
EasyChair Preprint

№ 4

Computation of Some Integer Sequences in

Maple

W.L. Fan, David J. Jeffrey and Erik Postma

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 20, 2017



Computation of Some Integer Sequences in
Maple

W.L. Fan1, D.J. Jeffrey1, Erik Postma2

1 Department of Applied Mathematics,
The University of Western Ontario, London, Ontario, Canada

2 Maplesoft, Waterloo
wfan54@uwo.ca, djeffrey@uwo.ca

Abstract. We consider some integer sequences connected with combi-
natorial applications. Specifically, we consider Stirling partition and cycle
numbers, associated Stirling partition and cycle numbers, and Eulerian
numbers of the first and second kinds. We consider their evaluation in
different contexts. One context is the calculation of a single value based
on single input arguments. A more common context, however, is the cal-
culation of a sequence of values. We compare strategies for both. Where
possible, we compare with existing Maple implementations.

1 Introduction

For extended discussions of Stirling and Eulerian numbers, we refer to [1, 2].
These and similar numbers arise frequently in combinatorial applications, and
have therefore been implemented in several computer algebra systems. To date,
the standard libraries of most systems have included Stirling numbers, but not
associated Stirling numbers [3], even though they have found several applications
in recent years. For example, they have appeared in series expansions for the
Lambert W function [4], and also appeared in one form of Stirling’s series for
the Gamma function [2]. (Stirling did not define the associated numbers.)

Another feature of many implementations is that the functions expect a sin-
gle argument, and return a single value. In practice, however, an application
will usually require a sequence of values, for example, to provide successive co-
efficients in a series. The requirement of returning multiple values has already
been recognized in some Maple functions, for example, in the implementation of
Bernoulli numbers: it accepts a mode parameter. To quote from Maple help:

The mode parameter controls whether or not the bernoulli routine
computes additional Bernoulli numbers in parallel with the requested
one. For example, if your computer has 4 cores, then the command
bernoulli(1000, singleton=false) will compute (and store) bernoulli(1002)
bernoulli(1004), and bernoulli(1006). Since in practice nearly all compu-
tations which use Bernoulli numbers require many of them, and require
them in sequence, this results in considerable efficiency gains.



This paper addresses both the computation of single values and of the integer
sequences associated with the combinatorial functions under consideration. As a
matter of terminology, we shall call a function that accepts a unique argument
and returns the corresponding unique result a singleton function, and the corre-
sponding operation a singleton computation. In contrast, a function accepting a
range (explicit or implicit) of arguments and returning the corresponding list of
values will be a sequence function, and the calculation a sequence calculation.

1.1 Definitions of numbers

We collect here the definitions of all numbers considered.

Definition 1. The r-associated Stirling numbers of the first kind, more briefly
Stirling r-cycle numbers, are defined by the generating functionln

1

1− z
−

r−1∑
j=1

zj

j

m

= m!
∑
n≥0

[
n

m

]
≥r

zn

n!
. (1)

Remark 1. The number
[
n
m

]
≥r

gives the number of permutations of n distinct

objects into m cycles, each cycle having a minimum cardinality r [2, p 256].

Definition 2. The r-associated Stirling numbers of the second kind, called more
briefly here Stirling r-partition numbers, are defined, using Karamata–Knuth
notation, by the generating functionez − r−1∑

j=0

zj

j!

m

= m!
∑
n≥0

{
n

m

}
≥r

zn

n!
. (2)

Remark 2. The number
{
n
m

}
≥r

gives the number of partitions of a set of size n

into m subsets, each subset having a minimum cardinality of r [2, 5, 6].

Definition 3. The Eulerian numbers of the first kind
〈
n
k

〉
are defined as the

number of permutations π1π2 . . . πn of {1, 2, . . . n} that have k ascents, i.e. k
places where πj < πj+1.

Definition 4. The Eulerian numbers of the second kind
〈〈
n
k

〉〉
are defined as the

number of permutations of the multiset {1, 1, 2, 2, . . . , n, n} for which all numbers
between the two occurrences of every m, with 1 ≤ m ≤ n, are greater than m,
for each permutation having k ascents, i.e. k places where πj < πj+1.

