
EasyChair Preprint

№ 1398

iCNN: A Convolutional Neural Network for

Fractional Interpolation in Video Coding

Chi Do-Kim Pham and Jinjia Zhou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 13, 2019



iCNN: A Convolutional Neural Network for Fractional 

Interpolation in Video Coding 

Chi Do-Kim Pham
1
, and Jinjia Zhou

1,2
 

 
1 Graduate School of Science and Engineering, Hosei University, Japan 

chi.kim.pham.do.94@stu.hosei.ac.jp 
2 JST, PRESTO, Tokyo, Japan 

jinjia.zhou.35@hosei.ac.jp. 

 
Abstract. Motion compensated prediction has significantly contributed to the 

temporal redundancy in video coding by predicting the current frame from the list 

of previously reconstructed frames. Later video coding standard HEVC uses 

DCTIF to interpolate fractional pixels for more accurate motion compensated 

prediction. Although the fixed interpolation filters have been improved, they are 

not able to adapt to the diversity of video content. Inspired by super-resolution, 

we design the interpolation Convolutional Neural Network for fractional 

interpolation in video coding. Our work also solves two main problems in 

applying Convolutional Neural Network to fractional interpolation in video 

coding: there is no training set for fractional interpolation and integer pixels 

change after processing. As a result, this work achieves a 2.6% BD-rate reduction 

compared to the baseline HEVC. 

 
Keywords: Deep Learning, fractional interpolation, video coding, Motion 

Compensated Prediction. 

1 Introduction 

In video coding, Motion Compensated Prediction (MCP) is one of the critical 

factors in removing temporal redundancy between video frames. MCP searches in a 

list of previously reconstructed frames to find the best matching block of the 

current block to be encoded. The difference between the best-matching block and 

the current block to be encoded, as known as residual, is coded beside the motion 

vector that indicates the movement of the current block to the position of the best 

matching block in the reference frame.  If the best-matching block does not fall into 

integer pixels, reference blocks in the previously reconstructed frame are 

interpolated to get fractional samples, and fractional motion vectors are also used 

for representing 11 movements. The widely used video coding standard 

H.265/HEVC [1] uses 7-tap and 8-tap Discrete Cosine Transform interpolation 

filter (DCTIF) for the quarter and half-pixel positions, respectively. Although 



DCTIF improved the accuracy of MCP, these fixed filters are not flexible enough 

for the variety of content in natural videos.   

The past decades have witnessed the tremendous success of artificial intelligent, 

especially machine learning, in various aspects of the social life [2], [3]. In machine 

learning, Convolutional Neural Networks (CNN) is one of the most famous 

techniques that outperforms the traditional methods in image processing task. 

Recently, CNN has been widely used in super-resolution where a high-resolution 

image is obtained given a low-resolution image. Chao Dong proposed SRCNN that 

learns a mapping between an input of low-resolution image and an output of high-

resolution image [4], Jiwon Kim designs VDSR that reconstructs a high-resolution 

image by estimating image details given a low-resolution image [5]. Although both 

super-resolution and fractional interpolation in video coding increases the 

resolution of input image, CNN-based super-resolution cannot directly be used for 

fractional interpolation in video coding because of two problems: (1) super-

resolution tends to change the pixel values while interpolation needs to keep the 

integer pixels for integer motion search and (2) there is no trainset for fractional 

interpolation in video coding because fractional pixels do not really exist.  

To keep the integer pixels, the authors of [6] train CNNIF_H, CNNIF_V, and 

CNNIF_D for three half-pixel positions and keep all integer pixels for integer 

motion search. Similar to [6], Ning Yan proposed 15 Fractional-pixel Reference 

generation CNN (FRCNN) [7] for half- and quarter-pixel interpolation in uni-

directional and bi-directional MCP. The work [8] proposes GVTCNN to learn 15 

fractional pixels from an input of integer pixels. Different from above the works, 

Han Zhang added a constraint mask after their CNN for half-pixel interpolation to 

make sure the integer pixels are kept [9]. 

