F

Definitive Proof of The abc Conjecture

Abdelmajid Ben Hadj Salem

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Definitive Proof of The abc Conjecture

Abdelmajid Ben Hadj Salem

La Soukra, Ariana, Tunisia
abenhadjsalem@gmail.com

Abstract

In this paper, we consider the $a b c$ conjecture. Firstly, we give an elementary proof the conjecture $c<\operatorname{rad}^{2}(a b c)$. Secondly, the proof of the $a b c$ conjecture is given for $\epsilon \geq 1$, then

 for $\epsilon \in] 0,1\left[\right.$. We choose the constant $K(\epsilon)$ as $K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}$. Some numerical examples are presented.keywords :Elementary number theory; real functions of one variable.

Contents

1 Introduction and notations 1
2 The Proof of the Conjecture $c<\operatorname{rad}^{2}(a b c)$ 2
2.1 Proof that $c<R^{2}$ 2
3 The Proof of the $a b c$ conjecture 4
3.1 Case : $\epsilon \geq 1$ 4
3.2 Case: $\epsilon<1$ 4
4 Examples : Case $c=a+1$ 5
4.1 Example 1 5
4.2 Example 2 6
5 Examples: Case $c=a+b$ 6
5.1 Example 1 6
5.2 Example 2 7
5.3 Example 3 8
6 Conclusion 8
7 Acknowledgments 9

To the memory of my Father who taught me arithmetic To the memory of my colleague and friend Jamel Zaiem (1956-2019)

1 Introduction and notations

Let a positive integer $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 1.1. (abc Conjecture): Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists a constant $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{3}
\end{equation*}
$$

$K(\epsilon)$ depending only of ϵ.
The idea to try to write a paper about this conjecture was born after the publication of an article in Quanta magazine about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the $a b c$ conjecture is due to the incomprehensibility how the prime factors are organized in c giving a, b with $c=a+b$. So, I will give a simple proof that can be understood by undergraduate students.

We know that numerically, $\frac{\operatorname{Logc}}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [1]. A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ [3]. It is the key to resolve the $a b c$ conjecture. In my paper, I propose an elementary proof of it, it facilitates the proof of the $a b c$ conjecture. In the second section, we give the proof that $c<\operatorname{rad}^{2}(a b c)$. We present the proof of the $a b c$ conjecture in section three. The numerical examples are discussed in sections four and five.

2 The Proof of the Conjecture $c<\operatorname{rad}^{2}(a b c)$

Below is given the definition of the conjecture $c<\operatorname{rad}^{2}(a b c)$:
Conjecture 2.1. Let a, b, c positive integers relatively prime with $c=a+b, a>b, b \geq 2$, then:

$$
\begin{equation*}
c<\operatorname{rad}^{2}(a b c) \Longrightarrow \frac{\log c}{\log (\operatorname{rad}(a b c))}<2 \tag{4}
\end{equation*}
$$

We note $R=\operatorname{rad}(a b c)$ in the case $c=a+b$ or $R=\operatorname{rad}(a c)$ in the case $c=a+1$.

2.1 Proof that $c<R^{2}$

Proof. :
${ }^{* *}$ Case $c<R: c<R<R^{2}$ and the condition (4) is verified.
${ }^{* *}$ Case $c=R$: case to reject.
** Case $c>R$: We suppose that $c>R^{2}$. Using the theorem of the Euclidean division, we can write:

$$
\begin{equation*}
c=m \cdot R^{2}+m^{\prime}, \quad\left(m, m^{\prime}\right) \in \mathbb{N}^{2}, \text { and } 1 \leq m^{\prime}<R^{2} \tag{5}
\end{equation*}
$$

with $\left(m, m^{\prime}\right)$ an unique pair, if $m^{\prime}=0 \Longrightarrow a, b, c$ are not relatively prime, then $1 \leq m^{\prime}<R^{2}$. We have also :

$$
\begin{equation*}
c=m R^{2}+m^{\prime}<m R^{2}+R^{2} \Longrightarrow m R^{2}<c<(m+1) R^{2} \tag{6}
\end{equation*}
$$

