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Abstract—A trained neural network classifier is often used
to detect cardiac problems by the classification of heart sound
signals, also known as phonocardiogram (PCG) signals. The
choice of an appropriate training optimization algorithm for
such a classification problem, on the other hand, is still being
debated. In this paper, we use the bidirectional long short-term
memory (biLSTM) network for the classification of sequences of
short-time features extracted from labelled PCG signals. The
classification performance of four different trained biLSTM
models is described in terms of three different optimization
algorithms that are used to train the classifier. The elaborated
results on testing PCG signals showed that the biLSTM classifier
performs better when trained with the stochastic gradient descent
with momentum (SGDM) algorithm than when trained with the
RMSprop (root mean squared propagation) optimizer or the
adaptive moment (ADAM) optimization algorithm. Furthermore,
this classification method outperforms a baseline method.

Index Terms—Heart sound, PCG signals, feature classification,
biLSTM model, SGDM, RMSprop, ADAM.

I. INTRODUCTION

Automatic diagnosis of disease is focused on the devel-
opment of robust and dynamic noninvasive systems. As for
cardiac disease – one of the leading causes of death across
the globe – cardiologists are used to examine the health of
the heart by hearing its sound with a medical stethoscope.
This diagnosis strategy requires expertise to be learned for
many years. In this manner, it was the beginning to think of
the automated examination of the health of the heart through
computerized investigation of recordings of its sound [1], [2].

Besides, the electrocardiogram (ECG) [3] and the photo-
plethysmogram (PPG) [4], the phonocardiogram (PCG) [5],
the recording of the sounds and murmurs made by heart, can
be effectively employed to examine the health of the heart.
The ECG and PCG are highly correlated signals, and they
are known to contain more information than the PPG signal.
The PCG signal, however, enjoys a distinct advantage over the
ECG and PPG signals as it records the acoustic properties,
which are better suited for the detection of heart abnormality.

The PCG signal of a healthy heart composes of the first
heartbeat S1 and the second heartbeat S2, and silent time
intervals in between of them, referring to the interval that

the heart muscle takes to switch from closure to contraction
and vice versa. The interval from S1 to S2 is known as the
systolic region, and the one between S2 and S1 is known
as the diastolic region. Heart abnormalities are indicated by
other audible activities and murmurs that arise in the silent
time intervals. Murmur is a noisy cardiac sound that occurs
when a heart valve closes, but blood continues to flow.
The heartbeat S1 is normally a low-frequency, high-intensity
signal, whereas the heartbeat S2 is a high-frequency, low-
intensity signal. Several methods have been presented to detect
heart abnormality by classifying PCG signals using trained
classification models.

Classification models built based on features extracted from
raw signals are more efficient than those based on raw signals.
The short-time Fourier transform (STFT) [6], the wavelet
transform [7], and the mel frequency cepstral coefficients
(MFCCs) [8] are commonly used for feature extraction from
PCG signals. In [9], authors carried out a comparative study of
the STFT, the wavelet transform, and the time-domain analysis
of PCG signals. Their findings suggest comparable spectral
and temporal resolution of cardiac acoustical events.

Support vector machine (SVM) is employed for the detec-
tion of heart abnormalities, where the wavelet transform co-
efficients and the linear predictive coding parameters are used
as classification features in [10] and [11], respectively. Two
feature extraction methods based on curve fitting and fractal
dimensions of PCG signals are presented in [12]. Moreover,
the authors examined the performance using the k-nearest
neighbors (kNN) classifier. In [13], wavelet decomposition,
Hilbert transform, homomorphic filtering, and power spectral
density (PSD) are exploited to extract features which are
classified using the kNN classifier in [13]. Features extracted
by applying the principal component analysis and wavelet
analysis are classified using the KNN classifier in [14], [15].

Multilayer perceptron (MLP) with one hidden layer and
another with two hidden layers were evaluated for the de-
tection of heart abnormality in [16]. Classification features
are extracted from the wavelet transform and the STFT of
PCG signals. In [17], [18], the feed-forward neural network



is used for such task with features extracted from the time,
frequency, and time-frequency representations of PCG signals.
The wavelet coefficients are employed as features for the
classification of PCG signals using the convolutional neural
network (CNN) in [19], and the MFCCs in [20]. A combi-
nation of time-frequency heat maps and CNN is presented
for the identification of cardiovascular disorders in [21]. In
[22], four different recurrent neural networks (RNNs) [23] are
evaluated separately with the MFCCs for accomplishing such
classification task. A combination of two neural networks,
i.e., namely the CNN network and the bidirectional long
short-term memory network (biLSTM) with a technique to
learn visual and time-dependent characteristics of murmurs is
explained in [24]. Classification features are obtained based
on the spectrogram and the MFCCs of PCG signals. In [25]
the nonlinear autoregressive network with exogenous inputs
(NARX) is exploited for the diagnosis of heart abnormality
with spectral, temporal, and statistical classification features.

