
EasyChair Preprint
№ 4583

Representation Learning on Graphs - A Survey

Ankur Sharma, Mehak Preet Dhaliwal and Kartikeya Sharma

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 16, 2020

Representation Learning on Graphs - A Survey
Ankur Sharma*

Indian Institute of Technology, Delhi
2015CS50278

Mehak Preet Dhaliwal*
Indian Institute of Technology, Delhi

2015CS10238

Kartikeya Sharma*
Indian Institute of Technology, Delhi

2015CS10234

ABSTRACT
Learning methods to represent graph nodes as feature vectors is

a field that has recently seen a surge in research. Embedding graph
nodes as vectors is useful to make graph datasets suitable for use
in several downstream machine learning tasks. In this survey, we
attempt to present an overview of the various methods found in
the literature.

KEYWORDS
Graphs, Node Embeddings, Representation Learning, Survey

1 INTRODUCTION
Graphs have become a ubiquitous data structure not only in

computer science but also in several other fields, since they can
be used to model a plethora of real-world phenomena. From the
textbook example of road networks with physical nodes and edges,
to the more abstract social networks, and to recent applications
such as modelling protein-protein interaction networks in biology,
graphs have innumerable applications in countless systems. Graphs
can be thought of as structured repositories of data, capturing
relational knowledge between various entities and allowing it to
be easily and efficiently accessed and modified. Searching in such
graph databases is faster and more efficient in terms of number of
lookups and memory usage.

Apart from being structured databases, graphs also capture sev-
eral inherent relationships between the entities represented by their
nodes, such as internode similarity and community structure. With
the increasing amount of data available in today’s world and with
a large amount of it being stored in graph databases, graphs have
also proven amenable to modern methods of data analysis using
machine learning techniques. Such analysis is used in applications
such as link prediction for friend suggestion in social networks,
making product recommendations to customers on an e-commerce
website and so on.

A longstanding challenge for using graph data in machine learn-
ing models has been to find a way to incorporate information
about structure into the model. As an example, one might want
a feature vector to encode relationships between a node and its
neighbours, such as the number of common friends in the case of a
social network. Until recently, these problems used to be dealt with
by manually designing features such as summary graph statistics
(number of 1-hop neighbours, degrees), kernel functions and so on.

A recent way to tackle this problem has been to learn these
feature vector representations from data. That is, the step which
was previously treated as part of pre-processing data before using
it in a machine learning model, is being replaced by a machine
learning problem in itself.

*These authors have contributed equally to the paper.

2 MOTIVATION
Formal network analysis is usually done by modelling the net-

work as a graph and analysing its properties. As stated previously,
problems such as link prediction, for example, predicting edges
between users in a social network, require analysing the pairwise
similarity between nodes in a graph. Node classification tasks such
as predicting functional labels of proteins, require analysing node
structures and properties.

The first challenge in performing any analysis on graphs is find-
ing an effective representation. The goal of such an endeavour is
to represent networks in a concise manner, so that analysis can
be performed efficiently on them. Traditional methods of graph
representation include the adjacency list or adjacency matrix repre-
sentations. Such representations suffer from several issues such as
high computational complexity, high dimensionality of representa-
tion, low parallelizability, and inability to apply machine learning
methods, most of which require data to be in the form of feature
vectors. Mapping nodes of the graph to a low dimensional vector
space serves to eliminate these problems. Distance or similarity
functions defined over node embeddings can directly be used for
analysing node properties, thus reducing computation time sub-
stantially. These representations can also be directly fed into tradi-
tional machine learning and deep learning models to be trained on
downstream tasks such as link prediction, classification and cluster-
ing, thus widening the domain of tasks that can be accomplished
through graph analysis significantly.

