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Abstract— Stochastic unit commitment is an effective model for 

generation scheduling, in the presence of substantial uncertainty. 

However, effectiveness comes with substantial computational cost. 

Generally, stochastic unit commitment needs more time than other 

standard methods such as deterministic, to solve the unit commit-

ment problem. In this paper, the results of initial feasibility studies 

are presented aiming to find out if using machine learning-based 

models can facilitate solving stochastic unit commitment prob-

lems. A real-world, large-scale test case is used to demonstrate the 

capabilities and shortcomings of machine learning algorithms in 

reducing the calculation time without sacrificing accuracy. Our 

feasibility study reveals that while it is unlikely to train a machine 

learning model to solve the problem as a standalone platform, it is 

possible to use a trained machine learning model to assist in accel-

erating the solution of the stochastic model.  

Index Terms— Large-scale systems, Load shedding, Machine 

Learning, ML-assisted stochastic unit commitment, power outage, 

power system reliability, preventive operation, scenario creation, 

severe weather, stochastic optimization, transmission outage. 

NOMENCLATURE 

A. Sets

𝑔 Index of the generator, 𝑔 𝜖 𝐺 

𝑛 Index of the bus, 𝑛 𝜖 𝑁 

𝑘 Index of the transmission line and transformer, 𝑘 𝜖 𝐾 

𝑚 Index of the monitored transmission line, 𝑚 𝜖 𝑀 

𝑠 Index of the scenario, 𝑠 𝜖 𝑆 

𝑜 Index of the outage, 𝑜 𝜖 𝑂 

𝑓𝑟𝑚 Set of starting bus of lines 

𝑡𝑜 Set of ending bus of lines 

B. Parameters

𝑐 Cost of generation

𝑐𝑁𝐿 No-load cost for generator 

𝑐𝑆𝑈 Start-up cost for generator 

𝑐𝑆𝐷 Shut-down cost for generator 

𝑐𝑙𝑠ℎ Load shedding and Over-generation cost (penalty) 

𝜋 Scenario possibility 

𝑃𝐺𝑚𝑎𝑥 Maximum generation power by generator 

𝑃𝐺𝑚𝑖𝑛 Minimum generation power by generator 

𝐹𝑚𝑎𝑥 Maximum thermal capacity of the line 

PTDF Power transfer distribution factor matrix  

C. Variables

𝐅 Line flow vector 

𝐅𝐂 Flow canceling transactions vector 

𝐏 Net nodal injected power vector  

𝑃𝐺 Generated power of a generator 

𝑃𝑑 Power demand at bus 

𝑃𝑙𝑠ℎ Load shedding  

𝑃𝑜𝑔 Over-generation 

𝑢 Unit commitment binary variable 

𝑣 Start-up binary variable 

𝑥 Shut-down binary variable 

I. INTRODUCTION

nit commitment (UC) is an optimization model with

applications in time-ahead generation scheduling, risk

analysis, forward market clearing, and planning in power 

systems [1], [2]. Simplified versions of the unit commitment 

problem, with DC power flow models, are well developed. For 

these models, a variety of techniques are used to facilitate solv-

ing the problem quickly [3]. However, for large networks, even 

with the simplification techniques, solving the stochastic unit 

commitment problem is still challenging. Given the needs of 

modern power systems, which require consideration of many 

uncertainties, achieving high-quality solutions within an ac-

ceptable time by commercially available hardware. It is, thus, 

necessary to develop novel approaches to handle the computa-

tional burden of stochastic unit commitment. Multiple sources 

of uncertainties must be modeled to make the results comply 

with the real-world standards [4], [5]. Intermittency of renewa-

ble energy resources, load uncertainties, generation and fuel 

availability, and status of transmission lines are some of the un-

certainties that should be taken into account. [6]. 