It is obvious that artificial neural networks (ANNs) are
widely used classification tools, but the selection of an appro-
priate ANN model is still being questioned. It is challenging
to find the best model that could accurately classify the input
features and optimize many factors, such as the processing
speed, numerical precision, and memory requirements. Such
an optimization problem lies in the learning process of ANNs
and could be solved by using an appropriate training optimiza-
tion algorithm. Training a neural network is the problem of
minimizing a large-scale cost function. This process is solved
using an optimization algorithm that searches through a space
of possible values for the neural network weights for a set
of weights that results in good performance on the training
dataset. A given training optimization algorithm might be
suitable for a given problem but might fail in another case.

In this paper, we propose an experimental comparison study
on three training optimization algorithms used for training
the bidirectional long short-term memory (biLSTM) network
for the task of binary classification of PCG signals. These
algorithms are the stochastic gradient descent with momentum
(SGDM), the root mean squared propagation (RMSprop), and
the adaptive moment estimation (ADAM) [26]. This is done
using 10 sequences of feature extracted from each PCG signal
of selected labeled training signals from the PhysioNet 2016
dataset [27]. Four different models of the biLSTM network are
trained and tested using sequences of feature extracted from
the selected PCG signals. The classification accuracy of each
trained model is reported for the three optimization algorithms.

The rest of this paper is organized as follows. The proposed
methodology is explained in Section II. Section III reports the
experimental results, and the work is concluded in Section IV.

II. METHODOLOGY

One of the most difficult aspects of studying PCG signals is
the fact that they are complex, non-linear, and non-stationary.
Only within short-time blocks of signal samples are they
deemed stationarity. Statistical qualities can be expected to
be accurate enough for these blocks in practical applications.

Fig. 1. Short-time feature sequences extracted from two raw PCG signals
obtained using a Gaussian window of length 75 ms.

In this paper, a PCG signal is split into overlapped short-
time blocks of signal samples and 10 classification features
are extracted separately for each block. This is done using
the Gaussian sliding symmetric window with a length of 75
ms. This window defines the boundary and contribution of
each sample within the block. The Gaussian window is moved
slightly along the time representation of the PCG signal with
one sample translation step, and the statistical properties of
mean, median, mode, variance, skewness, kurtosis, Shannon
energy, Shannon entropy, zero-crossing rate, and quantile
range are computed within each block [28]. Figure 1 shows
normalized sequences of the above features extracted from
normal and abnormal PCG signals. Each normalized sequence
is with a zero mean and a unity standard deviation.

These ten normalized sequences of features extracted from
labelled normal and abnormal PCG signals are used to train,
validate and test the biLSTM model exploited as a feature
classifier. The proposed methodology is depicted in Figure 2.
The methodology starts with signal preprocessing, through the
removal of noise and outlayers from each PCG signal, then
moves on to the extraction of 10 sequences of features from
each preprocessed signal, and finally to the classification of the
extracted features for the identification of cardiac anomalies.
In the context of PCG signal classification, we directly analyze
the influence of choosing a specific optimization algorithm for
training the biLSTM model. Among the different algorithms
that can be used to train the biLSTM model, we choose
the stochastic gradient descent with momentum (SGDM), the
root mean squared propagation (RMSprop), and the adaptive
moment estimation (ADAM) algorithms.



Fig. 2. The flow graph of proposed methodology.

A. biLSTM model

RNNs, or recurrent neural networks, can learn arbitrary
sequences [23]. RNN models start with an input layer and
end with an output layer. Between the input and output layers,
there must be at least one recurrent layer. A layer of RNNs
is composed of multi-neurons (multi-nodes) and feedback
connections. Scalar weights and nonlinear activation functions
connect these layers. A PCG signal is represented here by
sequences of 10 extracted features. A sequence input layer
receives these sequences at the input of the RNN model. After
that, the features are passed on to the recurrent layer, which
sends its output to the output layer of the RNN model.