Remark 3. Note that m is not an argument. For example, given the multiset
{112233}, permutations such as 122133 or 123321 are permitted, but 211233 is
not. Amongst these permitted permutations, we count those with k ascents.

Nomenclature: In [1], the numbers
〈
n
k

〉
are called simply ‘Eulerian numbers’,

while the numbers
〈〈
n
k

〉〉
are called ‘second-order Eulerian numbers’.

2



2 Stirling partition numbers

The Maple 2017 implementation is a singleton function, denoted stirling2 in
the combinat package. It uses the formula{

n

m

}
=

1

m!

m∑
k=0

(−1)m−k

(
m

k

)
kn . (3)

For the singleton computation, Table1 shows that the times3 are much less using
(3). In this table, we compared the Maple function stirling2 with the method
given below using the recurrence relation (7). Timings for a sequence calculation,
however, given in Table 2, show the new method is more efficient.

n m recurrence stirling2

100 50 0.002 0.002

200 100 0.010 0.003

500 250 0.079 0.007

4000 200 2.700 0.009

5000 250 6.940 0.013

Table 1. Timings (sec) for generating a singleton Stirling Partition number. The time
using (7) is compared with the Maple stirling2 function.

2.1 Sequence calculation

Given n,m, we wish to compute all Stirling partition numbers
{
i
j

}
such that

i ≤ n and j ≤ m. We use the recurrence relation{
i

j

}
= j

{
i− 1

j

}
+

{
i− 1

j − 1

}
, (4)

subject to the boundary conditions{
j

j

}
= 1 , and

{
i

1

}
= 1 . (5)

Since
{
i
j

}
= 0 for j > i (see Fig. 1), we define a matrix P which will not store

these zeros.

Pij =

{
i+ j − 1

j

}
. (6)

Then the recurrence relation becomes

P (i, j) = j P (i− 1, j) + P (i, j − 1) . (7)

The boundary conditions then become, respectively, P (1, j) =
{
j
j

}
= 1, and

P (i, 1) = 1.

3 Product placement: times found using an Intel i7 in a Lenovo Ultrabook.

3



Timings Table 2 shows the timings for filling matrices of various sizes with
integer sequences of Stirling partition numbers. The recurrence relation (7) is
compared with creating each entry through a call to Maple’s stirling2. Filling
the square matrix P (n, n) actually calculates all partition numbers

{
i
j

}
with

i ≤ 2n and j ≤ n. This is done for timing convenience, and the matrix can be
reshaped for other applications.

n m recurrence stirling2

100 100 0.031 7.87

200 200 0.093 69.2

300 300 0.265 259

400 400 0.437 667

500 500 0.843 1450

Table 2. Timings (sec) for generating sequences of Stirling Partition numbers. The
time using (7) compared with Maple stirling2 function.

3 Stirling cycle numbers

We consider the computation of
[
n
m

]
, implemented in Maple 2017 as stirling1

in the combinat package. The computational method used by stirling1 is
based on Stirling’s original definition of his numbers:

xn =
∑
k

[
n

k

]
(−1)n−kxk . (8)

For given n, stirling1 constructs the product on the left, which is then collected
in powers of x, so that by equating the coefficients of xk, all numbers

[
n
k

]
for

1 ≤ k ≤ n are determined and stored. Thus, a future call to
[
n
m

]
with 1 ≤ m ≤ n

will be returned by table lookup, but a future call with a different n will initiate
a new computation. It is interesting that although the interface appears to offer
the user only a singleton computation, in fact a particular integer sequence has
been computed silently.

3.1 Singleton computation

A singleton computation returns the value of a function for a single pair of input
arguments. We implement the known recurrence relation[

n

m

]
= (n− 1)

[
n− 1

m

]
+

[
n− 1

m− 1

]
, (9)

4



subject to boundary conditions[
m

m

]
=1 , for m ≥ 1 , (10)[

n

1

]
=(n− 1)! . (11)

We define the vector

u
(i)
j =

[
i+ j − 1

j

]
.

In Fig. 1, we see that for fixed i, u
(i)
j describes numbers along the ith diagonal

line, counting from the left. The recurrence relation (9) can be written in terms
of u as

u
(i)
j = (i+ j − 2)u

(i−1)
j + u

(i)
j−1 ,

with u
(i)
1 = (i − 1)!. We note that once u

(i−1)
j is used, it does not need to be

stored further, so we can overwrite storage. Our iteration scheme is thus (Maple
notation for the ith element of a vector is u[i])

u[j] = (i+ j − 2)u[j] + u[j − 1] .