Simple approaches such as hand engineering node features is a
time consuming and tedious process and one cannot expect such
features to generalise well or be scalable to large graphs. For ex-
ample, one could consider the feature vector of a node to be the
corresponding row in the graph’s adjacency matrix. Thus, all nodes
would be represented by a feature vector with dimensionality as
high as the number of nodes in the graph. Clearly such an approach
would not scale to modern graphs such as social networks or the
internet. Moreover, the feature vectors would be very sparse, too
large and contain redundant and noisy information making them
unsuitable for learning tasks. Another problem with this represen-
tation is that it loses semantic information. One would expect each
orthogonal dimension in a feature vector to be semantically very
different from another, but a traditional representation obviously
does not take this into account.

Due to such issues, it becomes crucial to define methodologies
for learning representations of nodes of graphs in the form of low
dimensional feature vectors, preserving structural and other task
specific properties of the network. Figure 1 shows an example
embedding of the Zachary club Karate network generated using
the DeepWalk method.

COL761, Fall 2018, New Delhi, India

Figure 1: Example of a node embedding generated using the DeepWalk method

3 PROBLEM FORMULATION
The network embedding problem, takes as input a graph 𝐺 rep-

resented by a vertex set 𝑉 and edge set 𝐸, and optionally a matrix
of node attributes 𝑋 . It then outputs a mapping from the vertex set
𝑉 to a 𝑑−dimensional Euclidean space R𝑑

The goal of such an embedding is two-fold: firstly, the graph
should be able to be reconstructed back from the embedding. An
edge between two nodes should correspond to a relatively low Eu-
clidean distance between the feature vectors of these nodes. On the
other hand, the embedding should be amenable to inferring net-
work information such as degrees and neighbours, and performing
analysis such as link prediction, node classification and clustering.
Finally, the embedding dimensionality−𝑑 should be much lesser
than the number of nodes in the graph 𝐺 .

More formally, an embedding 𝐸 is a mapping: 𝐸 : 𝐺,𝑋 → R𝑑

where 𝑋 and 𝐺 are defined previously.

4 NODE EMBEDDING (RELATEDWORK)
We begin by presenting an overview of techniques for node

embedding. We classify methods according to the tree structure
shown in Figure 2. Most methods review fall into the category of
unsupervised embedding methods, where information regarding
the downstream machine learning task for which the embedding is
performed is not included during the embedding stage. We divide
the embedding methods into shallow and deep embedding methods.
Shallow methods are further subdivided into methods based on
Matrix Factorization (MF) and those based on Random Walks (RW).
Deep embedding methods follow either the Autoencoder approach,
or the Aggregator approach.

There are lines of work which we do not review here for reasons
of brevity, such as statistical relational learning embeddingmethods,
geometric deep learning and manifold learning algorithms.

4.1 Shallow Embedding Methods
Shallow embedding methods are so-called because the embed-

ding here simply involves a matrix lookup. In other words, the

Figure 2: Classification of variousNode EmbeddingMethods

embedding of a node is given by:

𝐸𝑀𝐵𝐸𝐷 (𝑉𝑖) = Zvi,

where Z is a matrix containing the embedding vectors for all nodes
and 𝑣𝑖 is an indicator vector used to select a particular column from
Z. Here, the matrix Z is optimized during the embedding process.
These algorithms are inspired by techniques for dimensionality
reduction in high dimensional spaces, such as principal component
analysis.

4.1.1 Matrix Factorization (MF) Approaches. Graphs are of-
ten represented using adjacency matrices, where a node is rep-
resented by each column and node. An edge between nodes is
represented by the value at the intersection of the corresponding
row and column. Matrix factorization approaches aim to embed
graphs by performing standard dimensionality reduction methods
on the adjacency matrix. Here, singular value decomposition (SVD)
and non-negative matrix factorization (NMF) are often used.

Some algorithms based on this approach are presented below:
(1) Laplacian Eigenmaps[2]

This technique uses spectral graph methods to perform di-
mensionality reduction. It is based on assuming that the ad-
jacency matrix lies in a low-dimensional manifold in a high-
dimensional space. It begins by constructing a graph using

Representation Learning on Graphs - A Survey COL761, Fall 2018, New Delhi, India

epsilon-neighborhoods or K nearest neighbors. Thus, the con-
nectivity of the nodes depends on how close the neighbouring
points are.