To address the security concerns within the UC problem, the 

N-k secure UC, known as security-constrained UC (SCUC), has

been developed. While research efforts continue to focus on im-

proving the solvers through enhanced algorithms to make them

faster and more accurate, the problem is still a computationally

burdensome [5]. The problem gets even more challenging when

k includes temporal outages of more than two transmission

lines, because the topology of the network changes over time.
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While deterministic methods are less likely to solve this type of 

problem, as the solution they offer is not efficient nor reliable 

when there are many sources of uncertainty, stochastic methods 

seem to be a good fit for this problem. 

 Stochastic Unit Commitment (SUC) has a primary advantage 

of being simple to model the uncertainty explicitly, thus offer-

ing a reliable solution [7]. However, its main disadvantage that 

limits its applications is the demanding calculation times. In 

SUC, a set of scenarios over the uncertain future are defined 

and used to model the probabilistic nature of uncertainties as a 

set of deterministic formulations. To achieve quality results, 

scenario generation, reduction, and aggregation must be 

properly performed. In general, the higher the number of sce-

narios the better the solution; this, however, comes at the cost 

of more calculations [8].  

 An example of a SUC application is when a severe weather 

event, such as a hurricane, is predicted to impact the network 

[8], [9]. Hurricanes can cause tens or even hundreds of trans-

mission outages over the course of the impact, often in a few 

hours. These outages can be predicted in advance, but the pre-

dictions include uncertainty. While scenario selection, for pre-

ventive stochastic unit commitment during hurricanes, is diffi-

cult, solving the problem within a satisfactory time can be very 

challenging. An efficient method to generate scenarios, called 

multidimensional scenario selection (MDSS) is introduced in 

[8], where multiple aspects of information regarding each un-

certainty are used to generate the desired number of scenarios.  

In [10], a new algorithm and set of equations capable of han-

dling multiple line outages are introduced to model the problem 

as a preventive SUC problem. While a combination of the 

MDSS and the formulation introduced in [10] delivers a high-

quality solution, the overall required time can still be very long 

for many cases.  

 In this article, we evaluate the feasibility of using Machine 

Learning (ML) algorithms, to facilitate solving the SUC prob-

lem. ML techniques have been successfully used for more than 

a decade ago to solve SCUC problems in order to determine 

dynamic security constraints, e.g. [11], or to solve dynamic se-

curity problems, such as in [12], [13]. In this paper, however, 

the ML application is different, since it aims to investigate how 

ML can improve solution times without sacrificing accuracy by 

predicting operating conditions or essential constraints. Thus, a 

perfect ML model is assumed to provide final results with the 

same accuracy as the solution of SUC. Using this perfect model, 

this paper investigates the sensitivity of a feasible solution when 

an imperfect ML model is trained and used. 

 The remainder of this paper is organized as follows: Section 

II reviews the original SUC problem and explains the use of 

machine learning algorithms, so the challenges of the original 

problem, and capabilities and limitations of ML are revealed. A 

feasibility study is presented in Section III to determine how 

much and how ML can help to solve the problem. Section III 

provides results from the application of the method on a large-

scale network as a test-case. Finally, Section IV concludes the 

paper. 

II. BACKGROUND 

This section explains the stochastic unit commitment prob-

lem, the challenges with solving the model, and the potentials 

of machine learning to facilitate solving the problem. 

A. Original SUC Problem  

SUC is an optimization problem defined over a set of scenarios 

that represent realizations of the uncertain future. The goal of 

SUC is to minimize the objective function, often operation cost, 

subject to physical and reliability constraints of the network. 

With high levels of uncertainties, the objective function should 

include not only generation costs, but also penalized load shed-

ding (unserved load) and over-generation. Load shedding and 

over-generation are allowed, since multiple outages are ex-

pected to lead to such violations due to lack of sufficient trans-

mission capacity, as well as disconnected load or generation. 