Therefore, we initialize u[1] = u
(i)
1 =

[
i
1

]
= (i − 1)! and fill in diagonal lines

successively.

Complexity The aim of this subsection is to gain insight into the best ways
to test the implementations, by identifying the worse cases for the methods. A
full bit complexity is beyond the scope of this paper, and will require more work
on estimates for the sizes of Stirling numbers. As pointed out by Wilf [9], the
available estimates are for

[
n
k

]
when k is fixed and n→∞, whereas the present

algorithms require knowledge of the opposite case.
In order to calculate the number

[
n
m

]
, a vector of length m must be re-

computed (overwritten) n−m times. Each iteration requires one multiplication
and 3 additions. Therefore the complexity is m(n−m). We can therefore expect
that the worst case for the method will be m = n/2.

Since Maple’s approach and the present one calculate different sets of num-
bers, a direct comparison is not very meaningful, and so we simply make a brief
comparison between one-time calculations. Notice that in Table 3, the times
taken by stirling1 are approximately independent of m as expected.

3.2 A finite sum

For completeness, we mention that a singleton cycle number can be found from
a finite sum, as was done for a singleton partition number. We have[

n

m

]
=

n−m∑
j=0

(−1)n−k+j

(
n− 1 + j

n− k + j

)(
2n− k
n− k − j

){
n− k + j

j

}
. (12)

5



m

n

Fig. 1. Scheme for calculating singleton Stirling cycle
[
n
m

]
or partition numbers

{
n
m

}
.

The computation proceeds from left to right and bottom to top. At each stage only
the numbers on one diagonal need to be stored in the vector u

(i)
j which is progressively

overwritten. The open circles show the base of each successive loop. The black filled
circles show the recurrence relation used. The larger circle is calculated from the two
smaller ones. The triangles line show the points computed by one call to stirling1.

n m stirling1 Present scheme

300 150 0.023 0.035

400 200 0.063 0.052

400 20 0.062 0.011

1000 500 0.612 0.491

2000 500 4.92 3.00

Table 3. Times for a single call to Maple’s stirling1 and the present singleton com-
putation. Timings (sec) based on 10 trials, with memory being cleared before each
call.

6



Combining this with (3), we can express a cycle number as a double sum. This,
however, is too slow to warrant further consideration.

3.3 Sequence calculation

The method used above for partition numbers can be readily adapted for cycle
numbers. Given n,m, we compute all Stirling cycle numbers

[
i
j

]
such that i ≤ n

and j ≤ m. We use the recurrence relation[
i

j

]
= (i− 1)

[
i− 1

j

]
+

[
i− 1

j − 1

]
, (13)

subject to the boundary conditions[
j

j

]
= 1 , and

[
i

1

]
= (i− 1)! . (14)

Since
[
i
j

]
= 0 for j > i (see Fig. 1), we define a matrix C which will not store

these zeros.

Cij =

[
i+ j − 1

j

]
. (15)

Then the boundary conditions are C(1, j) =
[
j
j

]
= 1, and C(i, 1) = (i− 1)! . The

recurrence relation becomes

C(i, j) = (i+ j − 2)C(i− 1, j) + C(i, j − 1) . (16)

Timings Table 4 shows the timing for filling matrices of various sizes with
integer sequences of Stirling cycle numbers. The recurrence relation (16) is com-
pared with creating each entry through a call to Maple’s stirling1. Filling the
square matrix C(n, n) actually calculated all cycle numbers

[
i
j

]
with i ≤ 2n.

This is done for timing purposes, and the matrix can be reshaped for other ap-
plications. The comparison is to compute the same numbers using the sequence
calculation function stirling1. Larger values of (n,m) are not tabulated be-
cause a bug in Maple 2016 (and earlier) caused larger arguments to fail. This
will be corrected in Maple 2017.