Then we obtain that c has an upper bound by the natural number $(m+1) R^{2}$. We can write $c \leq(m+1) R^{2}-1$, then $\left.\forall \delta^{\prime} \in\right] 0,1\left[\right.$, we have $c<(m+1) R^{2}-1+\delta^{\prime} \Longrightarrow c<(m+1) R^{2}-\left(1-\delta^{\prime}\right)$. Let $\delta=1-\delta^{\prime}$ with $\left.\delta \in\right] 0,1[$ and we obtain c is bounded as :

$$
\begin{equation*}
\left.m R^{2}<c<(m+1) R^{2}-\delta, \quad \forall \delta \in\right] 0,1[, m>0 \tag{7}
\end{equation*}
$$

As $m>0$, we write (7) as :

$$
\begin{equation*}
\left.m R^{2}<c<m R^{2}\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right) \quad \forall \delta \in\right] 0,1[, m>0 \tag{8}
\end{equation*}
$$

As $c=m R^{2}+m^{\prime}, \quad m^{\prime}<R^{2}$, but $c>R \Longrightarrow c^{2}>R^{2}$, we obtain also:

$$
\begin{equation*}
c^{2}=l R^{2}+l^{\prime}, \quad 1 \leq l^{\prime}<R^{2} \tag{9}
\end{equation*}
$$

From the above equations, we can write:

$$
\begin{equation*}
\left(m R^{2}+m^{\prime}\right)^{2}=l R^{2}+l^{\prime} \Longrightarrow m^{2} R^{4}+\left(2 m m^{\prime}-l\right) R^{2}+m^{\prime 2}-l^{\prime}=0 \tag{10}
\end{equation*}
$$

From the last equation above, R^{2} is the positive root of the polynomial of the second degree:

$$
\begin{equation*}
F(T)=m^{2} T^{2}+\left(2 m m^{\prime}-l\right) T+m^{\prime 2}-l^{\prime}=0 \tag{11}
\end{equation*}
$$

The discriminant of $F(T)$ is:

$$
\begin{equation*}
\Delta=\left(2 m m^{\prime}-l\right)^{2}-4 m^{2}\left(m^{\prime 2}-l^{\prime}\right) \tag{12}
\end{equation*}
$$

As a real root of $F(T)$ exists, and it is an integer, Δ is written as :

$$
\begin{equation*}
\Delta=t^{2} \geq 0, t \in \mathbb{Z}^{+} \tag{13}
\end{equation*}
$$

${ }^{* *}$ - Case $\Delta=0$ and $m^{\prime 2}-l^{\prime} \neq 0$: Then $\left(2 m m^{\prime}-l\right)^{2}=4 m^{2}\left(m^{\prime 2}-l^{\prime}\right) \Longrightarrow m^{\prime 2}-l^{\prime}=\alpha^{2}, \alpha \in \mathbb{N}$. In this case the equation (11 has a double root $T_{1}=T_{2}=\frac{l-2 m m^{\prime}}{2 m^{2}}=R^{2} \Longrightarrow l-2 m m^{\prime}=$ $2 m^{2} R^{2}>0$. But $\left(l-2 m m^{\prime}\right)^{2}=4 m^{4} R^{4}=4 m^{2}\left(m^{\prime 2}-l^{\prime}\right) \Longrightarrow m^{\prime 2}=m^{2} R^{4}+l^{\prime}>R^{4} \Longrightarrow m^{\prime}>R^{2}$. Then the contradiction as $m^{\prime}<R^{2}$. The case $\Delta=0$ and $m^{\prime 2}-l^{\prime} \neq 0$ is impossible.
${ }^{* *}$ - Case $\Delta=0$ and $m^{\prime 2}-l^{\prime}=0$: In this case, $2 m m^{\prime}-l=0 \Longrightarrow R^{2}=0$. Then the contradiction as $R>0$. The case $\Delta=0$ and $m^{\prime 2}-l^{\prime}=0$ is impossible.
** - Case $\Delta>0$ and $m^{\prime 2}-l^{\prime}=0$: The equation (11) becomes:

$$
F(T)=m^{2} T^{2}+\left(2 m m^{\prime}-l\right) T=0 \Longrightarrow\left\{\begin{array}{l}
T_{1}=0 \tag{14}\\
T_{2}=\frac{l-2 m m^{\prime}}{m^{2}}=R^{2}
\end{array}\right.
$$