The objective function is defined as: 

 

Minimize∑ {𝜋(𝑠)𝑠 ∑ [∑ (𝑐(𝑔)𝑃𝐺(𝑠,𝑔,𝑡) + 𝑐(𝑔)
𝑁𝐿 𝑢(𝑠,𝑔,𝑡) +𝑔𝑡

𝑐(𝑔)
𝑆𝑈 𝑣(𝑠,𝑔,𝑡) + 𝑐(𝑔)

𝑆𝐷 𝑥(𝑠,𝑔,𝑡)) + ∑ 𝑐𝑙𝑠ℎ(𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ + 𝑃(𝑠,𝑛,𝑡)

𝑜𝑔
)𝑛 ]}. 

(1) 

 

The objective function in (1) is subject to:  

𝑃𝐺(𝑔)
𝑚𝑖𝑛𝑢(𝑠,𝑔,𝑡) ≤ 𝑃𝐺(𝑠,𝑔,𝑡) ≤ 𝑃𝐺(𝑔)

𝑚𝑎𝑥𝑢(𝑠,𝑔,𝑡) ∀ 𝑠, g, t (2) 

𝑃(𝑠,𝑛,𝑡) = [𝑃𝐺(𝑠,𝑛,𝑡) + 𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ ]

− [𝑃(𝑠,𝑛,𝑡)
𝑑 + 𝑃(𝑠,𝑛,𝑡)

𝑜𝑔
] 

∀ 𝑠, n, t (3) 

−𝐹(𝑚)
𝑚𝑎𝑥 ≤ 𝐹(𝑠,𝑚,𝑡) ≤ 𝐹(𝑚)

𝑚𝑎𝑥 ∀ 𝑠, t  and   
∀ 𝑚 ∈ 𝑀(𝑠) 

(4) 

𝐹(𝑠,𝑚,𝑡)

= (𝑷𝑻𝑫𝑭(𝑚) × 𝑷(𝑠,𝑡))

+ ∑ (𝑃𝑇𝐷𝐹(𝑚,𝑓𝑟𝑚(𝑜))
𝑜∈𝑂(𝑠,𝑡)

− (𝑃𝑇𝐷𝐹(𝑚,𝑡𝑜(𝑜))) 𝐹𝐶(𝑠,𝑡,𝑜) 

∀ 𝑠, 𝑡   and   
∀ 𝑚 ∈ 𝑀(𝑠) 

(5) 

(𝑷𝑻𝑫𝑭(𝑜) × 𝑷(𝑠,𝑡)) − 𝐹𝐶(𝑠,𝑡,𝑜)

+ ∑ (𝑃𝑇𝐷𝐹
(𝑜,𝑓𝑟𝑚

(𝑜′)
)𝑜′∈𝑂(𝑠,𝑡)

− (𝑃𝑇𝐷𝐹
(𝑜,𝑡𝑜

(𝑜′)
)
) 𝐹𝐶(𝑠,𝑡,𝑜′) =  0 

∀ 𝑠, 𝑡  and  
∀ 𝑜 ∈ 𝑂(𝑠,𝑡) 

(6) 

∑ [(𝑃𝐺(𝑠,𝑛,𝑡) + 𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ ) − 𝑃(𝑠,𝑛,𝑡)

𝑑 + 𝑃(𝑠,𝑛,𝑡)
𝑜𝑔

]𝑛  = 

0 
∀ 𝑠, t (7) 

𝑢(𝑠,𝑔,𝑡) = 𝑢(𝑠′,𝑔,𝑡) ∀ 𝑠, 𝑠′ ∈  𝑆 (8) 

𝐴𝑠,𝑡(𝑥𝑠,𝑡 , 𝑢𝑠,𝑡) ≤  0, (9) 

𝐵𝑠,𝑡(𝑥𝑠,𝑡 , 𝑢𝑠,𝑡) =  0, (10) 

 

Eq. (2) applies generation maximum and minimum limits, (3) 

calculates the nodal net injection power, while load shedding 

and over-generation are modeled as generator and load, 



 

 

respectively. (4) keeps line flows within the acceptable range 

for each transmission line. Note that, while 𝑀(𝑠) can include all 

lines, it can be any subset of lines that are selected to be 

monitored. Later it is shown that this selection of lines can be 

made through a trained ML model. 