1) LSTM unit: Long short-term memory (LSTM) networks
are RNNs in which the output of the previous step is used
as the input for the following step [29]. RNNs are unable
to forecast information held in long-term memory, but they
can make precise predictions based on recent data. RNNs,
as a result, do not provide enough performance as the gap
length rises. Lengthy-term reliance of RNNs is addressed by
LSTM networks, which can store information for a long period
of time. LSTM networks are made up of a chain structure

that includes four neural networks and several memory units
known as cells. The cells store information, while the gates
manage memory. The following sections explain the three
main types of gates:

• Forget gate: This gate ignores any information that is
irrelevant to the cell state. The gate receives the current
input and preceding cell output, which are weighted
before bias is applied. The result is sent into an activation
function, which outputs a binary value. If the output for
a particular cell state is zero, the information is lost; if
the output is one, the information is saved for future use.

• Input gate: This gate adds useful information to the cell
state. First, the information is regulated using the sigmoid
function and values are filtered using the current input and
the previous cell output. The tanh function is then used to
generate a vector that contains all of the potential values,
with output ranging from −1 to +1. Finally, the values
of the vector are multiplied by the controlled values to
produce the usable information.

• Output gate: This gate extracts useful information from
the current state of the cell. First, a vector of values is
generated by applying the tanh function on the cell. The
sigmoid function is then used to control the data, and the
values are filtered using the current input and prior cell
output. Finally, the values are multiplied by the regulated
values and sent as an output and input to the next cell.

2) biLSTM layer: Bidirectional LSTM (biLSTM) is the
modified LSTM which has a bidirectional flow to process
a sequence in both forward and backward direction and fed
forward to the output layer [30]. Two hidden layers are present
in biLSTM to compute hidden sequences both in forward and
backward direction and to update the output layer by using
backward layer (from last time step to the first) and forward
layer (from first to last time step). This can improve the
performance of LSTM networks by allowing future samples
to provide context for past samples in a sequence of samples.

B. Training the model

A backpropagation approach followed by an optimization
algorithm is used to estimate the weights and biases of the
multi-neuron layers of the biLSTM model. The task of training
the model is the same as that of minimizing a loss function,
which is a measure of how well our biLSTM model performs
in a classification test. The intuitive way to train the model is
concluded in three steps, namely, (1) initialization of weights
and biases, (2) evaluation of the model based on the estimated
weights and biases, and the loss function, and (3) updating of
the estimated weights and biases in the direction of finding
a loss function minima. The loss function will be modest if
its minima is as small as possible. In this case, our network
performs very well. The backpropagation computes gradients,
which are then employed by the training optimization algo-
rithm to reduce the loss function. Despite the fact that there
are numerous loss functions, they all fundamentally penalize
us based on the distance between the predicted value from
a given value and the actual value in our dataset. The mean



squared error (MSE) is a widespread type of loss function.
This error distance is easily estimated by taking all the errors,
square their lengths, and find their average.

C. Training optimization algorithms

Stochastic gradient descent (SGD) selects a few samples
randomly from the training features to estimate the network
weights and biases. SGD only takes into account the first-order
derivatives of the loss function, which means it has no clue
about the curvature of the loss function. It can tell whether
the loss is declining and how fast, but cannot differentiate
between whether the curve is a plane, curving upwards or
curving downwards. The solution is to consider the second-
order derivative, or the rate of how quickly the gradient is
changing. The Newton’s method is a famous strategy that uses
second-order derivatives to fix this issue. This is accomplished
by computing the Hessian matrix, which is a matrix of the
second-order derivatives of the loss function with respect to
all combinations of the weights. The Hessian requires you to
compute the gradients of the loss function with respect to every
combination of weights. The number of parameters for modern
day architectures may be in the billions, and calculating a
billion squared gradients renders higher order optimization
approaches computationally intractable.

• SGDM : Momentum is a prominent approach that is
used in conjunction with SGD. Rather than relying solely
on the gradient of the current step to guide the search,
the momentum considers the gradient of previous steps
to identify the best course of action. This enables us
to get closer to the minima of the loss function faster.
As a result, momentum is also referred to in our search
as a mechanism for dampening oscillations. It increases
speed and accelerates convergence, however, you should
utilize simulated annealing if you overshoot the minima.
In practice, the momentum coefficient is set at 0.5 and
gradually annealed to 0.9 across training epochs.