Then, we have:

$$
l-2 m m^{\prime}=m^{2} R^{2} \Longrightarrow l=2 m m^{\prime}+m^{2} R^{2}
$$

As $m^{\prime}<R^{2} \Longrightarrow l-m^{2} R^{2}<2 m R^{2} \Longrightarrow l<2 m R^{2}+m^{2} R^{2}$, we obtain $l R^{2}<m(2+m) R^{4}$. We deduce that $c^{2}=l R^{2}+l^{\prime}<m(2+m) R^{4}+R^{2}$. As $m>0$, we write the last equation as :

$$
\begin{equation*}
c<m R^{2}\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

I announce that $\forall \delta \in] 0,1[$ we have the inequalities :

$$
\begin{equation*}
m R^{2}<c<m R^{2}\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{\frac{1}{2}}<m R^{2}\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right) \tag{16}
\end{equation*}
$$

We give below the proof of the statement (16):

$$
\begin{gather*}
\left(1+\frac{2}{m}+\frac{1}{m^{2} R^{2}}\right)^{\frac{1}{2}} \stackrel{?}{<}\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right) \\
1+\frac{2}{m}+\frac{1}{m^{2} R^{2}} \stackrel{?}{<}\left(1+\frac{1}{m}-\frac{\delta}{m R^{2}}\right)^{2}=1+\frac{1}{m^{2}}+\frac{\delta^{2}}{m^{2} R^{4}}+\frac{2}{m}-\frac{2 \delta}{m R^{2}}-\frac{2 \delta}{m^{2} R^{2}} \\
\frac{1}{m^{2} R^{2}} \stackrel{?}{<} \frac{1}{m^{2}}+\frac{\delta^{2}}{m^{2} R^{4}}-\frac{2 \delta}{m R^{2}}-\frac{2 \delta}{m^{2} R^{2}} \tag{17}
\end{gather*}
$$

From the numerical examples, we can take $R \approx 10^{4}$ and the sum $\frac{\delta^{2}}{m^{2} R^{4}}-\frac{2 \delta}{m R^{2}}-\frac{2 \delta}{m^{2} R^{2}} \ll \frac{1}{m^{2}}$. So we find that $\frac{1}{m^{2} R^{2}}<\frac{1}{m^{2}}$ and (16) is true. Then the contradiction with (8). Hence, the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}=0$ is impossible.
${ }^{* *}$ - Case $\Delta>0$ and $m^{\prime 2}-l^{\prime}>0$: We have: $\Delta=\left(2 m m^{\prime}-l\right)^{2}-4 m^{2}\left(m^{\prime 2}-l^{\prime}\right)=t^{2} \Longrightarrow$ $t^{2}<\left(2 m m^{\prime}-l\right)^{2}$. Let the case $\left|2 m m^{\prime}-l\right|=2 m m^{\prime}-l \Longrightarrow t<2 m m^{\prime}-l$. The expression of the two roots are:

$$
\left\{\begin{array}{l}
T_{1}=\frac{l-2 m m^{\prime}+t}{2 m^{2} b}<0 \tag{18}\\
T_{2}=\frac{l-2 m m^{\prime}-t}{2 m^{2}}<0
\end{array}\right.
$$

As $R^{2}>0$ is a root of $F(T)=0$, then the contradiction. Hence, the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}>0$ is impossible.
${ }^{* *}$ - Case $\Delta>0$ and $m^{\prime 2}-l^{\prime}<0$: From $m^{\prime 2}<l^{\prime} \Longrightarrow\left(c-m R^{2}\right)^{2}<c^{2}-l R^{2}$, it gives $m^{2} R^{2}+l-2 m c<0 \Longrightarrow m^{2} R^{2}+l<2 m c<2 m(m+1) R^{2}$. Then we obtain $l<m^{2} R^{2}+2 m R^{2} \Longrightarrow l R^{2}<m(m+2) R^{4} \Longrightarrow c^{2}=l R^{2}+l^{\prime}<m(m+2) R^{4}+R^{2}$. Using the result of (16), the case $\Delta>0$ and $m^{\prime 2}-l^{\prime}<0$ is impossible.

All the cases for the resolution of the equation (11) have given contradictions with the hypothesis $c>m R^{2}, m>0$. Then we obtain that $m=0$ and $0<c<R^{2}$. Hence the condition (4) is verified.

We announce the theorem:
Theorem 2.1. Let a, b, c positive integers relatively prime with $c=a+b, a>b$, then $c<$ $r a d^{2}(a b c)$.