4 Associated Stirling numbers

There are no known analogues of (3) or (8) for the associated Stirling numbers
for r ≥ 2; hence we must use either the generating functions (2) and (1), or the
following recurrence relations.{

n+ 1

k

}
≥r

= k

{
n

k

}
≥r

+

(
n

r − 1

){
n− r + 1

k − 1

}
≥r

, (17)[
n+ 1

k

]
≥r

= n

[
n

k

]
≥r

+ nr−1

[
n− r + 1

k − 1

]
≥r

. (18)

7



n m recurrence stirling1

40 40 0.000 0.842

60 60 0.000 4.446

80 80 0.015 14.414

100 100 0.015 35.037

120 120 0.015 193.004

Table 4. Timings (sec) for generating sequences of Stirling cycle numbers. The time
using (16) compared with Maple’s stirling1 function.

Note that n0 = 1. The boundary cases are{
n

1

}
≥r

= 1 , n ≥ r , (19)[
n

1

]
≥r

= (n− 1)! , n ≥ r , (20){
kr

k

}
≥r

=
(rk)!

(r!)k k!
, k ≥ 1 , (21)[

kr

k

]
≥r

=
(rk)!

rkk!
, k ≥ 1 . (22)

4.1 Singleton Stirling 2-partition and 2-cycle

The two computations have the same structure, and can be described in parallel.
We choose to implement{

n

m

}
≥2

= m

{
n− 1

m

}
≥2

+ (n− 1)

{
n− 2

m− 1

}
≥2

, (23)[
n

m

]
≥2

= (n− 1)

[
n− 1

m

]
≥2

+ (n− 1)

[
n− 2

m− 1

]
≥2

. (24)

We also have boundary conditions[
2n

n

]
≥2

=

{
2n

n

}
≥2

=
(2n)!

n!2n
= (2n− 1)!!

[
2n+ 1

n

]
≥2

= 2
(2n+ 1)!

3(n− 1)!2n
= 2

{
2n+ 1

n

}
≥2

We define the vector

u
(i)
j =

[
i+ 2j − 1

j

]
≥2

,

8



and similarly for 2-partition numbers. In Fig. 2, we see that if we fix i, then u
(i)
j

describes numbers along the ith diagonal line. Now u
(i)
1 = i! and

u
(i)
j = (i+ 2j − 2)u

(i−1)
j + (i+ 2j − 2)u

(i)
j−1 .

We note that once u
(i−1)
j is used, it does not need to be stored further, so we

can overwrite storage. Our iteration scheme is thus

u[j] = (i+ 2j − 2)(u[j] + u[j − 1]) .

For initialization, we can use a special case of (24):[
2j + 2

j + 1

]
≥2

= u
(1)
j+1 = (2j + 1)

[
2j

j

]
≥2

= (2j + 1)u
(1)
j .

Therefore, we initialize u to i = 1 using u
(1)
j = u[j] = 1 and fill in one line at a

time by fixing i and looping over j. Each j loop starts setting u
(i)
1 = i! = iu

(i−1)
1 .

We then loop over i.

m

n

Fig. 2. Calculating 2-partition and 2-cycle numbers. As with the r = 1 case, only
numbers on one sloping line need to be kept at any stage of the computation. The
same convention for illustrating the recurrence relation is used.

4.2 Sequence calculation of 2-partition and 2-cycle numbers

Given n,m, we compute all Stirling 2-partition numbers
{
i
j

}
≥2

or 2-cycle numbers[
i
j

]
≥2

such that i ≤ n and j ≤ m. We use the recurrence relations (23) or (24) as

9



appropriate. Since
{
i
j

}
≥2

=
[
i
j

]
≥2

= 0 for 2j > i (see Fig. 2), we define a matrix

C which will not store these zeros.

Cij =

[
i+ 2j − 1

j

]
≥2

. (25)

Then the recurrence relation for 2-partition becomes

C(i, j) = j C(i− 1, j) + (i+ 2j − 2)C(i− 1, j − 1) . (26)

The recurrence relation for 2-cycle becomes

C(i, j) = (i+ 2j − 2)C(i− 1, j) + (i+ 2j − 2)C(i− 1, j − 1) . (27)

4.3 Singleton Stirling r-partition and r-cycle numbers

From the above discussion of 1-associated and 2-associated numbers, the gener-
alization is clear. We have to implement[

n+ 1

m

]
≥r

= n

[
n

m

]
≥r

+ n(n− 1)(n− 2) . . . (n− r + 2)

[
n− r + 1

m− 1

]
≥r

. (28)

We define the vector

u
(i)
j =

[
i+ rj − 1

j

]
≥r

.