• RMSprop: The RMSprop (root mean squared propaga-
tion) optimizer is comparable to the SGDM optimizer.
RMSProp aims to attenuate oscillations similarly to
momentum, but in a different method. RMSprop also
eliminates the need to manually modify the learning rate
by doing so automatically. In addition, RMSProp selects a
distinct learning rate for each parameter. It is also worth
noting that RMSProp performs simulated annealing by
default. Assume we are approaching the minima of the
loss function and want to slow down, so we do not
overshoot the minima of the loss function. RMSProp
automatically will decrease the size of the gradient steps
towards the minima when the steps are too large.

• ADAM: So far, RMSProp and momentum have taken
opposing approaches. While momentum speeds up our
search for the minima of the loss function, RMSProp
slows down our hunt for oscillations. The heuristics of
both momentum and RMSProp are combined in ADAM,
or adaptive moment optimization algorithms. It scales

the learning rate using squared gradients, similar to RM-
Sprop, and it takes advantage of momentum by using the
moving average of the gradient rather than the gradient
itself, similar to SGD with momentum.

Despite the fact that ADAM appears to be the most
promising on paper, SGD with momentum may be the most
common of the three training optimization techniques. Given
the same loss function, empirical results indicate that all
of these techniques can converge to various optimal local
minima. SGD with momentum, on the other hand, seems to
find flatter minima than ADAM, whereas adaptive approaches
converge quickly to sharper minima. As a result, flatter minima
generalise better than sharper ones, as it will be demonstrated
experimentally in the following section.

III. EXPERIMENTAL ANALYSIS

A. Dataset

The datasets that have been analyzed here in this article,
as well as a few other research cited, are selected from
the PhysioNet 2016 challenge freely accessible on the Web
[27]. Heart sound recordings were recorded by placing an
electronic stethoscope at four different locations on the chest.
The challenge dataset contains heart sound recordings labeled
as either normal or abnormal. We have selected a balanced
dataset comprises 300 recordings for 150 healthy hearts and
150 unhealthy hearts. The length of the recordings varies from
5 to 120 seconds, with a sampling rate of 2000 Hz.

B. Preprocessing

Heart sound recordings obtained using diagnostic tools are
usually contaminated with noise from various sources. These
sounds hinder the early detection of mild heart sound record-
ings. Thus, filtering noise to remove such artifacts becomes an
essential issue. This should be done at the cost of preserving all
diagnostic information required for analysis of PCG signals,
but removing all unwanted entities called noise. The PCG
signals are heavily filtered to remove the noise from the sound.

In general, the heartbeat S1 is the transient low-frequency
signal, which is mainly between 10 and 200 Hz, produced by
the vibrations of heart chambers, heart valves, and blood in the
systolic. The heartbeat S2 is produced at the end of systole,
after the closure of the semilunar valves about the aortic and
pulmonary. The beat S2 has a higher pitch than the beat S1,
with its frequency range between 20 and 250 Hz. A 15th-order
Butterworth low-pass filter with a cut-off frequency of 250 Hz
is used for this purpose. Filtering removes the high-frequency
noise, and keeps low-frequency diagnostic information.

Furthermore, for the reduction of both calculations and
computation complexity, the filtered signals are down-sampled
by the factor 4, just before the extraction of classification
features, following the Nyquist theorem.

C. Training and testing

The down-sampled PCG signals are truncated to 10 seconds
(5000 samples) and a Gaussian sliding window of length 75
ms is applied to the truncated signals for short-time feature



extraction. The entire features of the dataset are divided into
70% for training the model and 30% for testing it. The training
and testing features are chosen at random, and the model is
trained and tested independently thirty times. The classification
performance is calculated by averaging the results of thirty ex-
periments. Furthermore, the classification results are reported
as a function of the optimization algorithms for four different
values for the number of hidden neurons in the biLSTM model.

D. Model implementation

Table I lists values of the parameters for training the model.
These parameters include general ones that make use in
all other optimization algorithms, and specific ones that are
assigned values in a certain algorithm. The initial learning
rate, the learning rate drop factor, and the number of epochs
are given values in all other optimization algorithms. Other
parameters such as the momentum is assigned a value in
SGDM, the squared gradient decay in RMSprop, and the
gradient decay in ADAM.

E. Classification performance

The classification performance is probably of the highest
interest in the evaluation of classification systems. Obviously,
it should be a measure of how many signal examples were
correctly classified and how many signal examples were
incorrectly classified. Two possible errors can occur: a false
negative (FN) indicating that the total number of PCG signals
of abnormal hearts that are declared as normal, and a false
positive (FP) which is the total number of PCG signals
of normal hearts that are declared as abnormal. Similar to
the definition of FP and FN, the true positives (TP) are
the correctly identified abnormal heart sounds and the true
negatives (TN) are the correctly classified normal heart sounds.