3 The Proof of the $a b c$ conjecture

3.1 Case : $\epsilon \geq 1$

Using the result that $c<R^{2}$, we have $\forall \epsilon \geq 1$:

$$
\begin{equation*}
c<R^{2} \leq R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \text { with } K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon \geq 1 \tag{19}
\end{equation*}
$$

We verify easily that $K(\epsilon)>1$ for $\epsilon \geq 1$. Then the $a b c$ conjecture is true.

3.2 Case: $\epsilon<1$

3.2.1 Case: $c<R$

In this case, we can write :

$$
\begin{equation*}
c<R<R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \text { with } K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon<1 \tag{20}
\end{equation*}
$$

here also $K(\epsilon)>1$ for $\epsilon<1$ and the $a b c$ conjecture is true.

3.2.2 Case: $c>R$

In this case, we confirm that :

$$
\begin{equation*}
c<K(\epsilon) \cdot R^{1+\epsilon}, \quad \text { with } K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, 0<\epsilon<1 \tag{21}
\end{equation*}
$$

If not, then $\left.\exists \epsilon_{0} \in\right] 0,1[$, so that the triple (a, b, c) checking $c>R$ and:

$$
\begin{equation*}
c \geq R^{1+\epsilon_{0}} . K\left(\epsilon_{0}\right) \tag{22}
\end{equation*}
$$

are in finite number. We have:

$$
\begin{array}{r}
c \geq R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}} \cdot c \geq R^{1-\epsilon_{0}} \cdot R^{1+\epsilon_{0}} \cdot K\left(\epsilon_{0}\right) \Longrightarrow \\
\quad R^{1-\epsilon_{0}} \cdot c \geq R^{2} \cdot K\left(\epsilon_{0}\right)>c K\left(\epsilon_{0}\right) \Longrightarrow R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \tag{23}
\end{array}
$$

As $c>R$, we obtain:

$$
\begin{array}{r}
c^{1-\epsilon_{0}}>R^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow \\
c^{1-\epsilon_{0}}>K\left(\epsilon_{0}\right) \Longrightarrow c>\left(K\left(\epsilon_{0}\right)\right) \tag{24}\\
\left(\frac{1}{1-\epsilon_{0}}\right)
\end{array}
$$

We deduce that it exists an infinity of triples (a, b, c) verifying (22), hence the contradiction. Then the proof of the $a b c$ conjecture is finished. We obtain that $\forall \epsilon>0, c=a+b$ with a, b, c relatively coprime:

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \quad \text { with } \quad K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)} \quad \epsilon>0 \tag{25}
\end{equation*}
$$

Q.E.D

In the two following sections, we are going to verify some numerical examples.

4 Examples : Case $c=a+1$

4.1 Example 1

The example is given by:

$$
\begin{equation*}
1+5 \times 127 \times(2 \times 3 \times 7)^{3}=19^{6} \tag{26}
\end{equation*}
$$

$a=5 \times 127 \times(2 \times 3 \times 7)^{3}=47045880 \Rightarrow \mu_{a}=2 \times 3 \times 7=42$ and $\operatorname{rad}(a)=2 \times 3 \times 5 \times 7 \times 127$, in this example, $\mu_{a}<\operatorname{rad}(a)$.
$c=19^{6}=47045880 \Rightarrow \operatorname{rad}(c)=19$. Then $\operatorname{rad}(a c)=\operatorname{rad}(a c)=2 \times 3 \times 5 \times 7 \times 19 \times 127=506730$. We have $c>\operatorname{rad}(a c)$ but $\operatorname{rad}^{2}(a c)=506730^{2}=256775292900>c=47045880$.

4.1.1 Case $\epsilon=0.01$

$c<K(\epsilon) \cdot \operatorname{rad}(a c)^{1+\epsilon} \Longrightarrow 47045880 \stackrel{?}{<} e^{10000} .506730^{1.01}$. The expression of $K(\epsilon)$ becomes:

$$
\begin{equation*}
K(\epsilon)=e^{\frac{1}{0.0001}}=e^{10000}=8.7477777149120053120152473488653 e+4342 \tag{27}
\end{equation*}
$$

We deduce that $c \ll K(0.01) .506730^{1.01}$ and the equation (25) is verified.
4.1.2 Case $\epsilon=0.1$
$K(0.1)=e^{\frac{1}{0.01}}=e^{100}=2.6879363309671754205917012128876 e+43 \Longrightarrow c<K(0.1) \times$ $506730^{1.01}$, and the equation (25) is verified.