Then the heat kernel (Berline et al, ADDREF) is utilized to
choose the weight𝑊𝑖 𝑗 of nodes i and j in the graph. Finally, the
representation 𝑢𝑖 of node i can be obtained by minimizing a
loss function which depends on the squared distance between
the embedding vectors. The aggregate loss function is the sum
of these squared distances (which are further weighted), across
all pairs of vertices. In other words, a cost function based on
the graph is minimized, which ensures that points close to each
other are mapped close together even in the low-dimensional
space, thus preserving local distances.

The remaining three methods build on Laplacian eigenmaps,
these build on a cost function that depends on a pairwise dot-
product of the node embedding vectors zTi zj, and a pairwise
node similarity function. These algorithms differ on the simi-
larity function used.

(2) Graph Factorization, GraREP, HOPE[1][4][11]
These three algorithms are based on minimising a loss function:∑

(𝑣𝑖 ,𝑣𝑗) ∈𝑉
| |𝑧𝑇𝑖 𝑧 𝑗 − 𝑠𝐺 (𝑣𝑖 , 𝑣 𝑗) | |22,

where 𝑠𝐺 (𝑣𝑖 , 𝑣 𝑗) is the similarity function. Graph Factoriza-
tion defines the similarity function of two nodes as the corre-
sponding element in the adjacency matrix, i.e., 𝑠𝐺 (𝑣𝑖 , 𝑣 𝑗) = 𝐴𝑖 𝑗 .
GraREP generalizes this notion to other powers of the adjacency
matrix (for example,𝐴2

𝑖 𝑗
). The HOPE algorithm allows for more

flexible definitions of the similarity function. For instance, it can
use the Jaccard neighbourhood overlaps or another similarity
measure. ADDREF:Survey

It is important to note that there is a fine balance between
giving more weight to first-order similarity, such as in Graph
Factorization, and higher order similarity such as in GraREP.
First-order similarity would be more efficient at representing
connections between nodes directly due to the use of the ad-
jacency matrix, where as higher powers of this matrix would
represent information from multiple-hop neighbours.

(3) Isomap, Locally Linear Embedding andOtherMethods[17][15]
The IsoMap technique, similar to Laplacian Eigenmaps, first
constructs a similarity graph using connectivity algorithms
such as K-nearest neighbours. Then a matrix 𝐷𝐺 of shortest
path distances for every pair of vertices is calculated. Then, any
dimensionality reduction technique, for example multidimen-
sionality scaling (MDS) can be used to compute the coordinate
vector by minimizing the squared loss of the difference between
the shortest path distance and the L2 norm of the difference
between the embedding vectors.

IsoMap suffers from the high complexity of computing all
the inter-vertex distances. Locally linear embedding, eliminates
the need to calculate these distances, and uses a different loss
function.

(4) LINE (Large-Scale Information Network Embedding[16]
This algorithm is not exactly based on random walks, although
due to its similarity with node2vec and DeepWalk in terms of

its measure of similarity between nodes, it is often discussed in
the same context.

LINE models two kinds of proximities between nodes explic-
itly, the so-called first-order and second-order proximities and
minimises a loss function that takes into account both of these.

It determines the first-order proximity as

𝑝1 (𝑣𝑖 , 𝑣 𝑗) =
1

1 + 𝑒𝑥𝑝 (−vi𝑇 vj)
Where vi and vj are the embedding vectors. The empirical

probability of the same is defined as 𝑝1 (𝑖, 𝑗) =
𝑤𝑖 𝑗∑
𝑖,𝑗 𝑤𝑖 𝑗

where𝑤
represents edge-weight.

