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Abstract—A model-based, data-driven control framework is
introduced within the context of autonomous driving in this
study. We propose a data-driven control algorithm that combines
autonomous system identification using model-free learning and
robust control using a model-based controller design. We present
a full solution framework that is capable to automatically gener-
ate tire-friction limit path while performing system identification
of a vehicle with unknown dynamics. We then design model-
based control which is actively learned from a data-driven
approach. Based on our new system identification algorithm, we
can approximate an accurate, explainable, and linearized system
representation in a high-dimensional latent space, without any
prior knowledge of the system. To validate the algorithm, we
conduct the model predictive control of an autonomous vehicle
based on the augmented system identification on a scaled racing
vehicle. The result indicates that we are able to design control
in the lifted space to achieve tasks in path control and obstacle
avoidance. The automatic path generation combined with the
data driven control requires no a-priori knowledge of the vehicle
and also proved to be effective that only requires less than 5 laps
to design an low lap-time trajectory while identified a system
that is able to achieve minimum lap time without extra learning
episodes.

Index Terms—Data-driven control, Linear operator approach,
Deep Learning, Model Predictive Control, Dynamic Program-
ming.

I. INTRODUCTION

Recent developments of deep learning have greatly changed
ways to understand data from a dynamical system, and subse-
quently, the controller design. We are able to extract features
more efficiently in the latent space created by the neural
network. The increased dimensions of the neural network, in
turn, pose difficulties in explaining the decision-making pro-
cess of a dynamical system with control, such as autonomous
driving and autonomous racing. In the traditional control
theory aspect, two types of well-documented controllers with
excellent explainability can be utilized: Model-based Geo-
metric controller and Model-based Optimization-based con-
troller. One widely-used model-based geometric controller is
a pure pursuit controller, which has been proven functional
from Stanford’s work in 2005 DARPA Grand-challenge [1].
However, the geometric controller performance heavily relies
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on road conditions and vehicle speed. Despite the fact that
a number of studies and modifications have been developed
to improve pure pursuit performance [2] [3], the decay in
tracking performance still exist with higher navigation speed
and aggressive controls.

With the massive improvement in GPU computing power
for the recent decade, optimization-based control such as
Model Predictive Control (MPC) has been widely used in path
tracking controller design. The model predictive controller has
been proven good performance in high speed and low-friction
environments, exhibiting robustness against sampling noise
[4] [5]. One disadvantage of conventional model predictive
control is that the controller’s accuracy heavily depends on
vehicle dynamics accuracy. When the vehicle dynamics change
over time, the controller’s performance will inevitably be
compromised.

This paper proposes a data-driven approach to design model
predictive control—the resultant controller benefits from the
model-free learning of the system identification and the model-
based control robustness. Unlike conventional model predic-
tive control, vehicle dynamics are learned rather than modeled.
As a result, the vehicle dynamics can actively update itself
with the recently collected data, which gives the vehicle’s
ability to change its dynamics in real-time. On the other
hand, this method can also approximate the vehicle’s nonlinear
characteristic even without a fully observable system, which
should have better performance on high speed or slippery
conditions compared to the predefined vehicle dynamics.

Data-driven control includes model-based and model-free
approaches [6] [7]. In this paper, we focus on incorporating
model-based data-driven control using the Koopman operator
theory. The first contribution we proposed in this paper is
developing deep neural network as Koopman operator to
achieve system identification of the vehicle dynamics, which
is proved to be flexible and robust in different simulation
scenarios. The second contribution we proposed in this paper is
developing an iterative approach to generate a standard vehicle
racing line aiming to achieve the minimum lap time.

II. PRELIMINARIES

This section discusses some preliminaries and introduces the
notations, which will be used in deriving the main results on
autonomous driving with the deep Koopman learning method.



2

A. Approximating the Data-driven Koopman Operator

Consider a controlled dynamical system as in equation (1).

xt+1 = f(xt, ut) (1)

where xt ∈ Rn. Assume we have a recorded time-series of
states X = [x0, x1, x2, ..., xk+1] and corresponding control
sequence U = [u0, u1, u2, ..., uk] that drive the evolution of
X . Then the Koopman operator K is an infinite-dimension
operator that build linear system representation of dynamical
system (1) based on the observable space g(xt) as shown in
equation (2).