When a set of possible line outages is noted by 𝑂, (5) and (6) 

together calculate the power flow for monitored lines that are 

defined by 𝑀(𝑠), by considering the effects of line outages 

defined by 𝑂. Note that (5) and (6) are defined based on power 

transfer distribution factor [14], 𝑷𝑻𝑫𝑭, and flow-cancelling 

transaction concepts [15], and model any number of line 

outages. (7) extends (3) to apply power balance in the network 

where load shedding and over-generation are modeled as 

generators and loads, respectively. The last equation forces the 

commitment status of generation units to be the same for all 

scenarios, which means the commitment variable is modeled as 

a first-stage variable in the defined multi-stage stochastic 

optimization problem.  

 It should be mentioned that (2) to (8) represent the constraints 

of interest in this study, while other standard constraints, such 

as ramping up/down, minimum up/down times for generators, 

constraints regarding allowed values of load shedding and over-

generation, and other network constraints are considered as 

well. Those equality and inequality constraints are modeled 

through (9) and (10), respectively. Interested readers are 

referred to [10] for the complete formulation and algorithm 

description. 

 The power transfer distribution factor is among the most 

efficient methods to solve the power flows in UC problems. 

However, when it is used for large-scale networks with multiple 

outages, the number of variables and constraints becomes 

extremely large. Notably, (5) and (6) are the main equations 

responsible for growing constraints in numbers and complexity, 

as they combine standard power flow calculations considering 

the effects of outages. Moreover, load shedding and over-

generation increase the size of the defined problem, as each 

such condition should be modeled as a load or generation unit. 

A promising fact in solving the SUC problem is that, while the 

original problem includes a large number of variables and 

constraints, not all variables are necessary to be calculated 

within the optimization process, nor all the constraints reach 

their limits. This suggests that if it is possible to distinguish 

between the essential variables and constraints to be included 

in the optimization problem and those that are not, the problem 

could be solved easier by removing unnecessary variables and 

constraints. It is worth mentioning that variables and constraints 

that are excluded from the optimization problem, can be 

calculated outside the optimizer so that the complete set of 

results is verified.  

B. Machine Learning Concept 

Nowadays, the capability of ML algorithms is no longer lim-

ited to only pattern recognition, when enhanced ML models 

make computers capable of learning to do scientific tasks  [16], 

[17]. Increasing amounts of data analyzed by ML methods, can 

provide solutions of high accuracy and increased speed in 

power system problems, such as UC [18]. 

Supervised machine learning algorithms can learn through 

examples known as observations. Each observation consists of 

inputs paired with the corresponding output(s) [19]. The train-

ing algorithm searches for patterns and correlations between in-

puts and outputs. After training, a supervised learning algorithm 

for any new unseen inputs determines/predicts the outputs. At 

its basic form, a supervised learning algorithm can be written 

as: 

Y = f(x), (11) 

where Y represents the predicted output(s) that is determined by 

a mapping function, f, over the value of x. The mapping func-

tion used to connect inputs/features to a predicted output(s) is 

created during training.  

SUC, as a mixed-integer linear programming model, has two 

types of variables: continuous variables such as scheduled gen-

eration power, line flow, and integer variables such as commit-

ment status. However, it is possible to assume another set of 

imaginary integer variables that determines whether each con-

straint (such as line flow) is binding. Only binding (or near-

binding) constraints should be included in the SUC. Among 

variables, most of the required calculations concern the com-

mitment status of generation units and line constraints. In other 

words, solving SUC when commitment status is known, and 

without line constraints is as simple as solving an economic dis-

patch problem and can be done very fast.  

The supervised machine learning classification seems prom-

ising if we want to choose which constraints should be included 

in the calculations. In a perfect condition, when there is enough 

training data to cover the whole operating spectrum of the SUC 

problem, it is possible to train the supervised mapping function 

in (11), f, in order to obtain these essential constraints. Using 

the trained model, by providing the input data, such as network 

information, expected uncertainties, and demand data, any de-

sired Y can be acquired rapidly with no need to run SUC again.  

