEE Trans.

Power Syst., vol. 23, no. 2, pp. 622–630, May 2008, doi:

10.1109/TPWRS.2008.920194.

[14] H. Ronellenfitsch, M. Timme, and D. Witthaut, “A Dual Method for

Computing Power Transfer Distribution Factors,” IEEE Trans.

Power Syst., vol. 32, no. 2, pp. 1007–1015, Mar. 2017, doi:

10.1109/TPWRS.2016.2589464.

[15] P. A. Ruiz, E. Goldis, A. M. Rudkevich, M. C. Caramanis, C. R.

Philbrick, and J. M. Foster, “Security-Constrained Transmission

Topology Control MILP Formulation Using Sensitivity Factors,”

IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1597–1605, 2017, doi:

10.1109/TPWRS.2016.2577689.

[16] S. Marsland, “Chapter 1: Introduction,” in Machine Learning: An

Algorithmic Perspective, Second edi., Boca Raton, FL, USA: CRC

Press, Taylor and Francis Group, 2015, pp. 1–11.

[17] Y. Baştanlar and M. Özuysal, “Introduction to machine learning,”

Methods Mol. Biol., vol. 1107, pp. 1-36o, 2014, doi: 10.1007/978-1-

62703-748-8_7.

[18] N. Hatziargyriou, “Machine learning applications to power systems,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 2049 LNAI, pp. 308–317, 2001, doi:

10.1007/3-540-44673-7_20.

[19] Y. Zhang, “Types of Machine Learning Algorithms,” in New

Advances in Machine Learning, Rijeka, Croatia: InTech, 2010, pp.

19–20.

[20] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J.

Overbye, “Grid Structural Characteristics as Validation Criteria for

Synthetic Networks,” IEEE Trans. Power Syst., vol. 32, no. 4, pp.

3258–3265, Jul. 2017, doi: 10.1109/TPWRS.2016.2616385.

[21] Adam Birchfield, “ACTIVSg2000: 2000-bus synthetic grid on

footprint of Texas,” 2019. [Online]. Available:

https://electricgrids.engr.tamu.edu/electric-grid-test-

cases/activsg2000/. [Accessed: 26-Feb-2019].

[22] F. Mohammadi, M. Sahraei-Ardakani, Y. M. Al-Abdullah, and G. T.

Heydt, “Coordinated Scheduling of Power Generation and Water

Desalination Units,” IEEE Trans. Power Syst., vol. 34, no. 5, pp.

3657–3666, Sep. 2019, doi: 10.1109/TPWRS.2019.2901807.

[23] ECLIPSE Foundation, “Eclipse IDE for Java EE Developers | Eclipse

Packages,” 2020. [Online]. Available:

https://www.eclipse.org/downloads/packages/release/kepler/sr2/ecli

pse-ide-java-ee-developers. [Accessed: 20-Feb-2019].

[24] IBM, “CPLEX Optimizer | IBM,” 2018. [Online]. Available:

https://www.ibm.com/analytics/cplex-optimizer. [Accessed: 20-Feb-

2019].