The classification performance of PCG signals is generally
measured using the above quantities by computing the sensi-
tivity (Sens.), the specificity (Spec.), and the accuracy (Acc.)
as [31]:

Sensitivity =
TP

TP + FN
100%

Specificity =
TN

TN + FP
100%

Accuracy =
TP + TN

TP + FN + TN + FP
100%

F. Results

The experimental classification performance is reported in
detail in table II. The results show how different system
settings affect performance. The experiments are carried out by
varying the values of several parameters of the biLSTM classi-
fication model. In this way, the biLSTM model is compared to
three distinct optimization algorithms, each with four different
numbers of hidden neurons. Overall, the SGDM optimization
technique is more effective than the other two for training the

TABLE I
IMPLEMENTATION PARAMETERS OF THE BILSTM MODELS.

Parameters SGDM RMSprop ADAM
Initial learning rate 0.01 0.001 0.001
Learning rate drop 0.90 0.90 0.90
L2-regularization 0.0001 0.0001 0.0001

Max epochs 500 500 500
Momentum 0.90 – –

Squared gradient decay – 0.90 –
Gradient decay – – 0.90

biLSTM. This is supported by the sensitivity, specificity, and
accuracy scores for each algorithm, and this also matches the
theory in which the flatter minima found by SGDM generalizes
better than the sharper ones found by RMSprop and ADAM.

The biLSTM achieves the best classification accuracy of
89.10, which surpasses the baseline method provided in [13]
(i.e., between 74.07 and 81.40). This value of accuracy is
yielded by the SGDM training algorithm for a number of
neurons less than or equal 50. When we train a high number of
neurons, we get model overfitting, which causes performance
loss. Furthermore, the ADAM algorithm performs better than
the RMSprop optimizer for a small number of neurons of the
biLSTM network, but not for larger numbers.

IV. CONCLUSIONS

Finding an optimum ANNs model that can effectively clas-
sify PCG signals while also optimizing numerous parameters
requires an adequate training optimization algorithm that could
handle such an optimization challenge. In this paper, we
proposed an experimental study on the optimization algorithms
for training the biLSTM network for the classification of PCG
signals. We evaluated three different algorithms, namely, the
stochastic gradient with momentum (SGDM) algorithm, the
root mean squared propagation (RMSprop) algorithm, and
the adaptive moment (ADAM) algorithm. Although ADAM
appears to be the most promising algorithm in theory, SGDM
is likely to be the most popular of the three. SGDM seems
to find flatter minima than ADAM, but adaptive approaches
converge quickly to sharper minima. As a result, smoother
minima generalizes better than sharper ones. The elaborated
results carried out in this study are in match with the theory. In
this regard, the biLSTM classifier performs better when trained
using the SGDM algorithm rather than the other two algo-
rithms. These experiments were conducted using labeled heart
sound recordings selected from the PhysioNet 2016 dataset.
Each PCG signal of the selected recordings is represented by
ten sequences of statistical features. Training sequences were
used to train four different biLSTM network models, each
with a different number of hidden neurons. The classification
performance concluded that when a large number of neurons
are trained, model overfitting occurs, resulting in performance
reduction. Furthermore, for a small number of neurons in
the biLSTM network, the ADAM method outperforms the
RMSprop optimizer, but not for larger numbers.



TABLE II
THE AVERAGE RESULTS FOR THE DATASET OF THE PHYSIONET 2016 CHALLENGE. THE OVERALL ACCURACY OF THE BASELINE METHOD IS FROM 74.07

TO 81.40 [13].

# neurons 5 30 50 100 Average
Opt. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc.

SGDM 89.30 88.90 89.10 92.90 85.20 89.10 92.90 85.20 89.10 85.70 81.50 83.60 90.20 85.20 87.73
RMSprop 64.30 70.40 67.30 64.30 70.40 67.30 82.10 85.20 83.60 78.60 74.10 76.40 72.33 75.03 73.65
ADAM 67.90 81.50 74.50 75.00 81.50 78.20 75.00 74.10 74.50 71.40 77.80 74.50 72.33 78.73 75.43
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term memory model, Artificial Intelligence Review (2020) 1–27.

[30] M. Schuster, K. Paliwal, Bidirectional recurrent neural networks, IEEE
Trans. Signal Process. 45 (1997) 2673–2681.
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