The way to optimise the first order proximity is the minimise
the KL divergence between the two probability distributions 𝑝1
and 𝑝1. Doing so reduces the loss function to a cross entropy
loss

𝑂1 = −
∑

(𝑖, 𝑗) ∈𝐸
𝑤𝑖 𝑗 𝑙𝑜𝑔 𝑝1 (v𝑖 , v𝑗)

LINE also defines a second-order proximity using the skip-
gram model similar to the word2vec algorithm in natural lan-
guage processing. For those unfamiliar, this proximity appears
as:

𝑝𝑤 (𝑣 𝑗 |𝑣𝑖) =
𝑒𝑥𝑝 (u′𝑇𝑗 .u𝑖)∑ |𝑉 |
𝑘=1 𝑒𝑥𝑝 (u

′𝑇
𝑘
.u𝑖)

Here 𝑢𝑖 is the embedding of a node, and 𝑢 ′
𝑖
is the embedding

when it is treated as a context. Here also, the optimization is
done by minimizing the KL-divergence between this and the
empirical distribution (however, here it is done for the condi-
tional distributions, and also weighted by a "prestige" value of
the vertex measured by either degree or through some other
methods such as PageRank). The empirical distribution in this
case has similar structure to that of the first-order proximity,
however the denominator is now the out-degree of the vertex i,
i.e.,

∑
𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑖) 𝑤𝑖𝑘 . This also reduces to the cross entropy

loss
𝑂2 = −

∑
(𝑖, 𝑗) ∈𝐸

𝑤𝑖 𝑗 𝑙𝑜𝑔 𝑝2 (v𝑗 |v𝑖)

By learning the vectors u𝑖 and u′𝑖 that minimize this ob-
jective function, the graph is reduced to a lower dimensional
space.

4.1.2 RandomWalk Approaches. All approaches based on Ma-
trix Factorization, as defined in the previous section, used a similar-
ity measure which was deterministic. This adds another hyperpa-
rameter to the embedding approach and reduces its flexibility. The
advantage of random walk methods is to replace this deterministic
similarity measure by a measure that can be obtained using the
graph structure. These methods thus depend on approximating the
similarity measure using random walk statistics. They resulted in
significant gains in embedding quality, and spawned a whole host
of algorithms such as node2vec. So these techniques make sure that
nodes have alike embeddings if they all occur on random walks in
the graph. One should note that this approach is more flexible and
stochastic.
(1) node2Vec, DeepWalk[7][12]

Both these algorithms use a similarity measure which is equal

COL761, Fall 2018, New Delhi, India

Figure 3: Binary Tree Data Structure used in Hierarchical
Softmax Computation

to 𝑃𝐺,𝑘 (𝑣 𝑗 |𝑣𝑖), the probability of visiting node 𝑣 𝑗 on a length
k random-walk starting from node 𝑣𝑖 . Both of them also use
the softmax function on the inner product between two node
embeddings as the definition of this probability, i.e

𝑃𝐺,𝑘 (𝑣 𝑗 |𝑣𝑖) =
𝑒𝑧

𝑇
𝑖
𝑧 𝑗∑

𝑘∈𝑉 𝑒𝑧
𝑇
𝑖
𝑧𝑘

However, computing this for every pair of nodes is too ex-
pensive, due to the denominator term. Both of these also try to
minimize a cross entropy loss:∑

(𝑣𝑖 ,𝑣𝑗) ∈𝑇
−𝑙𝑜𝑔(𝑃𝐺,𝑘 (𝑣 𝑗 |𝑣𝑖))

where the training set T is generated by simulating random
walks starting from each node. However, they differ in the way
they approximate this probability. node2vec uses the technique
of negative sampling to approximate the denominator, whereas
DeepWalk uses a hierarchical softmax function to do so. This
results in a great improvement in computational complexity of
these methods. For example, hierarchical softmax improves the
order of computation from 𝑂 (|𝑉 |) to 𝑂 (𝑙𝑜𝑔2 (|𝑉 |)), where |𝑉 |
is the size of the vocabulary.