Kg(xt) = g(f(xt, ut)) (2)

where g(xt) lift the original space Rn to a higher dimension
Rm. The main objective of Koopman operator theory is to find
K that best match the relationship as shown in Eqn. (2) based
on the recorded state (X) and control sequence (U ).

As infinite dimensional mapping K is impossible to obtained
in real-applications, the Koopman operator has to be approx-
imated with a predefined number of observation functions.
We define a set of observable functions: ψ1(xt), ψ2(xt) ,...,
ψN (xt). Then let zt = [ψ1(xt), ψ2(xt), ..., ψN (xt)]

T with N
� n, the approximation of Koopman operator K is to find
solution to the optimization problem (3).

min
K

t∑
t=0

‖
[
zt+1

ut

]
−K

[
zt
ut

]
‖22 (3)

As depicted in the paper [8], the optimization solution K can
be decomposed as K = [A,B], which is equivalent to solving
the optimization problem (4).

min
A,B

K∑
t=1

‖zt+1 − (A · zt +B · ut)‖22 (4)

Matrices A, B are the state-space representations of the
dynamical system after being transformed by nonlinear ob-
servable function ψ. To create mapping between lifted state zt
and original state xt, the matrix C is introduced as the solution
to the optimization problem (5).

min
C

K∑
t=1

‖Xt − C · Zt‖22 (5)

The analytical solution to (4) and (5) can be calculated as
shown in Eqn. (6)

[A,B] = zt+1[zt, U ]†

C = ztx
†
t

(6)

where † denotes the Moore-Penrose pseudoinverse of matrix.
In practice, when the number of collected data set is signif-
icantly larger than the dimensions of observable function (N
� k), it is more desirable to solve optimization problem (4)
using Eqn. (7) than Eqn.(6). [8]

[A,B] = zt+1

[
zt
U

]
(

[
zt
U

]T [
zt
U

]
)† (7)

III. KOOPMAN-BASED APPROACH FOR MODEL
PREDICTIVE CONTROL

A. Deep Koopman Representation for Autonomous driving

Koopman operator theory has been proven to be powerful
for system identification and spectrum analysis for unsteady
systems. We propose to use the lifting approach to facilitate
the design of optimal control using Deep Koopman repre-
sentation for Control (DKRC) in [9]. In this study, we use
a high-dimensional neural network as Koopman operator to
capture the nonlinear behavior of the system and accurately
approximate the nonlinear dynamics into a linear system over
lifted state-space.

The optimization objective to determine the A and B
matrices in (4) is exactly the loss we wish to minimize when
training the deep neural network lifting function. Therefore
the loss function of the neural network is set to be (8) where
ψ(xt, θ) represent the neural network with original states xt as
input and θ as parameters. To further enhance the robustness
of the training process, we incorporate pseudo-Huber loss
function [10] as final cost value.

La =
1

L− 1

L−1∑
n

|ψ(xt+1, θ)− (A · ψ(xt, θ) +B · ut)|

L(θ) = δ2(

√
1 + (

La
δ
)2 − 1)

(8)

When training the neural network, the A and B matrix
are updated as shown in (7) after every iterations based on
the newly updated deep neural network observable function
ψ(xt, θ). Once the loss function value in (8) drops lower than
termination criteria ε, we compute the C matrix as shown in
Eqn. (6).