To solve the problem (2), the work [6] uses a low-pass filter for blurring images 

to get the correlation between integer and fractional pixels and extracts them. They 

then encode the integer pixel to get the reconstructed frame and treat them as the 

input of CNN, and the fractional pixels are ground truth. In [7], the authors extract 

the reference blocks from reconstructed video and the corresponding blocks from 

the original video to be CNN input and label, respectively. Totally, 120 CNN 

models are trained for four values of QPs in uni- and bi-directional prediction. [9] 

trains a mapping between DCTIF interpolated frame of the low-resolution frame 

and the corresponding original video frame. They also trained four CNN models 

that are compatible with four input QPs in encoding.  

In this paper, we propose interpolation CNN (iCNN) that enhances fraction-

position images interpolated by DCTIF for MCP. Moreover, we create a train set 

for our iCNN and an iCNN/DCTIF selection for improving coding efficiency. The 

rest of this paper presents our proposal in data generation and our network for 

fractional-pixel interpolation in section 2 follows by experiments in section 3 and 

ends with the conclusion in section 4. 



2 Proposals 

As mention in the introduction, there are two problems in applying CNN to 

fractional interpolation in video coding: CNN-based super-resolution tends to 

change pixel values while interpolation needs to keep integer-pixel values for 

integer motion search, and there is no trainset for interpolation in video coding. 

This section presents our proposals to improve DCTIF by using CNN and a dataset 

generation method for our CNN.  

2.1 Ground Truth Selection 

Fig. 1 presents integer and fractional samples in HEVC. In HEVC fractional 

interpolation, half pixels h0,2, h2,0, and h2,2 are first obtained by applying 7-tap 

DCTIF on integer pixels Ii,j, then 8-tap DCTIF is applied on half-pixels hi,j to get 

quarters positions. Although more taps and bigger paddings are added into DCTIF 

for better prediction, DCTIF may not be able to adapt the diversity of video 

contents, and the covered area is still limited. Meanwhile, CNN has remarkable 

contributions in super-resolution where global and local information are needed for 

reconstructing a high-resolution image.  

Fig. 1. Integer and fractional samples of Luma Component in HEVC. Ii,j presents for 

integer pixels, hi,j presents for half samples and others qi,j are quarter samples. 

 



In training any CNN model, training set is one of the essential elements to obtain 

the expected output. In CNN-based super-resolution, it is clear that the expected 

output is the original high-resolution image which is set as CNN ground-truth 

labels. Although super-resolution seems similar to fractional interpolation, super-

resolution trainset cannot be directly applied to fractional-position interpolation 

because one’s input is low-resolution images and the other’s input is the 

reconstructed images, and no ground truth for half and quarter samples because 

they do not exist. Hence, there is a question that needs to be answered: What is best 

the ground truth for training CNN-based fractional interpolation in MCP? 

In order to generate the train set, a typical way is to assume integer and fractional 

position in each video frame, extract integer and fractional videos, do encoding for 

integer frames, then learn the mapping between the reconstructed integer frame and 

the fractional blurred frame [6], [8] or the original frame [11].  

We conduct an experiment to find which should be the ground truth for training. 

In this experiment, we assume and extract integer videos from the original video. 

Supposing that if DCTIF can exactly generate the original video frames from the 

reconstructed integer-video frames and this original frame can improve the coding 

efficiency on the integer-video, the reconstructed integer-video frame and the 

corresponding original video frame can be a pair of input and ground truth for 

training. Our experiment is described as: encode integer video and replace DCTIF’s 

interpolated frame by the original video frame. This experiment achieves a 7.1% Y 

BD-rate reduction on the first three frames of extracted integer sequences of class B 

and C. We then use reconstructed integer-video frame and the original video frame 

as our training set. 

2.2 Dataset Preparation Method 

After the ground-truth selection experiment, we design a training set for our iCNN. 