Hierarchical Softmax uses a binary tree structure to accel-
erate the computation of the softmax function. Each word can
be traced by following a path down the root of the three, the
nodes along which represent the probability mass contribution
along that way. These masses are calculated by a simple sig-
moid function. The idea is that the probability we are going to
calculate (the final softmax) is the product of the probability
masses down this path. This is represented in Figure 3, where
where 𝑛(𝑤, 𝑗) is the j-th node on the path from the root to𝑤 .

Negative sampling is based on the idea of approximating the
softmax using a few ’negative’ samples from tha data. It is also
similar to the optimization technique stochastic gradient de-
scent - instead of changing all of the weights, a few of them are
updated dramatically speeding up the training process. These
negative samples are sampled from a ceratin probability distri-
bution, for example the noise distribution. This distribution can
be tuned as per the data to give the requisite results.

They also differ in that node2vec allows a less constrained def-
inition of what constitutes a random walk. Whereas DeepWalk

uses a simple random walk, node2vec can adjust the probability
p of visiting a neighbour node and the probability q of revisiting
the same node at any timestep. By doing so, it can focus more on
the global structure, allowing less revisiting of the same node,
or on the local structure, allowing more revisiting by tuning
the parameters that represent this probability.

(2) HARP[5]
Thismethod adds a preprocessing stage before peforming random-
walks in approaches such as node2vec and DeepWalk. A pro-
cedure to coarsen the input graph is applied to collapse nodes
into supernodes, then the random walk algorithm is used to
learn embeddings, and the learned embedding of the supernode
is used as the initial embedding for the random walk algorithm
for its constituent nodes in the successive iteration. This can
be repeated depending on the number of coarsening steps, and
has been shown to improve performance in practice.

There also exist extensions to the idea of random walks, by learning
encodings of nodes that, say, jump over multiple nodes. Sometimes
they involve a change in the distance measure to a hyperbolic one.

4.2 Deep Embedding Methods
The methods described in the previous section involved the

embedding vector being determined through a simple embedding
lookup. This approach has a few limitations, such as:

• There is no sharing of information between the embedding vec-
tors, This can be quite inefficient, as it has two drawbacks: the
number of parameters grows linearly with the number of nodes,
which clearly does not scale to large graphs. This is because
parameters are not shared by the encoded vectors.

• Only the structural information in the graph is used for calculat-
ing the encodings, and the node attribute information is not used.
Sometimes node attributes are extremely important in deciding
similarity between nodes, for example in social networks the
user’s profile information can be used to measure similarity.

• Nodes which are not observed during the training phase cannot
be generated embeddings for. This is not useful in scenarios
where there is a separate test data set, the properties of which
are supposed to be predicted by generalizing information learnt
from a training data set. In situations such as temporally evolving
graphs, graphs which are too large to fit inside main memory,
these methods fail to provide much utility.

Thus, a new paradigm of methods have been proposed to address
these issues, which we present here as deep embedding methods.
These methods differ in that they use much more intricate encoding
techniques, often involving deep autoencoders or neighbourhood
aggregation techniques. We further subdivide deep embedding
methods into methods that use autoencoders and those that use
neighbourhood aggregation techniques. Both of these utilise node
attributes along with the structure of the graph.

4.2.1 Neighbourhood Autoencoder Techniques. The reader
would have noticed that the previously described techniques use a
loss function that is a aggregation (sum) of terms, each of which uses
information from a pair of nodes (for example, the term z𝑇

𝑖
z𝑗). The

techniques discussed in this subsection utilize a loss function which

Representation Learning on Graphs - A Survey COL761, Fall 2018, New Delhi, India

Figure 4: An Autoencoder network

aggregates terms that utilize information from a single embedding
instead.