B. Model Predictive Control on Lifted Space(Augmented
DKRC)

Once the performance of deep koopman identified model is
satisfactory, we can use this new model to design optimization-
based controllers such as model predictive control. As shown
in Eqn. 9, the model predictive control design is based on
the dynamical system approximated through the deep nerual
network lifting function, hence the quadratic cost on the states
has to be lifted as well.

min
u

(zN − zref,N )TCTQfC(zN − zref,N )+

N−1∑
t=1

(zt − zref,t)TCTQC(zt − zref,t) + uTt Rut

s.t. zt = ψ(xt, θ)

zt+1 = A · zt +B · ut
zN,0 = z0

umin ≤ ut ≤ umax
xmin ≤ xt ≤ xmax, t = 1, . . . , N

(9)

IV. EXPERIMENT RESULT

In this section, we validate the performance of deep
Koopman data-driven controller in both autonomous driving
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Fig. 1: Deep Koopman system training diagram

F1TENTH simulator [11] [12] as well as real F1TENTH robot.
We compared the optimal control performance of the proposed
deep Koopman data-driven MPC and the other two existing
optimal control methods: nonlinear MPC [13] and the adaptive
pure pursuit algorithm [2] [3]. Both the cost function values
and the trajectories errors are considered as the optimality
criteria.

A. Tracking performance comparison analysis

The scenario we applied with our data-driven MPC is the
optimal tracking problem. The baseline models are nonlinear
MPC and adaptive pure pursuit algorithms, which have been
utilized in various autonomous driving community applica-
tions and the autonomous racing control for the F1TENTH
environment. However, depending on the identification of the
linearized model and the choice of ahead distance of the
algorithm, those methods need a much more accurate model
for the MPC control, and the control performance depends
on the tuning of the model parameters. With the data-driven
Koopman-based approach, the model can be identified in
the high dimensional lifted space and hence provide more
parameter robustness in the model identification.

More importantly, when the parameters of the vehicle
dynamical system can not be explicitly obtained (center of
gravity, cornering stiffness, racing track condition, etc.), data-
driven system identification can capture the nonlinear feature
of the system without direct knowledge of all parameters of
the dynamical system. In our case, the nonlinear behavior of
the vehicle dynamics can be properly captured through the
identification process, which has proven to deliver much better
control performances compared to pure pursuit or nonlinear
kinematic MPC.

Since the assumption has been made that the vehicle dy-
namics are only partially known, parameters related to vehicle
dynamics such as cornering stiffness, friction coefficient, ve-
hicle mass are unavailable for designing the controller. The
only information we can obtain from the vehicle is related
to vehicle kinematics, such as wheelbase and track width. As

shown in Fig. 3, due to the lack of information on vehicle
dynamics parameters, the tracking performance of nonlinear
kinematic MPC and adaptive pure pursuit is not as good as
the data-driven MPC.

TABLE I: Tracking Performance Comparison Statistic

Position Error
[m]

Yaw Error
[rad]

Speed Error
[m/s]

Data-driven MPC 0.155 0.074 0.177
Nonlinear MPC 0.338 0.066 0.161
Pure Pursuit + PID 0.196 0.143 0.279

In Table (I) and Figure (2), the error represents the state
difference between real-time vehicle pose and its closet ref-
erence pose. Data-driven MPC controller has the best per-
formance compared to the other two controllers. In general,
using geometric controller like pure pursuit achieve better
position tracking performance, yet this method suffers from
the unstable control output and large tracking error in sharp
trajectory change. The Kinematic NMPC controller has better
performance in tracking trajectory orientation and velocity
since yaw angle and velocity has assigned the same cost as
position states x and y. As mentioned before, data-driven
MPC uses the approximated model based on recorded state
and data. Consequently, the vehicle dynamics was capture
in the approximation process, which gave the data-driven
MPC higher position tracking accuracy than pure pursuit
while maintaining the high yaw angle and velocity tracking
performance from optimization-based control method.

B. Low Lap-Time Racing Line Generation

In order to test the controller’s performance in high-speed
racing scenario, a single global reference trajectory is needed
for the comparison. It is preferable that this global trajectory
to include high-speed corner, harsh brake and acceleration so
that extreme driving behavior can be tested.