III. FEASIBILITY STUDY 

The objective of this section is to evaluate different inputs 

and outputs variables to discover which ones are most suitable 

to be considered as input features and outputs for the ML model. 

In order to achieve the objective, possible candidates are inves-

tigated to find the best candidates. Then as a feature engineering 

process, some are rejected, and the list is narrowed down to a 

few primary candidates. Next, a feasibility analysis is per-

formed for each candidate to determine the best options. 

A. SUC cannot be Replaced with Machine Learning 

As any ML model must be trained with a set of solved SUC 

cases, the accuracy of the trained ML can never be better than 

the original SUC solution. Hence, the primary motivation for 

using a trained ML model is to reduce the calculation time or 

hardware requirements, while maintaining the same accuracy 

as the original SUC. A large number of variables require a large 

number of solved cases to train the ML model. Since the solu-

tion time of SUC is long, obtaining a large enough data set in 

order to train the ML becomes a real bottleneck. On the other 

hand, if the solution time of the SUC problem is short enough, 



 

 

there is no reason to use  ML for its solution. 

Due to strict SUC constraints, and considering the fact that it 

is unlikely to train an ML model to perfectly predict every out-

put exactly the same as solving original SUC, a potential solu-

tion is to use a machine learning as an assistant to SUC to facil-

itate the solution process. This way, not only is the result accu-

rate similar to the original SUC, but also perfect ML perfor-

mance is not necessary. This would translate in a reduced need 

to training data. 

Recognizing the fact that high accuracy in UC problem solu-

tions are required and the limited number of solved cases that 

can be practically used to train the ML model, an ML assisted 

SUC method is proposed in this paper. The objective is to use 

the trained ML to guess/predict the entire or a part of the final 

solution. Next, this possible solution is implemented into the 

SUC as a warm start (advanced start or MIP-start) to solve the 

case accurately and at increased speed. However, before mak-

ing it possible to use trained ML to predict the output, one more 

question should be answered: what inputs can be used as input 

features, and what output should be predicted to help solve the 

SUC problem, if possible at all? The next subsections offer 

some answers to this question. 

B. Candidate Inputs and Outputs 

In SUC, the desired outputs are the commitment status (bi-

nary), the scheduled generated power (continuous), line flow 

(continuous). Candidate inputs that can be used as features for 

ML are the network topology, data for generators, loads (nodal 

with hourly profile), and data expressing uncertainties.  

 Each ML will especially be trained for defined network to-

pology and generation/load units, and variations can be mod-

eled through uncertainties. For example, assume that there are 

100 lines in a network vulnerable to failure due to a hurricane. 

To train the ML model, thousands of SUC problems, known as 

observations in ML, should be defined and solved, each of 

which represents a possible hurricane and chance of damage to 

some of those 100 lines. Then the trained model can predict the 

SUC solution in response to any unseen hurricane. Note that, 

the trained ML model can be used for a considerable time as the 

network topology evolves slowly over time, requiring re-train-

ing when the network changes drastically.  

It should be noted that continuous variables are harder to pre-

dict, meaning that more solved cases are required. Alterna-

tively, an economic dispatch can be used to calculate generated 

power and line flow easily when the commitment variable is 

known (easy in comparison with original SUC). Hence, we use 

ML to predict integer variables as a supervised classification 

machine learning model.  

C. Test Cases and Software Selection 

In this feasibility study, we use as test case a synthetic grid on 

the footprint of South Carolina with 500 buses, 597 lines, and 

90 generation units. The complete information can be found in 

[20], [21]. For the load profile, we used a daily load profile, as 

in [22]. 