These techniques utilize deep autoencoders to generate the node
embeddings. These are deep neural networks which are shown in
Figure 4. An autoencoder is a type of artificial neural network that
is used to reduce the dimensionality of its input, which generates a
low dimensional vector in its middle layer, and then use this low-
dimensional vector to reconstruct the original input. It then learns
to efficiently compress data such that it can be reconstructed from
its encoding. Here, 𝐸𝑁𝐶 (v𝑖) represents a function that encodes a
node 𝑣𝑖 and 𝐷𝐸𝐶 (z𝑖) decodes the corresponding embedding 𝑧𝑖

The loss function for these autoencoder methods takes the form
| |𝐷𝐸𝐶 (𝐸𝑁𝐶 (s𝑖)) −s𝑖 | |22 , where s𝑖 is a similarity vector that replaces
the similarity function described in earlier sections. This contains
the similarity of a node with respect to all other nodes in the graph.
Structural Deep Network Embeddings (SDNE)[18] and Deep Graph
Neural Representations (DGNR)[3] both use the autoencoder tech-
nique, but differ in the similarity function that they implement.
SDNE uses the corresponding adjacency matrix row as the simi-
larity vector, whereas DGNR uses statistics derived from random
walks similar to node2vec and DeepWalk.

The fact that the encoding utilizes the similarity vector of a node
with respect to other nodes allows these methods to incorporate
neighbourhood information into the embeddings, thus differing
from the previously described shallow embedding methods. How-
ever, there are still drawbacks: they cannot still cope with evolving
graphs. They also cannot generate embeddings for previously un-
seen nodes. Also the input dimension is fixed. They also do not
take into account the node attributes. Thus the only improvement
they offer (from a feature perspective) is to offer a more complex
encoding scheme, using deep neural networks for the same.

4.2.2 NeighbourhoodAggregationTechniques. The techniques
discussed in this subsection are the first ones to utilize node at-
tributes in addition to the structural information present in the
graph.

Figure 5: A diagrammatic view of how Neighbourhood Ag-
gregation Techniques work

For example, in a protein-protein interaction network, there
might be information about molecular markers within each node,
or within a social network there is data about the user’s profile
within the user’s node. These methods aggregate this informa-
tion to inform their embeddings. In cases where this information
is not available or is not sufficient, they can be artificially intro-
duced - for example the degree of a node, the number of one-hop
neighbours, etc., but they are more useful when this information is
already present and needs utilization. They are also called graph
convolutional methods, as they often use the neighbouring node
information and aggregate it, similar to kernels in convolutional
neural networks. This is shown in Figure 5

The GraphSAGE (Graph SAmple and aggreGAte)[8] algorithm,
described in Figure 6, was the first algorithm that made an effort
in this direction. The intuition behind this algorithm is to com-
bine information from the local neighbours of a graph, and repeat
this iteratively so that a node incrementally gains more and more
information from further nodes in the graph. An aggregator func-
tion is provided which aggregates information from a node’s local
neighbours. This is followed by a concatenation step, in which
information from the previous iteration’s embedding is combined
with the aggregator output, and this is passed through a single layer
in a neural network. This is repeated for a number of iterations
(equal to neural network layers) and the algorithm then outputs
the learned embedding. The neural network weights are learned
by stochastic gradient descent on a dataset generated by simulat-
ing random walks from the nodes. The algorithm, as described in
the original paper, also uses the technique of negative sampling.
The node representations fed into the loss function are generated
from the node attributes themselves, rather than an embedding
lookup. Interestingly, this approach can also be used in supervised
learning settings, where the unsupervised loss function, can be
replaced by a task specific objective. In this sense, GraphSAGE is
more of a meta-algorithm or an algorithmic framework. Various
aggregator functions, such as a simple mean aggregator, a more
complicated max-pooling aggregator, or an even more complex
LSTM aggregator were explored by the authors.

Other techniques such as graph convolutional networks (GCN)[10]
and Column Networks[13] use the same framework as GraphSAGE,
but they differ primarily in terms of what aggregation and con-
catenation function they use. GCNs and column networks use a
weighted sum concatenation function and an element-wise mean
aggregator function. In addition, column networks also add a scalar
parameter in the aggregator function that allows control of how

COL761, Fall 2018, New Delhi, India

Figure 6: The framework of all neighbourhood aggregation algorithms

much information to retain from the previous iteration in the next
iteration’s aggregated embedding. This allows more fine-grained
control to retain more/less local information about a node.