To generate such racing line, we first define a initial global
trajectory χ0 as the reference trajectory, which can either be
human driver’s input or middle line of the track. Then we
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(a) Data-driven MPC (b) Kinematic NMPC (c) Pure Pursuit + PID Control

Fig. 2: Trajectory tracking of three different vehicle controllers. (a): Data-driven MPC (b): Kinematic NMPC (c): Pure Pursuit
+ PID

Fig. 3: Tracking Error Comparison, blue bar represents the mean error value while black bar shows the range of error

perform global racing-line iteration by recording the vehicle
pose based on the solution a real-time local planning and
control optimization problem. Enlightened by N.Kapania’s

Fig. 4: Iterative Progress in Generating Global Trajectory over
a closed track

work in his Ph.D. thesis of Stanford University, the local
planning optimization problem is established as in Eqn. (11).
This optimization is based on the 2D pose of robot st =
(xt, yt, θt) where (xt, yt) defines the position and θt defines
the orientation. In this case, the goal is to find the local path
that satisfy the combination of two terms: 1. the shortest path
between vehicle pose and local goal pose selected from the
racing line 2. the overall curvature of the local path.

Since the racing-line is designed for ackermann steering

vehicle, we incorporate the non-holonomic constraints as sug-
gested in the trajectory optimization paper [14]. Consequently,
the consecutive pose update is written as a state-space function
h that update the vehicle pose st based on two control input
δθ and δS.

st+1 = h(st, δθ, δS) (10)

where δθ is the change of orientation and δS is the length
of curve between two curves. More detail of the pose update
process can be found in the work [14] by C.Rosmann.

With the state update equation and initial vehicle pose
information, the local planning problem is to minimize the
cost function with two terms as suggested in (11).

min
δθ0,δθ1,...,δθt−1

i=t−1∑
i=0

(1− wd) · κi + wd · ‖xi − xg, yi − yg‖22

s.t. κi =
|δθi|
δS

si+1 = h(si, δθi, δS)

sg ∈ χj

(11)

where sg is the local goal pose selected from the jth lap
of global trajectory χj , κi represent the average curvature
between two pose, δS represent the arc length two adjacent
poses. In this case, δS is a pre-defined constant value. The
minimum distance weight wd control the balance between
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minimum curvature and minimum distance for the optimiza-
tion. The output of the optimization problem in Eqn.(11) is
the a array of the vehicle pose that contains the information
of vehicle’s position and orientation.

Based on our experiment, it took around 4-5 laps for
the global racing line to converge. With the given trajectory
pose and orientation information, next step is to calculate the
optimal velocity profile that can achieve the minimum lap-
time. We can use dynamic programming approach to find the
optimal velocity profile for the racing line based on the pose
information (xt, yt, θt). As suggested in the work [15] by M.
Althoff, we incorporate tire-friction cycle as the maximum
tire-force constraint. The detail of dynamic programming
optimization is shown in (12).

min
u0,...,ut

i=t−1∑
i=0

2dsi
ui+1 + ui

dsi = ‖xi+1 − xi, yi+1 − yi‖22

wi =
|θi+1 − θi|

dti

vi =
ui+1 + ui

2

ai =
ui+1 − ui

dti√
a2i + wi · vi ≤ µ

(12)

The friction coefficient between tire and road directly affect
the amount of traction available for the vehicle. Since the
friction cycle restrict the lateral and longitudinal acceleration,
a small µ value will lead to a smoother operation while a high
µ could deliver lower lap-time with more aggressive behavior.

Table (II) shows the analysis of how minimum lap-time
changes with respect to two variables: minimum distance
weight wd as well as tire-road friction coefficient µ. As
depicted in the table, it is not surprising that a higher tire-
road friction of coefficient leads to a lower lap-time. However,
the experiment’s results suggested that the best choice of
minimum distance weight is when wd equals to around 0.2
and 0.65. One insight we can grasp from this pattern is
neither low distance nor low curvature leads to the fastest lap-
time, because low distance may compromise cornering speed
for the sake of low distance while low curvature will yield
longer distance despite the overall higher cornering speed.
The optimal balance between minimum curvature and distance
requires detailed analysis. On the other hand, this optimal
balance may also vary with different track as different track
has different character. Once the track is changed, the optimal
combination of wd and µ has to be recalculated.