This section presents the trainset generation in detail. Given a YUV video, our 

training-data generation (Fig. 2) can be described as follow:  

(1) We assume the integer and fractional pixels in a video by dividing each frame 

into 4-by-4 non-overlapping blocks, and each top-left pixel of a block is 

treated as integer pixel, others are fractional pixels. Half and quarter positions 

are pixels at a similar position to fractional samples in Fig. 1. We then obtain a 

low-resolution video of integer pixels (integer-position video) and 15 low-

resolution videos (including three half- and 12 quarter-position videos) 

corresponding to 15 fractional samples.  

(2) Encode low-resolution video with QPs of 22, 27, 32 and 37 under low delay P 

configuration to get reconstructed downsampled video. 

(3) Extract Y components from reconstructed frames and interpolate them to 15 

fractional samples by DCTIF. These 15 fractional samples are used as training 

input for iCNN. 



(4) Extract Y component from each fractional-position video frame. The 

original Y component of fractional-position videos is iCNN ground truth 

for training. Each pair of the fractional sample interpolated by DCTIF and 

the fractional sample extracted from the original frame is considered as a 

training sample. 

In training any deep networks, small trainset could cause overfitting. We then do 

some data augmentation techniques including flipping and rotating training images 

to avoid spatial bias training (such as objects and movements only distribute in 

some positions) and overfitting.  

2.3 Interpolation Convolution Neural Network 

Our proposal in improving DCTIF by using CNN (Fig. 3) is twofold: an iCNN for 

enhancing fractional samples by DCTIF and an iCNN/DCTIF selection for taking 

full advantage of iCNN and DCTIF. In fractional motion search and motion 

compensation, the integer sample from the reconstructed frame is interpolated by 

DCTIF to get 15 fractional samples. Each fractional sample is fed into iCNN to get 

iCNN fractional sample after convolution. For iCNN/DCTIF selection, iCNN’s and 

DCTIF’s fractional samples are checked for R-D cost at CU level to decide which 

method should be used for interpolating fractional samples of that CU. 

Interpolation Convolutional Neural Network (iCNN). Our iCNN takes an 

input from fractional frames which are interpolated by DCTIF (as 2.2) and a 

ground-truth of fractional sample extract from the original video frame. Only one 

network is trained for 15 fractional samples. Our network architecture (inside dash 

border of Fig. 3), inspired by VDSR, contains 20 convolution layers, each layer has 

64 filters size 3x3 and do convolution with a stride of 1. During convolution, we set 

Fig. 2. Visualization of input and ground-truth generation method from the original video 

frames. In the end, 15 samples for each frame are trained. 



a padding of 1 to keep the input size not to change over the layers. All the 

convolution layers are followed by a ReLU layer except for the final one.  For 

training, learning rate is first started at 0.1 and decreased by a factor of 10 after ten 

epochs. We set a batch size of 128 and finish training after 50 epochs. 

 

In training, fractional-position image 𝑥  interpolated from the reconstructed 

integer frames and fractional-position image 𝑦 extracted from the original video are 

used as CNN inputs and ground-truth label, respectively. Let 𝑤𝑙 , 𝑏𝑙  denotes the 

learned weights and biases at layer 𝑙𝑡ℎ, output z at layer 𝑙𝑡ℎ is: 

 𝑧𝑙  =  𝑅𝑒𝐿𝑈(𝑤𝑙  ∗  𝑧𝑙−1 + 𝑏𝑙) (1) 

where 𝑅𝑒𝐿𝑈(𝑋)  =  𝑚𝑎𝑥(𝑋, 0), and ‘*’ means convolutional operator. The first 

layer takes the input image 𝑥  for 𝑧𝑙−1 . The final layer has no ReLU layer and 

produces a residual 𝑓(𝑥, 𝜃) which will be add onto input. The network training 

aims to minimize the loss function: 

 

𝐿(𝜃) =  
1

𝑛
 ∑‖𝑦 − (𝑥 ⊕  𝑓(𝑥, 𝜃))‖

2
𝑛

𝑖=1

 (2) 

where n is number of training samples, and 𝜃 is the set of learned weights and 

biases for all layers. In testing, reconstructed frames are first interpolated to 15 

fractional samples by DCTIF before feeding iCNN one by one. Motion search then 

Fig. 3. Our proposal in improving DCTIF by using CNN. Firstly, reconstructed frame 

which includes integer samples are interpolated by DCTIF to get 15 fractional samples. 