These neighborhood aggregator methods have shown consistent
performance gains in applications such as link predictions over
their shallow embedding counterparts. They also address the issues
discussed at the start of this section - they utilize neighbor attributes,
they share information across embeddings via the aggregator and
concatenation functions and the use of complex neural encoders, the
number of parameters does not grow with the number of vertices
and they can generate embeddings for previously unseen nodes This
comes at the cost of much more tunable hyper-parameters in terms
of the neural network itself, and the aggregator and concatenation
functions.

5 SUPERVISED EMBEDDING METHODS
All of the methods discussed earlier are unsupervised methods,

in the sense that they do not utilize information about the down-
stream machine learning task while generating the embeddings. In
particular, the neighbourhood aggregation techniques discussed
earlier often make use of a loss function tailored to the specific
downstream machine learning task at hand.

For example, if the downstream task is a binary classification task
with node labels given per node, we could use the generated em-
bedding vectors in a logistic regression classifier, and then compute
the cross entropy loss on the training samples with the predicted
and actual class labels.

The gradient of this cross entropy loss can be used to optimise
the encoder by means of backpropagation. This can also completely
replace the loss function used in the decoder part of the autoencoder.

6 STRUCTURAL EMBEDDINGS
All the methods discussed until now rely on the basic assump-

tion of homophily: If two nodes have similar contexts, they are

Figure 7: Artificial Barbell Graph. The purple coloured
nodes are structurally similar though far apart in the graph.
On the right is the result of running theGraphWave spectral
embedding algorithm on this graph

likely to be similar and thus must have similar embeddings. All
embedding methods, whether shallow or deep, have relied on this
assumption. In practice, this often holds true, similar nodes are
clustered together. However, there are instances where structurally
identical nodes are present far apart, e.g. Figure 7. For example,
consider an air traffic network, where different nodes representing
cities might have similar functions though far apart in a graph,
for example as air traffic hubs. In this scenario, methods such as
DeepWalk and node2vec, or for that matter even neighbourhood ag-
gregation methods will not generate similar embeddings for these
nodes, as they are far apart in the network. An embedding which
generates similar encodings for structurally similar nodes is called
a structural embedding. The RolX algorithm uses hand designed
features to measure structural similarity, whereas the struc2vec and
GraphWave algorithms use representation learning techniques to
learn the embeddings. The result of the GraphWave algorithm is
shown in Figure 7.

Representation Learning on Graphs - A Survey COL761, Fall 2018, New Delhi, India

Figure 8: Shallow embedding methods as manifestations of
the unified framework proposed by Hamilton et. al

struc2vec[14] was the first algorithm that aimed to embed nodes
according to their structural identity. It aims to measure this simi-
larity without taking into consideration node and edge attributes,
or for that matter even node position in the network. This approach
also does not require the network to be connected. It also proposes
a hierarchical way to measure this similarity. The method also gen-
erates a random context for each node. Two nodes that frequently
appear with similar contexts will have the same structure.

The algorithm first determines structural similarility between
pairs of vertices for different sizes of the neighbourhood windows,
to establish the hierarchy described in the previous paragraph. It
then constructs a multilayer graph, which contains every node
in each layer, with different layers corresponding to a different
level in the hierarchy. It uses a biased random walk similar to
node2vec to generate node sequences for the training data, and
then applies a technique to learn latent representations such as the
skip-gram model. It thus uses the outputs of these biased random
walk sequences to optimize a loss function used in node2vec.

There are also spectral graph techniques such as GraphWave[6],
which use the heat kernel of a graph to encode structural informa-
tion effectively.

7 UNIFIED FRAMEWORK (ADAPTED FROM
[9])

Hamilton et al. propose a unified encoder-decoder approach to
summarize the various node embedding methods discussed until
now. They state that there is a need to unify the various notations
developed in the literature.