The generalization of Fig. 2 to one containing lines of slope 1/r is not shown.

For fixed i, u
(i)
j describes numbers along one of the lines, with u

(i)
1 = (i+ r− 2)!

and

u
(i)
j = (i+ rj − 2)u

(i−1)
j + (i+ rj − 2)(i+ rj − 3) . . . (i+ rj − r)u(i)j−1 .

We note that once u
(i−1)
j is used, it does not need to be stored further, so we

can overwrite storage. Our iteration scheme is thus

u[j] = (i+ rj − 2)u[j] + (i+ rj − 2) . . . (i+ rj − r)u[j − 1] .

For initialization, we can use a special case of (28):[
rj + r

j + 1

]
≥r

= u
(1)
j+1 =(rj + r − 1)(rj + r − 2) . . . (rj + 1)

[
rj

j

]
≥r

=(rj + r − 1)(rj + r − 2) . . . (rj + 1)u
(1)
j .

We initialize u using u
(1)
j = u[j] = 1 and fill in each line by fixing i and looping

over j. We start each j loop by setting u
(i)
1 = (i+ r− 2)! = (i+ r− 2)u

(i−1)
1 . We

then loop over i.

10



4.4 Sequence calculation of r-partition and r-cycle numbers

Given n,m, we compute all Stirling r-partition numbers
{
i
j

}
≥r

or r-cycle numbers[
i
j

]
≥r

such that i ≤ n and j ≤ m. The recurrence relation applied here can refer

to (17) and (18), which is subject to the boundary conditions{
1

1

}
≥r

=

[
1

1

]
≥r

= 1 . (29)

Since
{
i
j

}
≥r

=
[
i
j

]
≥r

= 0 for rj > i, we define a matrix C which will not store

these zeros.

Cij =

[
i+ rj − 1

j

]
≥r

. (30)

Then the recurrence relation for r-partition becomes

C(i, j) = j C(i− 1, j) +

(
i+ rj − 2

r − 1

)
C(i− r + 1, j − 1) . (31)

The recurrence relation for r-cycle becomes

C(i, j) = (i+rj−2)C(i−1, j)+(i+rj−2)(i+rj−3) . . . (i+rj−r)C(i−r+1, j−1)
(32)

4.5 Implementation in Maple

In our implementation of Stirling numbers, we provide procedures for users to
compute either a singleton Stirling number or a sequence of Stirling numbers.
The procedures are

1. StirlingRCycle: to calculate a singleton Stirling r-cycle number.
2. StirlingRCycleMatrix: to calculate a sequence of Stirling r-cycle numbers.
3. StirlingRPartition: to calculate a singleton Stirling r-partition number.
4. StirlingRPartitionMatrix: to calculate a sequence of Stirling r-partition num-

bers.

Neither Maple nor Mathematica has an implementation with which to compare
our programs. Therefore we have programmed the recurrence relations, as well
as the generating functions in Maple. In Table 5 below, we compared our new
scheme for computing a singleton r-associated Stirling cycle number with using
the generating function. The generating function for Stirling r-cycle numbers is:

StirRCycleGen := proc(n,k,r) local t, z, p;

t:=series((ln(1/(1-z)) - add(z^p/p , p=1..r-1))^k, z=0,n+1);

n!*coeff(t, z, n)/k!;

end proc;

11



m Singleton scheme Generating function

2 0.062 2.979

3 0.093 14.461

4 0.109 26.707

5 0.140 41.184

6 0.156 38.797

7 0.171 51.121

8 0.171 45.240

9 0.171 53.055

10 0.171 53.289

Table 5. Timings in seconds of computations of single Stirling r-cycle number. Column
headings give the functions used. The numbers tested were

[
1700
m

]
≥100

.

Table 5 shows that the singleton scheme is much faster than the generating
function for the computation of single r-associated Stirling cycle number. For the
computation of a sequence of r-associated Stirling cycle numbers, we compared
three methods: (1) a loop calling the singleton function; (2) a loop calling the
generating function; (3) the sequence procedure. The results are collected in
Tables 6 and 7, and show that the sequence procedure is fastest.

n Singleton scheme Generating function

10 0.011 2.402

20 0.024 8.746

30 0.037 18.952

40 0.063 36.477

50 0.771 72.817

Table 6. Timings in seconds of computations of a sequence of r-associated Stirling
cycle numbers. Column headings give the functions used. The input argument is n,
and the return is an n× n matrix.