C. End-to-End Model Deployment to a Scaled Racing Vehicle

To better test the performance of deep Koopman represen-
tation of control on the real vehicle under high speed racing
scenario, we conduct the experiment on the F1TENTH robot in
the basement of Clemson Fluor Daniel Engineering Innovation
Building. In this case, an open area as which contains both
straight line and corners are selected (shown in figure 5) to test

both the speeding and steering performance of deep Koopman
MPC controller.

During the initial part of the test, we first conduct the system
identification of the vehicle dynamics. In this process, we ask
a human to operate the vehicle within the selected area. When
controlling the vehicle, it is preferable that the control input
to be noisy so that more vehicle behaviors can be explored.

Fig. 5: End-to-end Model deployment to a 1/10th scale au-
tonomous racing robot

Once the system identification is complete, we use the
iterative global trajectory generation methods to provide a
fast racing line to test the controller’s performance in high
speed. As suggested in the Ph.D thesis by N. Kapania from
Stanford [16], the value of minimum distance weight wd
in optimization in Eqn. (11) can effect the time consumed
for navigation. Based on our experiment result, we choose
wd around 0.65 as the final minimum distance weight as it
delivered the shortest navigation time. As for the choice of
tire-road friction of coefficient, we set µ to be 0.5 to avoid
extreme control behavior, hence lower the risk of dangerous
crash.

The statistics of trajectory evolution is shown in table (III),
the navigation time converges to a minimum value of 9.228
seconds within only 4 laps of iteration.

The deep Koopman model predictive control is used for the
vehicle control to track the optimized racing line. With the
assistance of a deep neural network as the lifting function,
we are able to control the number of lifted state-space so that
we can use the lowest number of lifted dimension without
compromising the accuracy of the vehicle dynamics too much.
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TABLE II: Minimum Time Statistic over Different Road Friction and Minimum Distance Weight

µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9
wd = 0.05 19.18 15.6134 13.4987 12.0556 10.994 10.1829 9.5495 9.1014
wd = 0.2 19.14 15.5798 13.4639 12.026 10.9656 10.1492 9.5318 9.0766
wd = 0.35 19.19 15.605 13.49 12.0517 10.99 10.17 9.543 9.094
wd = 0.50 19.1873 15.6342 13.4983 12.0573 10.9985 10.181 9.5533 9.1054
wd = 0.65 19.147 15.5715 13.46 12.03 10.962 10.15 9.527 9.0956
wd = 0.8 19.2392 15.6635 13.5218 12.0779 11.0146 10.2 9.5764 9.1387
wd = 0.95 19.3256 15.7311 13.602 12.156 11.08 10.2555 9.6281 9.2004
wd = 1.0 19.883 16.1719 13.9724 12.4789 11.3818 10.5328 9.8861 9.4607

Fig. 6: Iterative approach to generate trajectory over Clemson
Fluor Daniel Basement Map

TABLE III: Navigation Time Comparison Statistic

Initial Path Lap 1 Lap 2 Lap 3
Time [sec] 11.946 9.737 9.652 9.228
Mean speed [m/s] 3.0534 3.457 3.441 3.595

As a result, the update frequency of the MPC solver is good
enough for high speed navigation.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a fully data-driven approach for
system identification and control using deep neural network as
Koopman operator. Not only did the nonlinear dynamics are
properly approximated, the learning-based Koopman operator
is capable of controlling the number of lifted dimension so
that the computational efficiency and the accuracy of system
can be balanced properly.

The experiment result suggests that data-driven Koopman
MPC is able to achieve better tracking performance than
vehicle controllers such as pure pursuit and kinematic non-
linear MPC due to the highly accurate approximated model.
More importantly, the entire learning process of the system
dynamics is entirely data-driven without a-priori knowledge of
the dynamical system, which allows the real-time modification
in the system to achieve the best control performance.

On the other hand, the deep Koopman model predictive
control can safely control the vehicle to track a high-speed
optimized racing line without knowing the detailed vehicle
information like cornering stiffness or center of gravity, which
indicate the potential of deep Koopman MPC in autonomous
racing scenario with limited vehicle information.
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