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Université de Lorraine, CNRS, LORIA, France
dominique.larchey-wendling@loria.fr

Abstract

In Coq, we mechanize two morphisms for transferring the almost full property between relations.

1 Introduction
The study of almost full relations [11] (constructive well quasi orders) mainly consists in establishing
closure properties of the af predicate (see Fig. 1). For instance, Higman’s lemma [3, 1, 9] states its
closure under the homeomorphic embedding of lists, and Kruskal’s theorem [4, 10], closure under the
homeomorphic embedding of rose trees. Our former Coq constructive proof of Kruskal’s tree theo-
rem [5] suffers from being quite monolithic, a property unfortunately inherited from Veldman’s [10]
pen&paper proof of which it derives. In the process of a major refactoring effort aimed at modularity,
removal of code duplication, and readability, we have identified two important tools to transfer af from
one relation R to another T , i.e. to establish entailments of shape afR → afT .

We present these tools independently of the context of intricate developments. The first one is simple
but versatile: it is sufficient to provide a surjective relational morphism from R to T . The second one,
more specialized, but instrumental in the constructive proofs of Higman/Kruskal’s results [1, 10], aims
at transfers of shape afR → afT↑y0; see Fig. 1 for (·↑·). In that case, it is sufficient to provide a quasi
morphism to enable the transfer. When assuming decidability of relations as in [9], a quasi morphism
can be turned into a surjective relational morphism, allowing for a short proof of transfer. In the general
case, the transfer is much more involved. The two bricks that compose this tool, the FAN theorem and a
combinatorial principle, can be traced back to [1], and are repeatedly inlined in [10]. However, the quasi
morphism result is never stated in a general setting to be established independently, hence this abstract.

We only present the main results and the ingredients to obtain them, sticking to an informal presen-
tation, without giving justifications. Strict preciseness is deferred to the available Coq artifact [7] that is
both standalone, compact with less than 1k loc, commented and designed for human readability.1 See
also [6, 8] for a presentation on how these results are used e.g. to establish Higman’s/Veldman’s results.
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Figure 1: Inductive rules for (·↑·), af, Forall2, good and bar, with R : rel2 and P : rel1 (list ).

1In this abstract, the results are Prop-bounded but the artifact itself is generic in Prop-bounded vs Type-bounded alternatives.
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2 Surjective relational morphisms
Below we write P for Prop and we use rel1 X := X → P (resp. rel2 X := X → X → P) to represent
unary (resp. binary) relations, denoting ⊆ for relations inclusion. For R : rel2 X and P : rel1 X , we
write R⇓P : rel2 {x | Px} for the restriction of R to the subtype. We adopt the usual notations for lists:
[] for the empty list, :: for the cons(tructor), and ∈ for list membership. The product embedding for lists
is defined inductively as Forall2 R : list X → list Y → P by the two rules of Fig. 1.

Following [11], a binary relation R : rel2 X is almost-full (AF) if it satisfies the predicate afR : P
defined inductively by the two rules of Fig. 1. There, we define the lifted relation R↑a by (R↑a) x y :=
R x y ∨ R a x, and we extend lifting to lists by R↑↑[a1; . . . ;an] := R↑an . . .↑a1. Intuitively, R is AF if it is
bound to become a full relation, whatever sequence of liftings is applied to it. An alternative formulation
uses the inductive bar predicate and good R sequences/lists as defined in Fig. 1. For any l : list X , we
establish the equivalence af(R↑↑l) ↔ bar (good R) l, and in particular we get afR ↔ bar (good R) [].
This result allows for an easy application of the FAN theorem (see below).

Already in [11], monotonicity is present as a tool to transfer af from one relation to another, i.e.
R ⊆ T → afR → afT , but R and T must share the same carrier type. Also mentioned in [11], one can
transport af using a map f : X →Y with af_comap : afR → af

(
λ x1 x2, R( f x1)( f x2)

)
, but this tool is

quite cumbersome to use as the target af relation has to be put first in this restrictive shape.2

Instead, we introduce the notion of surjective relational morphism to transport af from R : rel2 X
to T : rel2 Y . This is a relational map f : X → Y → P with the two following properties:

1. ∀y, ∃x, f x y (surjective); 2. ∀x1 x2 y1 y2, f x1 y1 → f x2 y2 → R x1 x2 → T y1 y2 (morphism).

Under these assumptions we establish afR → af T . This formulation is more versatile: a) there is
no constraint on the shape of the target T , b) it does not restrict morphisms to total functions, hence
they can be partial, c) but also critically, they can map to several outputs. For instance, the entailment
afR → afR⇓P is trivial to establish using such a morphism. But without some strong hypotheses, like
e.g. P is Boolean, there is no surjective functional map onto the carrier type {x | Px} of R⇓P.

We use relational morphisms extensively in this development, e.g. for short proofs of the transfer
afR↑a → afR⇓(¬Ra) and the converse afR⇓(¬Ra)→ afR↑a. But the later requires the decidability
of (Ra) as an additional hypothesis. Notice that using negations like in ¬Ra (as done in [9]) allows for
equivalences between afR and (inductive) well-foundedness of sequences/lists expansion restricted to
bad R-sequences, but be aware that this approach usually restricts the study to decidable relations.

3 Quasi morphisms
We switch to the central transfer tool used in our inductive mechanizations of Higman’s [6] and Veld-
man’s [8] results, the notion of quasi morphism. It allows to establish the entailment afR → afT↑y0
for R : rel2 X , T : rel2 Y and y0 : Y . For this, one needs the following data: a map ev : X → Y from
analyses to evaluations and a predicate E : rel1 X characterizing exceptional analyses satisfying:3

1. ∀y, fin(ev−1 y); 2. ∀x1 x2, R x1 x2 → T (ev x1) (ev x2) ∨ E x1; 3. ∀y, (ev−1 y)⊆ E → T y0 y;

where we denote ev−1y := (λx, evx = y) and call them analyses of (the evaluation) y. They are assumed
finitely many by Item 1; Item 2 states that ev is a morphism unless applied to exceptional analyses; and
Item 3 states that y embeds y0 when all its analyses are exceptional. One can “quickly” justify quasi

2Coquand’s constructive version of Ramsey’s theorem afR → afT → af (R∩T ) is their main focus, but we do not need it.
3The analysis/evaluation terminology follows [10, page 241], and an exceptional analysis “contains a disappointing sub-tree.”
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morphisms by further assuming the decidability of both T y0 and E. Indeed, in that case ev becomes a
surjective relational morphism from R⇓(¬E) to T⇓(¬T y0). Yet the statement of the quasi morphism
result carefully avoids negation, and we establish it without those decidability assumptions. Nonetheless
in that general case, the proof uses two non-trivial tools (also mechanized in the artifact), related to the
choice sequences for ll : list (list X), i.e. the inhabitants of FAN ll := λ c, Forall2 (· ∈ ·) c ll:4

• the FAN theorem for inductive bars: for P : rel1 (list X) monotone, i.e. ∀x l, Pl → P(x :: l), we
have bar P []→ bar (λ ll, FAN ll ⊆ P) [];5

• a finite combinatorial principle: for P : rel1 (list X), B : rel1 X , and ll : list (list X), as-
suming ∀c,FAN ll c → Pc ∨ ∃x, x ∈ c ∧ Bx (any choice sequence satisfies P or meets B), we have
either ∃c,FAN ll c ∧ Pc (P contains a choice sequence), or ∃l, l ∈ ll ∧ ∀x, x ∈ l → Bx (there is a
list in ll which is included in B).6
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