Similar tests were performed for r-associated Stirling partition numbers. The
generating function for Stirling r-partition numbers is:

StirRPartGen := proc(n,k,r) local t, z, p;

t:=series((exp(z) - add(z^p/p! , p=0..r-1))^k, z=0, n+1);

n!*coeff(t, z, n)/k!;

end proc;

The test data are collected in Tables 8, 9, 10. Since the pattern is similar to that
for cycle numbers, the discussion and tables are abbreviated.

12



n Singleton scheme Sequence scheme

100 7.145 0.015

150 36.411 0.031

200 117.734 0.062

250 295.102 0.124

300 638.474 0.202

Table 7. Timings in seconds of computations of a sequence of r-associated Stirling
cycle numbers. Column headings give the functions used. The input argument is n,
and the return is an n× n matrix.

m Singleton scheme Generating function

2 0.031 7.129

4 0.062 18.969

6 0.093 29.250

8 0.140 32.276

10 0.156 43.664
Table 8. Timings in seconds of computations of single r-associated Stirling partition
number. Column headings give the functions being used. The numbers tested were{
1000
m

}
≥18

.

n Singleton scheme Generating function

10 0.020 1.864

20 0.035 8.345

30 0.070 22.047

40 0.144 44.074

50 0.201 79.233

Table 9. Timings in seconds of computations of a sequence of r-associated Stirling
partition number. Column headings give the functions being used. The input argument
is n, and the return is an n× n matrix.

n Singleton scheme Sequence scheme

100 7.145 0.015

200 117.734 0.062

250 295.102 0.124

300 638.474 0.202

Table 10. Timings in seconds of computations of a sequence of r-associated Stirling
partition numbers. Column headings give the functions used. The input argument is
n, and the return is an n× n matrix.

13



5 A multiple threads approach to sequence calculations

The Maple help for Bernoulli numbers, quoted in the introduction, states that
additional values of Bernoulli numbers are calculated in parallel. This section ex-
plored ways in which parallel computation could be applied to Stirling numbers.
For this, we use the Threads package in Maple. When we generate the numbers
inside a matrix, instead of filling the matrix row by row and column by column,
we fill each diagonal from left to right. Here is the main part in the sequential
code to fill Stirling r-cycle numbers in the matrix by diagonal with given input
arguments (n, r) where n is the size of matrix.

for N from 3 to n do

for k from 2 to N-1 do

pd := mul(N-k+r-1-l, l = 1 .. r-1);

A(N-k+r, k) := pd*A(N-k, k-1)+(N-k+r-2)*A(N-k+r-1, k);

end do;

end do;

According to the recurrence relation, we know that we can divide such diag-
onal into a left half and right half. So we define two subroutines accordingly.

fileft := proc (N, r) local k, Nsplit, pd, l; global A;

Nsplit := floor((1/2)*N+1/2);

for k from 2 to Nsplit do

pd := mul(N-k+r-1-l, l = 1 .. r-1);

A(N-k+r, k) := pd*A(N-k, k-1)+(N-k+r-2)*A(N-k+r-1, k);

end do; end proc;

and

filrght := proc (N, r) local k, Nsplit, pd, l; global A;

Nsplit := floor((1/2)*N+1/2);

for k from Nsplit+1 to N-1 do

pd := mul(N-k+r-1-l, l = 1 .. r-1);

A(N-k+r, k) := pd*A(N-k, k-1)+(N-k+r-2)*A(N-k+r-1, k);

end do; end proc;

And for each half of the diagonal, we can establish an independent thread to
fulfill the task. We implemented this approach in Maple.