Each fractional sample is then fed into iCNN which outputs a corresponding fractional 

sample. At CU level, interpolation method is chosen if its R-D cost is smaller than the other 

method’s. 

 



compares the reconstructed integer, and fractional iCNN outputs to the original 

frame to be coded to find the best fractional matching block. By producing only 

fractional samples, we can keep integer pixels for later processes. 

iCNN/DCTIF selection. In some cases, DCTIF can generate a better-predicted 

block than iCNN. To take both advantages of iCNN and DCTIF, we implement a 

Rate-Distortion cost-based (R-D cost) iCNN and DCTIF interpolation-method 

selection at CU level. At CU level, if a CU is coded with fractional motion, an 

interpolation method is decided base on R-D cost. All PUs in the same CU will be 

interpolated by CU’s interpolation method. For each CU that has fractional MV, a 

syntax element for the interpolation method is defined in bypass mode and extra bit 

indicates the interpolation method will be stored without compressing. 

3 Experiments 

In our experiments, the reference software HEVC Test Model (HM) [10] 16.18 is 

used for generating iCNN trainset and demonstrating CNN-based interpolation. 

For trainset generation, we extract 60 frames from standard HEVC test sequence 

Traffic, PeopleOnTheStreet, and Pedestrian [11] for QP 32 and 37, 

and 40 frames from Traffic and PeopleOnTheStreet for QP 22 and 27. 

After producing input and ground truth by section 2.2, input and ground-truth 

images are divided into 41x41 patches. Our iCNN is trained by PyTorch 1.0.0 

platform [13] on NVIDIA Tesla V100 GPU.  

All the experiments are conducted under low delay P configuration. 

Quantization parameter (QP) is set to 22, 27, 32, and 37, the full search is activated, 

and other parameters are set to default. In evaluating our results, we compare our 

method with HM by Bjøntegaard-Delta bit-rate (BD-rate) method [12]. BD-rate 

indicates how many bits a coding method reduces compared to an anchor method at 

the same image quality. Since each QP significantly affects the image quality, four 

models for four QP values are trained. U and V components are interpolated by the 

default DCTIF of HEVC.  

Table 1 shows our BD-rate on standard test sequences compared to HEVC. The 

first column is our results without iCNN/DCTIF selection. Since the model is 

trained only on the Y component, we obtain a 0.2% BD-rate reduction on the Y 

component and up to 4.5% for sequence Kimono. For more information, U and V 

BD-rate are increased to 2.6% and 2.8% over the sequences compared to HEVC. 

The second column shows our results for iCNN/DCTIF selection without an extra 

bit for each CU interpolation flag. We acquire Y, U, and V BD-rate reduction of 

4.4%, 0.6%, 0.5%, respectively. The third column shows our CU level selection 

results when an extra bit for every CUs that choose fractional interpolation. We get 

a Y BD-rate reduction of 2.6%, but U and V do not good enough to deal with one 

extra bit added for each CU which leads U and V BD-rate increase to 1.3% and 



1.4%, respectively. The future works include training models for U and V and 

compressing the added bit for each CU interpolation method. 

We also do some visualizations for our Rate-Distortion Optimization-based 

iCNN/DCTIF selection for each CU. Fig. 4 is the visualization of CU-level 

interpolation-method selection on POC 7 of BQMall including iCNN interpolation 

(red CUs), DCTIF interpolation (blue CUs), and other CUs without border are CUs 

coded in intra mode or move with integer MV. 