This framework has 4 key components:

(1) A pairwise similarity function 𝑠𝐺 : 𝑉 × 𝑉 ↦→ R+, defined
over the graph G. This takes as input two nodes from the
graph and outputs their similarity.

(2) A function 𝐸𝑁𝐶 to generate the node embeddings.
(3) A function 𝐷𝐸𝐶 to recover the similarity values fro mthe

generated embeddings. This usually takes as input two em-
beddings and outputs a pairwise similarity score.

(4) A cost function 𝑐 to measure how the reconstructions are
evaluated, i.e., how close the output of the 𝐷𝐸𝐶 function is
to the ground truth similarity value, given by:

L =
∑

(𝑣𝑖 ,𝑣𝑗) ∈𝑉
𝑐 (𝐷𝐸𝐶 (z𝑖 , z𝑗), 𝑠𝐺 (𝑣𝑖 , 𝑣 𝑗))

Figure 8 shows how a few shallow embedding approaches can
be represented using this framework.

8 CONCLUSION
Throughout this paper, we have tried to present an overview of

the various techniques available in the literature on representation
learning in graphs. These techniques have tremendously improved
performance of algorithms in tasks such as link prediction and node
classification. However, there is a lot of future work to be done,
in the direction of improving the performance of these existing
methods, improving on their limitations, and also developing a
unified theoretical framework that explains why these methods
work the way they do.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and

Alexander J. Smola. 2013. Distributed Large-Scale Natural Graph Factorization.
In Proceedings of the 22nd International Conference on World Wide Web (WWW
’13). Association for Computing Machinery, New York, NY, USA, 37–48. https:
//doi.org/10.1145/2488388.2488393

[2] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation. (2003), 1373–1396.

[3] Shaosheng Cao. 2016. deep neural network for learning graph representations.
[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph

Representations with Global Structural Information. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management
(CIKM ’15). Association for Computing Machinery, New York, NY, USA, 891–900.
https://doi.org/10.1145/2806416.2806512

[5] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017. HARP: Hier-
archical Representation Learning for Networks. (06 2017).

[6] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2017. Spectral
Graph Wavelets for Structural Role Similarity in Networks. (10 2017).

[7] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Ma-
chinery, New York, NY, USA, 855–864. https://doi.org/10.1145/2939672.2939754

[8] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. CoRR abs/1706.02216 (2017). arXiv:1706.02216 http:
//arxiv.org/abs/1706.02216

[9] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation
Learning on Graphs: Methods and Applications. CoRR abs/1709.05584 (2017).
arXiv:1709.05584 http://arxiv.org/abs/1709.05584

[10] Thomas Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph
Convolutional Networks. (09 2016).

[11] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’16). Association for Computing Machinery, New York, NY, USA, 1105–1114.
https://doi.org/10.1145/2939672.2939751

[12] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online
Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’14).
Association for Computing Machinery, New York, NY, USA, 701–710. https:
//doi.org/10.1145/2623330.2623732

[13] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. 2017. Column
Networks for Collective Classification. AAAI (01 2017).

[14] Leonardo Ribeiro, Pedro Saverese, and Daniel Figueiredo. 2017. struc2vec:
Learning Node Representations from Structural Identity. 385–394. https:
//doi.org/10.1145/3097983.3098061

[15] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. SCIENCE 290 (2000), 2323–2326.

[16] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. CoRR abs/1503.03578
(2015). arXiv:1503.03578 http://arxiv.org/abs/1503.03578

[17] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science 290,
5500 (2000), 2319.

[18] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Embed-
ding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’16). Association for ComputingMachinery,
New York, NY, USA, 1225–1234. https://doi.org/10.1145/2939672.2939753

https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1145/2939672.2939754
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.05584
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/3097983.3098061
https://doi.org/10.1145/3097983.3098061
http://arxiv.org/abs/1503.03578
http://arxiv.org/abs/1503.03578
https://doi.org/10.1145/2939672.2939753