4.1.3 \quad Case $\epsilon=1$

$K(1)=e \Longrightarrow c=47045880<e \cdot \operatorname{rad}^{2}(a c)=697987143184,212$ and the equation (25) is verified.

4.1.4 \quad Case $\epsilon=100$

$$
\begin{array}{r}
K(100)=e^{0.0001} \Longrightarrow c=47045880 \stackrel{?}{<} e^{0.0001} .506730^{101}= \\
1.5222350248607608781853142687284 e+576
\end{array}
$$

and the equation (25) is verified.

4.2 Example 2

We give here the example 2 from https://nitaj.users.lmno.cnrs.fr:

$$
\begin{equation*}
3^{7} \times 7^{5} \times 13^{5} \times 17 \times 1831+1=2^{30} \times 5^{2} \times 127 \times 353 \tag{28}
\end{equation*}
$$

$a=3^{7} \times 7^{5} \times 13^{5} \times 17 \times 1831=424808316456140799 \Rightarrow \operatorname{rad}(a)=3 \times 7 \times 13 \times 17 \times 1831=$ $8497671 \Longrightarrow \mu_{a}>\operatorname{rad}(a)$,
$b=1, \operatorname{rad}(c)=2 \times 5 \times 127 \times 353$ Then $\operatorname{rad}(a c)=849767 \times 448310=3809590886010<c$. $\operatorname{rad}^{2}(a c)=14512982718770456813720100>c$, then $c \leq 2 \operatorname{rad}^{2}(a c)$. For example, we take $\epsilon=0.5$, the expression of $K(\epsilon)$ becomes:

$$
\begin{equation*}
K(\epsilon)=e^{1 / 0.25}=e^{4}=54.59800313096579789056 \tag{29}
\end{equation*}
$$

Let us verify (25):

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot r a d(a c)^{1+\epsilon} \Longrightarrow c=424808316456140800 \stackrel{?}{<} K(0.5) \times(3809590886010)^{1.5} \Longrightarrow \\
424808316456140800<405970304762905691174.98260818045 \tag{30}
\end{gather*}
$$

Hence (25) is verified.

5 Examples : Case $c=a+b$

5.1 Example 1

We give here the example of Eric Reyssat [1], it is given by:

$$
\begin{equation*}
3^{10} \times 109+2=23^{5}=6436343 \tag{31}
\end{equation*}
$$

$a=3^{10} .109 \Rightarrow \mu_{a}=3^{9}=19683$ and $\operatorname{rad}(a)=3 \times 109$,
$b=2 \Rightarrow \mu_{b}=1$ and $\operatorname{rad}(b)=2$,
$c=23^{5}=6436343 \Rightarrow \operatorname{rad}(c)=23$. Then $\operatorname{rad}(a b c)=2 \times 3 \times 109 \times 23=15042$. For example, we take $\epsilon=0.01$, the expression of $K(\epsilon)$ becomes:

$$
\begin{equation*}
K(\epsilon)=e^{9999.99}=8.7477777149120053120152473488653 e+4342 \tag{32}
\end{equation*}
$$

Let us verify (25):

$$
\begin{align*}
c \stackrel{?}{<} K(\epsilon) \cdot r a d(a b c)^{1+\epsilon} \Longrightarrow c=6436343 \stackrel{?}{<} K(0.01) \times(3 \times 109 \times 2 \times 23)^{1.01} \Longrightarrow \\
6436343 \ll K(0.01) \times 15042^{1.01} \tag{33}
\end{align*}
$$

Hence (25) is verified.

5.2 Example 2

The example of Nitaj about the ABC conjecture [1] is:

$$
\begin{array}{r}
a=11^{16} \cdot 13^{2} .79=613474843408551921511 \Rightarrow \operatorname{rad}(a)=11.13 .79 \\
b=7^{2} \cdot 41^{2} .311^{3}=2477678547239 \Rightarrow \operatorname{rad}(b)=7.41 .311 \\
c=2.3^{3} \cdot 5^{23} .953=613474845886230468750 \Rightarrow \operatorname{rad}(c)=2.3 .5 .953 \\
\operatorname{rad}(a b c)=2.3 .5 .7 .11 .13 .41 .79 .311 .953=28828335646110 \tag{37}
\end{array}
$$

5.2.1 Case 1

we take $\epsilon=100$ we have:

$$
\begin{gathered}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Longrightarrow \\
613474845886230468750 \stackrel{?}{<} e^{0.0001} \cdot(2.3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 41.79 .311 .953)^{101} \Longrightarrow \\
613474845886230468750<2.7657949971494838920022381186039 e+1359
\end{gathered}
$$

then (25) is verified.