Threaded := proc (n, r) local N, k, Nsplit; global A;

A := Matrix(n, n, fill = 0);

A(1, 1) := 1;

for N from 3 to n do

Threads:-Task:-Start(null, Task = [fileft, N, r],

Task = [filrght, N, r])

end do; end proc;

14



Table 11 compares the threaded scheme with the sequential scheme in the com-
putation of an n × n matrix of Stirling cycle numbers. The table reflects the
limitation that there is an overhead cost to setting up new threads, and the
benefit of the threaded approach is felt only when the amount of work achieved
within a thread outweighs the overhead. In this implementation, new threads
are created for each loop. We are exploring new methods of calculation which
will allow the threads to work more efficiently, with less overhead.

n Threaded scheme Sequential scheme

500 0.856 0.329

1000 2.420 1.380

2000 9.240 9.610

2500 17.900 24.900

3000 29.880 39.870

4000 87.960 142.800

Table 11. Timings in seconds of comparison of threaded code with sequential code
in generating sequences of Stirling Cycle numbers. The tests were made on an AMD
8-core processor.

6 Implementation of Eulerian numbers

The Eulerian numbers share many similarities with the Stirling numbers, and
all the methods described above can be applied to their case. The numbers obey
the following recurrence relations [1].〈

n

m

〉
= (m+ 1)

〈
n− 1

m

〉
+ (n−m)

〈
n− 1

m− 1

〉
, (33)〈〈

n

m

〉〉
= (m+ 1)

〈〈
n− 1

m

〉〉
+ (2n−m− 1)

〈〈
n− 1

m− 1

〉〉
. (34)

The present Maple functions eulerian1 and eulerian2 are recursively pro-
grammed implementations of these equations. As a consequence, they are very
slow for large arguments. The new implementation of these numbers consists of
4 functions, which follow the patterns of the Stirling number implementations.

1. Eulerian1: calculates a singleton Eulerian number of the first kind.
As with Stirling partition numbers, a finite sum is known which is distinctly
the fastest method for a singleton computation [8]:〈

n

k

〉
=

k+1∑
j=0

(−1)j
(
n+ 1

j

)
(k − j + 1)n . (35)

15



2. Eulerian1Matrix: calculates a sequence of Eulerian numbers of the first kind.
This follows the sequence calculation of Stirling numbers, using (33).

3. Eulerian2: calculates singleton Eulerian numbers of the second kind.
This follows the simpleton method used earlier for Stirling cycle numbers.

4. Eulerian2Matrix: calculates a sequence of Eulerian numbers of the second
kind.
This follows the sequence calculation of Stirling numbers.

6.1 Timings for Eulerian number calculations

In view of the similarities with Stirling numbers, we shall not labour the com-
parisons between methods, since they form the same procession of speeds seen
before. Table 12 compares the new implementations, following the patterns set
above.

n Eulerian1 Eulerian1Matrix Eulerian2 Eulerian2Matrix

60 2.776 0.015 3.135 0.000
80 9.656 0.015 10.795 0.015
100 23.743 0.015 27.924 0.015
120 52.884 0.015 60.684 0.015
140 101.634 0.046 115.159 0.046
160 180.430 0.062 204.049 0.062
180 300.036 0.062 342.952 0.062

Table 12. Timings in seconds of computations of Eulerian numbers. Column headings
give the functions used.

References

1. Graham, R.L., Knuth, D.E., Patashnik, O., Concrete Mathematics, Addison-
Wesley Publishing Co., Reading, Massachusetts, 1994.

2. Comtet, L., Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, Hol-
land, 1974.

3. Howard, F. T., Associated Stirling Numbers, The Fibonacci Quarterly, Vol. 18(4),
303–315, 1980.

4. Corless, R.M., Jeffrey, D.J., Knuth, D.E., A Sequence of Series for the Lambert W
Function, Proceedings of ISSAC 1997, ed. W.W. Kuechlin, ACM Press, 1997.

5. Karamata, J., Theoreme sur la sommabilite exponentielle et d’autres sommabilites
rattachant, Mathematica, Cluj, Romania, vol. 9, 164–178, 1935.

6. Knuth, D.E., Two Notes on Notation, The American Mathematical Monthly, vol.
99, 403–422, 1992.

7. Stirling, J., Methodus Differentialis, London, 1730.
8. Lehmer, D. H., Generalized Eulerian Numbers, Journal of Combinatorial Theory,

Series A 32, 195–215, 1982.
9. Wilf, H. S., The Asymptotic Behavior of the Stirling Numbers of the First Kind,

Journal of Combinatorial Theory, Series A 64, 344–349, 1993.

16