The main code that handles the MIP-SUC problem is devel-

oped on the Java platform trough ELSIPSE IDE [23], and im-

plements IBM CPLEX optimization studio ver. 12.10 [24] as a 

solver. The whole software-package runs on a system with 128 

GB of DDR4 memory, and AMD 3900X as a processor unit. It 

should be mentioned that, while the CPU has 24 processing 

cores, we only utilize 4 to reduce the impact of background pro-

cess on the solution time. 

D. Commitment Status as Output 

In this subsection, the goal is to determine how much calcu-

lation could be saved if generators’ commitment status could be 

predicted accurately. In the feasibility test, it is assumed that a 

trained ML exists, which can predict the commitment status at 

different levels of accuracy from perfectly accurate to partly in-

accurate. Then, the predicted commitment is implemented as a 

warm-start to SUC, and the accuracy of the results and solu-

tion time are compared with a cold-start solutions, meaning 

that the unit commitment status is calculated from scratch with-

out trained ML assistance. This way, it is possible to evaluate 

how much time can be saved by predicting commitment status 

with various levels of error. Note that cold-start with all relevant 

constraints in effect serves as a reference for benchmarking the 

other solutions.  

 The original SUC consists of 10 scenarios, including ten lines 

with failure chance, and takes 206 seconds to solve. Next, by 

using the commitment obtained by solving the original SUC, a 

certain percentage of generator statuses is randomly changed. 

This percentage is varied from 0% to 100%, where each case 

represents a simulation of the accuracy of ML. Next, the trained 

ML with different prediction accuracies of commitment status 

is used to solve the SUC problem as a warm start model. While 

all cases result in accurate optimal value for the objective func-

tion, the solution time is highly sensitive to errors that may exist 

in the predicted commitment variable. The results are shown in 

Table 1.  

 
Table 1. Effect of Predicting Commitment Variable on Solution Time for 

SUC, when Prediction Includes Different Levels of Error 

Case 
Solution Time 

(Sec.) 

Original SUC 206 

Assisted with commitment variable with 0.0% error 196 

Assisted with commitment variable with 0.1% error 197 

Assisted with commitment variable with 0.2% error 202 

Assisted with commitment variable with 0.3% error 216 

Assisted with commitment variable with 0.5% error 225 

Assisted with commitment variable with 1.0% error 231 

Assisted with commitment variable with 5.0% error 239 

Assisted with commitment variable with 10.0% error 240 

Assisted with commitment variable with > 10% error 240~250 

  

 If commitment status could be predicted with 100% accu-

racy, the solution time could be improved by 5%, which is not 

a significant improvement. On the other hand, even small errors 

in prediction (more than 0.3%) will increase the solution time 

compared to the original SUC. This can be justified considering 

the time CPLEX needs to implement warm-start, verify if the 

solution is feasible, and then calculate the other variables of the 



 

 

problem. In case the provided warm-start solution is not accu-

rate, CPLEX will try to fix the solution. The overall time for 

implementation, verification, doing other calculations, and fix-

ing the solution in cases of errors, is longer than what is required 

to calculate a first feasible solution with cold-start. 

E. Suspected Limit Violating Lines as Output 

As mentioned before, if the trained ML can predict variables 

that do not violate their constraints in all conditions, those con-

straints could be removed from the model without an impact on 

final results. Equations (4) to (6) enforce not only many con-

straints to the problem, but also more complex than others. 

Hence, a trained ML that removes unnecessary constraints in 

these two equations reduces calculation times. In the following, 

it is assumed that a trained ML model can predict which line 

violates its thermal limit, represented by 𝑀 in the formulation 

(4). The feasibility study is done in the following steps:  

1- SUC is solved with only suspected lines included in 

(4) to (6).  

2- After SUC is solved, a power flow is solved, and all 

lines are compared with their corresponding limita-

tions to find, if any violation happened. 

3- On case of violation, lines with flows exceeding their 

thermal limits are added to 𝑚.  

4- SUC is solved repeatedly with new constraints until 

there is no new violation. 

Table 2 presents results. Note that, original SUC problem is 

the same as is the one used in Table 1. 