5.2.2 Case 2

We take $\epsilon=0.5$, then:

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot r a d(a b c)^{1+\epsilon} \Longrightarrow \tag{38}\\
613474845886230468750 \stackrel{?}{<} e^{4} \cdot(2.3 .5 \cdot 7 \cdot 11.13 \cdot 41.79 \cdot 311.953)^{1.5} \Longrightarrow \\
613474845886230468750<8450961319227998887403,9993 \tag{39}
\end{gather*}
$$

We obtain that (25) is verified.

5.2.3 Case 3

We take $\epsilon=1$, then

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Longrightarrow \\
613474845886230468750 \stackrel{?}{<} e \cdot(2.3 \cdot 5 \cdot 7.11 .13 .41 .79 .311 .953)^{2} \Longrightarrow \\
613474845886230468750<831072936124776471158132100 \times e \tag{40}
\end{gather*}
$$

We obtain that (25) is verified.

5.3 Example 3

It is of Ralf Bonse about the ABC conjecture [3] :

$$
\begin{gather*}
2543^{4} .182587 .2802983 .85813163+2^{15} .3^{77} .11 .173=5^{56} .245983 \tag{41}\\
a=2543^{4} .182587 .2802983 .85813163 \\
b=2^{15} .3^{77} .11 .173 \\
c=5^{56} .245983 \\
\operatorname{rad}(a b c)=2.3 .5 .11 .173 .2543 .182587 .245983 .2802983 .85813163 \\
\operatorname{rad}(a b c)=1.5683959920004546031461002610848 e+33 \tag{42}
\end{gather*}
$$

5.3.1 Case 1

For example, we take $\epsilon=10$, the expression of $K(\epsilon)$ becomes:

$$
K(\epsilon)=e^{0.01}=1.007815740428295674320461741677
$$

Let us verify (25):

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Rightarrow c=5^{56} \cdot 245983 \stackrel{?}{<} \\
e^{0.01} \cdot(2.3 .5 \cdot 11.173 .2543 .182587 .245983 .2802983 .85813163)^{11} \\
\Longrightarrow 3.4136998783296235160378273576498 e+44< \\
1.423620059649490817600812092572 e+365 \tag{43}
\end{gather*}
$$

The equation (25) is verified.

5.3.2 Case 2

We take $\epsilon=0.4 \Longrightarrow K(\epsilon)=12.18247347425151215912625669608$, then: The

$$
\begin{gather*}
c \stackrel{?}{<} K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \Rightarrow c=5^{56} \cdot 245983 \stackrel{?}{<} \\
e^{6.25} \cdot(2.3 .5 .11 .173 .2543 .182587 .245983 .2802983 .85813163)^{1.4} \\
\Longrightarrow 3.4136998783296235160378273576498 e+44< \\
3.6255465680011453642792720569685 e+47 \tag{44}
\end{gather*}
$$

And the equation (25) is verified.

> Ouf, end of the mystery!

6 Conclusion

We have given an elementary proof of the $a b c$ conjecture, confirmed by some numerical examples. We can announce the important theorem:

Theorem 6.1. (David Masser, Joseph Esterlé \& Abdelmajid Ben Hadj Salem; 2019) Let a, b, c positive integers relatively prime with $c=a+b$, then for each $\epsilon>0$, there exists $K(\epsilon)$ such that :

$$
\begin{equation*}
c<K(\epsilon) \cdot \operatorname{rad}(a b c)^{1+\epsilon} \tag{45}
\end{equation*}
$$

where $K(\epsilon)$ is a constant depending of ϵ proposed as :

$$
K(\epsilon)=e^{\left(\frac{1}{\epsilon^{2}}\right)}, \epsilon>0
$$

7 Acknowledgments

The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the abc conjecture.

References

[1] Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
[2] Klaus Kremmerz for Quanta Magazine. Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018).
[3] Mihăilescu P.: Around ABC. European Mathematical Society Newsletter \mathbf{N}° 93, September 2014. 29-34, (2014)

