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Abstract—A good ability of the dynamic collision avoidance 

(DCA) is essential for the unmanned surface vehicle (USV), 

which is the focus of this paper. Since current research mainly 

uses real-time navigation information to achieve collision 

avoidance to other vessels, however, in the realistic maritime 

environment, USV can rarely obtain such real-time information 

through automatic identification system (AIS) or other 

equipment. So, in this paper, a Kalman filter-based predictive 

dynamic collision avoidance of unmanned surface vehicles is 

proposed using the behavior-based method. The Kalman filter 

(KF) is integrated into the USV planner to predict the 

trajectories of other obstacle ships and several behaviors are 

designed in the light of the International Regulations for 

Preventing Collisions at Sea (COLREGs) to implement collision 

avoidance. Simulations involving three moving obstacle vessels 

with changing navigational statuses are presented and realistic 

broadcasting intervals of a class A AIS device are used in the 

simulation to indicate that the Kalman filter can reasonable 

predict the positions of moving obstacle ships and the USV can 

effectively make obstacle avoidance behaviors that meet the 

requirements of the COLREGs. 
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I.  INTRODUCTION 

Unmanned surface vehicle (USV) is a type of intelligent 
system that sails on the water, which has been increasingly 
used in military and civilian fields such as port patrol, search 
and rescue, marine environment monitoring, seabed resource 
detection, and so on. In recent years, an increasing number of 
scholars have studied how to use USV instead of manned 
ships to perform tasks. 

Collision avoidance (CA) is an essential part of the USV 
control system, which can ensure the safety of the USV during 
the execution of the task. There are a variety of approaches 
involving collision avoidance, such as A* algorithm [1], 
potential field method [2,3], fuzzy logic [4], evolutionary 
algorithm [5], particle swarm optimization [6], velocity 
obstacle [7], fast marching method [8], reinforcement 
learning[9,10] and so on. Among these approaches, the 
behavior-based method is also a popular solution dealing with 
the CA problem, which is widely studied for mobile robotic 
applications [11,12].  

The essence of the behavior-based method is motivated by 
natural collective phenomena [13], which is useful to guide 

the unmanned system in an unknown or dynamically changing 
environment [14]. As for the USV, when performing tasks, the 
environment it is in also keeps changing. The USV needs to 
obtain information about the surroundings through the 
onboard sensing devices, such as radar or AIS, to make 
effective obstacle avoidance. Therefore, behavior-based 
method can be used to guide USVs to avoid obstacles. 
Meanwhile, when the USV sails at sea, all its actions must 
comply with the International Regulations for Preventing 
Collisions at Sea (COLREGs). Using behavior-based method, 
the COLREGs can be easily integrated into the process of 
designing behaviors and the USV can effectively perform CA 
actions prescribed by the COLREGs. 

The CA problem of the USV has been well studied by 
many scholars, however, most of these studies assume that 
USV has a robust communication channel and the real-time 
navigation states of other ships can be easily obtained. While, 
this situation is unrealistic in a maritime environment. In the 
actual navigation, the USV mainly uses the AIS to obtain 
information of other vessels. The AIS is a broadcasting 
mechanism that broadcasts the navigation information at 
regular intervals. At the broadcasting point, the USV can 
obtain the quasi-real-time navigation states of other ships, 
however, no information can be obtained during the waiting 
period. To some extent, the USV is “blind” at this stage. So, 
how to deal with this problem in the realistic maritime 
navigation of the USV is also a focus of this paper. 

There are two main contributions of this paper: 1) the 
COLREGs-integrated behaviors are designed to guide the 
USV to tackle the dynamic collision avoidance (DCA) 
problem and 2) the Kalman filter (KF) is incorporated into the 
behavior-based method to predict the trajectories of other 
obstacle ships during the data waiting period of the AIS.  