 
Table 2. Effects of Predicting Lines violating their constraints with Different 

Levels of Errors 

Case Solution Time (Sec.) 

Original SUC 206 

Assisted, suspected lines with 0.0% error 8 

Assisted, suspected lines with 10% error 25 

Assisted, suspected lines with 25% error 52 

Assisted, suspected lines with 50% error 89 

Assisted, suspected lines with 60% error 108 

Assisted, suspected lines with 75% error 149 

Assisted, suspected lines with 100% error 405 

 

According to Table 2, predicting suspected lines with good 

accuracy can significantly save the computational time, while 

the quality of the final solution is the same as the original solu-

tion. Moreover, saving is not as sensitive to errors as it was with 

the commitment variable. Thus, predicting lines suspected to 

violate their limits is a good candidate as output of the trained 

ML. It should be mentioned that, while combining both com-

mitment and suspected lines as outputs of the trained ML model 

can reduce the calculation time even further (when both are cor-

rectly predicted calculation time is as low as 7 seconds), this is 

useful only when the predictions are perfectly accurate due to 

the high sensitivity of the solution time on the commitment sta-

tus accuracy.  

 

F. Input Features 

The input features to train the ML model should be the same 

as used as inputs when we use the trained ML to predict desired 

outputs. As explained before, the input features for ML training 

should not include network topology data; instead, they should 

include data related to uncertainties. As the prime goal is to as-

sist solving the SUC problem, and by knowing that in SUC, un-

certainties are represented by scenarios, the input features 

should be scenarios or data derived from them.  

While the part of data that is the same among various scenar-

ios, carries no useful information that can be used in predic-

tions, the useful part concerns changes over scenarios and dif-

ferent conditions. For example, assume there are 100 lines out 

of a total of 999 lines in the network that are vulnerable to dam-

age. In different conditions, some of those 100 will have a 

chance to fail. If any of those conditions are modeled in the 

SUC problem, the only difference between scenarios is related 

to those 100 lines and not all the 999 lines. Hence, scenarios 

regarding different conditions should be worked out before 

used as input features. 

Hence, the input feature set should include those elements of 

the network that are vulnerable to uncertainty. The input may 

be defined on integer or continuous variables. For example, if 

the uncertainty is related to the failure of lines, it can be defined 

as a binary variable (classification) with its value as 0 if a line 

has a chance to fail, and its value as 1 if no chance for the failure 

of the line exists. The same uncertainties could be defined with 

continuous variables as temporal failure chance. While the bi-

nary definition may seem less accurate than actual temporal 

failure chance, it includes much fewer variables (as it is not a 

function of time) and needs less number of solved case for train-

ing the ML model. Moreover, ML trained for classification with 

binary variable (only 2 classes), can be much more accurate 

than a continuous variable. Choosing each of methods to define 

variables, ultimately depends on the design of the ML algorithm 

and application for the trained model. 

IV. CONCLUSION 

Recently, variations of stochastic unit commitment have 

been used for enhanced operation under complex conditions, 

such as changing network topology. Multiple sources of uncer-

tainties must be considered,  to ensure the obtained results are 

reliable and efficient. Stochastic unit commitment offers accu-

rate solutions at the cost of long computational times and some-

times advanced hardware. This paper presented a feasibility 

study on using ML algorithms to assist stochastic unit commit-

ment solvers, with the aim of reducing the computation time 

and hardware requirements. Although the full replacement of 

the original SUC  by ML algorithms is debatable,  we argue that 

a trained ML model can assist the SUC solution by providing 

initial predictions, i.e., through a warm-start process. Initial 

tests show that predicting lines that are likely to reach their flow 

limits can significantly reduce the computational time. The re-

sults also showed that predicting generation commitment status 

is likely not effective. 

FUTURE WORK 

Our future research plan includes using a real-world, large-



 

 

scale network with multiple uncertainty sources to train an ML 

model. The trained ML model will, then, be used to solve dif-

ferent unseen SUC problems to determine its accuracy and the 

savings on solution time.  
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