In detail, we synthesize the ratio of choosing iCNN and DCTIF over the test 

sequences. It is unfair to say which method is chosen more than the other one based 

on the number of CUs since CU size can be 64-by-64, 32-by-32, 16-by-16 or 8-by-

8. We then calculate the hitting ratio of iCNN and DCTIF on the area. The 

following equation calculates the area in pixel of a method: 

Table 1. Y BD-rate (%) of proposal with and without iCNN/DCTIF selection. For 

iCNN/DCTIF selection, result with and without extra bit for indicating interpolation 

method is shown. (Anchor: HEVC) Note that the lower negative BD-rate, the better 

result. 

Class Sequence Without 

iCNN/DCTIF 

selection 

With iCNN/DCTIF 

selection 

Without 

extra bits 

With extra 

bits 

B Kimono -4.5 -7.1 -4.5 

ParkScene  4.4 -3.6 0.1 

Cactus -0.8 -6.7 -4.7 

BasketbalDrive -2.4 -6.0 -3.6 

BQterrace -0.1 -8.3 -5.6 

C BasketballDrill -1.5 -5.5 -3.6 

BQMall -0.5 -3.3 -1.9 

PartyScene 2.6 -2.9 -1.4 

RacehorsesC -0.3 -4.5 -2.5 

D BasketballPass -0.9 -4.7 -2.8 

BQSquare  4.8 -5.6 -3.5 

BlowingBubbles 2.3 -4.6 -2.5 

RaceHorses -0.4 -5.6 -3.1 

E FourPeople -3.3 -5.2 -4.1 

Johnny -0.9 -7.0 -4.9 

KristenAndSara -1.4 -5.4 -3.5 

F BasketballDrillText -0.9 -5.1 -3.2 

ChinaSpeed -0.3 0.2 1.2 

SlideEditing 0.1 1.6 1.7 

SlideShow -0.5 0.7 1.1 

Average B -0.7 -6.3 -3.7 

Average C 0.1 -4.0 -2.3 

Average D 1.4 -5.2 -3.0 

Average E -1.9 -5.9 -4.1 

Average F -0.9 -0.6 0.2 

Average all sequences -0.2 -4.4 -2.6 

 



 

 

𝑎𝑟𝑒𝑎𝑚𝑒𝑡ℎ𝑜𝑑 =  ∑ 𝑛𝑗(
64

2𝑗
)2

3

𝑗=0

 (3) 

where nj is the number of CU that is coded at depth j. The hitting ratio statistics of 

choosing iCNN or DCTIF is shown in Fig. 5. For our experiment, the higher QP is 

used, the less iCNN is chosen. In conclusion, our iCNN gets a hitting ratio of 43.27% 

over the test sequences. 

 
Fig. 5. Hitting ratio (%) of iCNN and DCTIF over class B, C, D, E, and F. 

4 Conclusion 

Inspired by CNN-based super-resolution, we design interpolation Convolutional 

Neural Network (iCNN) to adapt the diversity of video contents where the fixed 

0%

50%

100%

B C D E F

iCNN/DCTIF hitting ratio

DCTIF iCNN

Fig. 4. Visualization iCNN/DCTIF interpolation selection on POC7 of sequence BQMall. 

Blue, red blocks represent for CU that choose DCTIF, iCNN, respectively. The other parts 

include intra-coding CUs and CUs have integer MVs. 

 



interpolation filters face limitations. In this work, we solve two main problems in 

improving HEVC’s interpolation filters with CNN-based super-resolution: training 

set are different, and CNN will change the integer pixels which is required for 

integer motion search in HEVC. For the training set problem, we create a training 

set of encoded integer video and fractional videos extracted from the original video 

frame. For the problem of changing integer pixels, we produce fractional pixels 

one-by-one and keep the integer pixels. Besides, an R-D cost-based iCNN/DCTIF 

selection is implemented to further improve the coding efficiency. Current work 

achieves a 2.6% Y BD-rate reduction over the standard test sequences compared to 

HEVC. 
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