And the remainder of this paper is organized as follows: 
after this “Introduction”, the broadcasting mechanism of AIS 
and the fundamentals of Kalman filter algorithm are explained 
in section II. Details of the COLREGs-integrated behaviors 
and the predictive dynamic collision avoidance (PDCA) based 
on behaviors method are given in section III. In order to verify 
the PDCA approach proposed in this paper, computer-based 
simulations are shown in section IV and conclusions are 
drawn in section V. 



II. PRELIMINARY KNOWLEDGE AND PROBLEM 

STATEMENT 

A. Motion Model 

The planar motion model of vessels used in this paper is 
formulated as follows: 
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where 
T

,x y    is the position vector and   is the heading 

angle of the ship defined in the earth-fixed coordinates OE-

XEYE. 
T

,u v    is the linear velocity vector and r  is the 

angular velocity given in the body-fixed frame Ob-XbYb of the 
vessel. These two coordinates are shown in Fig.1.  

 
Figure 1. Illustration of the motion model. 
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d  represent hydrodynamic damping terms. 
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     is the control input vector which is composed of the 

surge force 
u
 and the yaw moment 

r
. ,

u v
   and 

r
  denote 

the time-varying disturbances, which are used to simulate the 
environmental influence caused by winds, waves and currents 
when the ship sails at sea. These disturbance terms, which are 
given in (2), are added to the motion model to improve the 
robustness of the overall system when it is used in the actual 
navigation.  
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where h(s)  is a second-order transfer function and terms 

,
u

w (s),w (s) w (s)
v r  are defined as 

 , 2w(s) N 0                              (3) 

which is a zero-mean Gaussian white noise to model the 
uncertain disturbance. 

B. AIS Broadcasting Mechanism 

Automatic identification system (AIS) is a type of 
navigation aid system that is applied to the maritime safety 
and communication between ship and shore, or between 
different ships. AIS is a broadcasting mechanism that is 
shown in Fig.2. Ships equipped with AIS can transmit their 
own navigation information by broadcasting at fixed time 
intervals and receive other ships’ information.  

 
Figure 2. Illustration of the AIS broadcasting mechanism. 

There are two phases during the AIS broadcasting, i.e. the 
waiting period and the broadcasting point. The AIS broadcasts 
the ship its own navigation information at the broadcasting 
point and the other vessels can be aware of her. However, 
during the waiting period, no data is transmitted via AIS. So 
other vessels cannot perceive its existence. Time interval 
between two broadcasting points varies with the type of the 
AIS and the navigation states of vessels, and for class A AIS, 
time intervals are listed in Table I. 

TABLE I.  TIME INTERVALS OF CLASS A AIS 

Ship’s navigation states Nominal time intervals 

Ship at anchor or moored and not moving faster 
than 3 knots 

3 min 

Ship at anchor or moored and moving faster 
than 3 knots 

10 s 

Ship 0-14 knots 10 s 

Ship 0-14 knots and changing course 3 s 

Ship 14-23 knots 6 s 

Ship 14-23 knots and changing course 2 s 

Ship moving faster than 23 knots 2 s 

Ship moving faster than 23 knots and changing 
course 

2 s 

When the USV sails at sea, it cannot obtain the navigation 
information of other vessels through AIS during the waiting 
period. While at the broadcasting point, the data received by 
the USV via AIS has signal noise. In order to improve the 
accuracy of the received obstacle ship’s navigation 
information and apply it to DCA problem of the USV, the 
Kalman filter algorithm is used in this paper.  

C. Kalman Filter Algorithm 

Kalman filter (KF) algorithm is currently the most widely 
used filter method, and it has been better used in 
communication, navigation, guidance, control and other fields. 
KF is a recursive estimation algorithm which has two main 
processes, i.e. the prediction process and the update process.  

In the prediction process, the system state vector 
1

ˆ
t t

x  at 

time step t is predicted by the KF using the state at previous 



step t-1. And the system covariance matrix 
1t t

P  is also 

calculated. 
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where 
t

A  is the state transition matrix, 
t

B  denotes the control 

input matrix and 
t

u  is the control input. 
t

Q  represents 

transition noise in this process. 

Then the KF gain 
t

K  for time step t is calculated based on 

the system covariance matrix 
1t t

P . 
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where 
t

H  is the observation matrix and 
t

R  is the observation 

noise. 
Afterwards, the system state and the covariance matrix 

estimated in the prediction process are updated using the 

observation 
t

Z  to filter out the noise in the update process. 
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Finally, the system state and the covariance matrix with 
the improved accuracy obtained in the update process are 
passed back to the prediction process for next time step t+1. 

As for the navigation of the USV, when there is no AIS 
data, the prediction process of the KF is used to estimate the 
trajectory of the obstacle ship (OB). And at the broadcasting 
point, the update process is employed to filter the signal noise 
of the received information and update the position of the OB. 
So, the USV can be aware of the OB at any time since it was 
first perceived by the USV. The illustration of KF prediction 
process is shown in Fig.3. 

The USV system state vector xt  is given as 

, , , ,   
T

t
x x u y v ψ                            (7) 

According to the constant velocity model (CVM) [15], the 
state transition equation of the USV can be expressed as 
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where state transition matrix 
t

A  is 
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0 0 1 0
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where t  is the time step and the transition noise 
t

Q  is 

defined as 

 0,
t

Q N q                               (10) 

and 
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Q

q diag t t t t t σ          (11) 

 
Figure 3. Illustration of the Kalman filter prediction process. 

In the DCA problem of the USV, the observation is 

defined as , ,   
T

t
Z x y ψ  and the observation equation is 

expressed as 

= 
t t t t
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where the observation matrix 
t

H  is 

1 0 0 0 0
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and the observation noise 
t

R  is given as 

 20,
t R

R N σ                              (14) 

Based on state transition equation (8) and the observation 
equation (12), the KF algorithm can be used to predict 
trajectories of other ships during the navigation of the USV. 

III. PREDICTIVE DYNAMIC COLLISION AVOIDANCE USING 

BEHAVIOR-BASED METHOD 

A. COLREGs-integrated Behaviors 

COLREGs are maritime traffic rules that all vessels sailing 
at sea must abide by, which include 41 rules to ensure the 
safety of vessels [16]. According to COLREGs, collision 
situations between ships are shown in Fig.4. 

In the light of angle α  shown in Fig.4, which is the 

relative azimuth angle between the USV and the OB defined 
in the body-fixed frame Ob-XbYb of the USV, collision 
situations can be divided into 4 situations (Table II) 

TABLE II.  COLLISION SITUATIONS 

Situations Conditions 

Head-on  0 15 345 360, ,      α  

Crossing from right 15 112 5, .   α  

Overtaking 112 5 247 5. , .   α  

Crossing from left 247 5 345. ,   α  

Among all rules defined in COLREGs, there are 5 rules, 
i.e. rules 13-17, involve the relevant requirements of collision 
avoidance between vessels. Based on these 5 rules, several 
behaviors, which are listed in Table III, are designed to guide 
the USV to avoid other moving obstacle ships. 



 
Figure 4. Illustration of collision situations. 

TABLE III.  COLLISION AVOIDANCE BEHAVIORS 

Situations Behaviors 

Head-on 
Turn right 30  to pass the obstacle ship on her 

portside 

Crossing from right 
Turn right 30  based on α  to bypass the 

obstacle ship on her stern 

Overtaking 
The turning angle is designed to 30  opposite to 

the heading of the obstacle ship 

Crossing from left 
USV is “stand-on” vessel and should keep her 

navigation state 

B. Predictive DCA based on Behaviors Method 

TABLE IV.  ALGORITHM 

Algorithm 1: Predictive dynamic collision avoidance based on behaviors 

input: AIS data, planned path of USV 

initialization: States of USV, parameters of KF algorithm 

1:  while USV does not arrive at the destination 

2:     for every obstacle ship (OB) in the detection range of USV 
3:        if at AIS broadcasting point 

4:           AIS data is received, update the state of OB using (6) 

5:        else 
6:           in the waiting period, predict the state of OB using (4) 

7:           calculate KF gain using (5) 

8:        end if 
9:        calculate distance between USV and OB 

10:   end for 

11:   find the nearest OB 
12:   calculate DCPA and TCPA between USV and the nearest OB 

13:   if DCPA<DCPAthreshold and TCPA< TCPAthreshold 

14:       there is a collision risk 
15:       COLREGs-integrated behaviors are adopted by USV to avoid OB 

16:   else 
17:       there is no collision risk 

18:       LOS law in the light of the planned path of USV is adopted 

19:   end if 

20:   desired heading angle   of USV is obtained 

21:   new state of USV is updated using planar motion model (1) 

22: end while 

In order to improve the feasibility of the COLREGs-
integrated behaviors designed before to guide the USV to 
avoid collision between moving ships in the realistic maritime 
environment using AIS, the KF algorithm aforesaid is 
incorporated into the planner of the USV to predict trajectories 
of obstacle ships (OBs) during waiting period and filter the 
noise of the AIS data at the broadcasting point. The estimated 
states by KF algorithm are used as inputs of the COLREGs-

integrated behaviors to achieve collision avoidance of the 
USV. So we named it predictive DCA based on behaviors 
method. The flowchart of this method dealing with the DCA 
problem of the USV is shown in Fig.5. 

The pseudocode of the proposed predictive DCA based on 
behaviors method is shown in Table IV. 

 
Figure 5. Flowchart of the predictive DCA based on behaviors method. 

IV. ALGORITHM SIMULATION 

To verify the proposed PDCA based on behavior method, 
the computer-based simulation is employed in this section. 

The sailing trajectory of the USV under the given planned 
path is shown in Fig.6. 

 
Figure 6. Trajectory of USV under given planned path. 

Three moving obstacle ships, i.e. OB1, OB2 and OB3, are 
added in the sailing area of the USV, and trajectories of these 
four vessels are given in Fig.7. 

 
Figure 7. Trajectories of USV and other three obstacle ships. 

In order to see the collision avoidance processes of USV 
and three OBs more clearly, three detailed subplots are shown 
in Fig.8. 



These subplots describe three collision situations, in which 
the USV is required to take avoidance behaviors initiatively. 
As shown in Fig.8, the behaviors designed in the paper can 
effectively make the USV perform avoidance maneuvers in 
compliance with the COLREGs under different collision 
situations. In the case of “crossing from right”, the USV turns 
right to bypass the OB1 on its stern. While in the situation of 
“overtaking”, the USV turns left opposite to the heading of the 
OB2 that points to the right. When the USV and the OB3 meet 
each other on reciprocal courses, the USV turns right to pass 
the OB3 on its portside. 

  
(a) crossing from right (b) overtaking 

 
(c) head-on 

Figure 8. Detailed subplots of CA between USV and OBs. 

And the effect of the KF algorithm to estimate the 
trajectories of OBs are also reflected in Fig.8. In addition to 
the initial stage of the simulation and situations in which there 
are obvious changes in the navigation status of OBs, the 
proposed PDCA method has a good prediction effect on the 
trajectories of OBs. Based on the predicted positions, the USV 
still has a good DCA ability during the overall maritime 
navigation.  

V. CONCLUSIONS 

The predictive dynamic collision avoidance (PDCA) using 
behavior-based method of the USV is proposed in this paper. 
Behaviors in compliance with the COLREGs are designed to 
guide the USV to avoid the moving obstacle ships in the 
maritime navigation. Moreover, to deal with the problem that 
the USV cannot receive the AIS data during the waiting period 
and to filter out the signal noise that exists in the AIS data at 
the broadcasting point, the Kalman filter algorithm is 
incorporated into the behavior-based method. The 
effectiveness of the proposed algorithm in the USV dynamic 
obstacle avoidance is verified by the computer-based 
simulation. 
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