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Abstract. Performance and energy are the two most important objec-
tives for optimization on modern heterogeneous HPC platforms. In this
work, we study a mathematical problem motivated by the bi-objective
optimization of a matrix multiplication application on such platforms
for performance and energy. We formulate the problem and propose an
algorithm of polynomial complexity solving the problem for the case
where all the application profiles of objective type one are continuous
and strictly increasing, and all the application profiles of objective type
two are linear increasing. We solve the problem for the matrix multipli-
cation application employing five heterogeneous processors that include
two Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCIe
GPU, and an Intel Xeon Phi. Based on our experiments, a dynamic en-
ergy saving of 17% is gained while tolerating a performance degradation
of 5% (a saving of 106 Joules for an execution time increase of 0.05
seconds).

Keywords: Bi-objective optimization · Min-max optimization · Min-
sum optimization · Performance optimization · Energy optimization

1 Introduction

Performance and energy are the two most important objectives for optimiza-
tion on modern parallel platforms such as supercomputers, heterogeneous HPC
clusters, and cloud computing infrastructures ([6],[8],[3],[18]). State-of-the-art so-
lutions for the bi-objective optimization problem for performance and energy on
such platforms can be broadly classified into system-level and application-level
categories.
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of Open Access, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission.
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System-level solution methods aim to optimize the performance and energy
of the environment where the applications are executed. The methods employ
application-agnostic models and hardware parameters as decision variables. The
dominant decision variable in this category is Dynamic Voltage and Frequency
Scaling (DVFS) [8],[3],[10],[22],[7],[19].

The application-level solution methods proposed in [2],[14],[15],[9] use application-
level parameters as decision variables that include the number of threads, num-
ber of processors, loop tile size, and workload distribution. The solution methods
proposed in [14],[15] solve the bi-objective optimization problem of an applica-
tion for performance and energy on homogeneous clusters of modern multicore
CPUs. The solution method [2] considers the effect of heterogeneous workload
distribution on bi-objective optimization of data analytics applications by sim-
ulating heterogeneity on homogeneous clusters.

Khaleghzadeh et al. [9] discover that moving from the single-objective opti-
mization for performance or energy to the bi-objective optimization for perfor-
mance and energy on heterogeneous processors results in a drastic increase in
the number of optimal solutions in the case of linear performance and energy
profiles, with practically all the solutions load imbalanced. They prove that for
two processors with linear execution time and energy functions, the Pareto front
is linear and contains an infinite number of solutions, out of which one solution
is load balanced while the rest are load imbalanced. They then propose an al-
gorithm that solves the bi-objective optimization problem for discrete execution
time and dynamic energy functions with any arbitrary shape and returns the
Pareto front of load imbalanced solutions and best load balanced solutions.

In this work, we introduce a mathematical problem motivated by the bi-
objective optimization of a matrix multiplication application on heterogeneous
HPC platforms for performance and energy.

Consider the bi-objective optimization of a highly optimized matrix multi-
plication application on a hybrid heterogeneous computing platform for perfor-
mance and energy. The application computes the matrix product, C = α×A×
B+β×C, where A, B, and C are matrices of size M ×N , N ×N , and M ×N ,
and α and β are constant floating-point numbers. The application uses Intel
MKL DGEMM for CPUs and Intel Xeon Phi and CUBLAS for Nvidia GPUs.
The Intel MKL and CUDA versions used are 2017.0.2 and 9.2.148. Workload
sizes range from 64× 10112 to 19904× 10112 with a step size of 64 for the first
dimension m.

The platform consists of five heterogeneous processors: Intel Haswell E5-
2670V3 multi-core CPU (CPU 1), Intel Xeon Gold 6152 multi-core CPU (CPU 2),
NVIDIA K40c GPU (GPU 1), NVIDIA P100 PCIe GPU (GPU 2), and Intel
Xeon Phi 3120P (XeonPhi 1). The details of the computing platform are given
in Table 1.

Figure 1 shows the execution time functions {f0(x), . . . , f4(x)} and the dy-
namic energy functions {g0(x), . . . , g4(x)} of the processors against the workload
size (x). Briefly, the total energy consumption during an application execution is
the sum of dynamic and static energy consumptions. The static energy consump-
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Table 1. Specifications of the five heterogeneous processors.

Intel Haswell E5-2670V3 (CPU 1)

No. of cores per socket 12

Socket(s) 2

CPU MHz 1200.402

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30720 KB

Total main memory 64 GB DDR4

Memory bandwidth 68 GB/sec

NVIDIA K40c (GPU 1)

No. of processor cores 2880

Total board memory 12 GB GDDR5

L2 cache size 1536 KB

Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P (Xeon Phi 1)

No. of processor cores 57

Total main memory 6 GB GDDR5

Memory bandwidth 240 GB/sec

Intel Xeon Gold 6152 (CPU 2)

Socket(s) 1

Cores per socket 22

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30976 KB

Main memory 96 GB

NVIDIA P100 PCIe (GPU 2)

No. of processor cores 3584

Total board memory 12 GB CoWoS HBM2

Memory bandwidth 549 GB/sec

tion is the idle power of the platform (without application execution) multiplied
by the application’s execution time. The dynamic energy consumption is the
total energy consumed by the platform during the application execution minus
the static energy consumption. The dynamic energy consumption during an ap-
plication execution is obtained using system-level physical power measurements
using power meters, which is considered the most accurate method of energy
measurement [5].

The execution time function shapes are continuous and strictly increasing.
The energy function shapes can be approximated accurately by linear increasing
functions. The execution time profiles of the two CPUs are close to each other
but the energy profile of CPU 1 is significantly higher than that of the CPU 2.
The optimization goal is to find workload distributions of the workload size
n ({x0, . . . , x4},

∑4
i=0 xi = n) minimizing the execution time (max4

i=0 fi(xi))

and the total dynamic energy consumption (
∑4

i=0 gi(xi)) during the parallel
execution of the application. We solve the optimization problem for such shapes
of performance and dynamic energy functions in this work.
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Fig. 1. The top two plots contain the execution time and energy profiles of the five
heterogeneous processors (Table 1) employed in the matrix multiplication application.
The bottom two plots do not contain the profiles for Xeon Phi. While the execution
time profiles of the two CPUs are close to each other, the energy profile of CPU 1 is
significantly higher than that of the CPU 2.

We first formulate the mathematical problem, which for a given positive real
number n aims to find a vector X = {x0, · · · , xk−1} ∈ Rk

≥0 such that
∑k−1

i=0 xi =
n, minimizing the max of k-dimensional vector of functions of objective type one
and the sum of k-dimensional vector of functions of objective type two. We then
propose an algorithm solving the case where all the functions of objective type
one are continuous and strictly increasing, and all the functions of objective type
two are linear increasing. The algorithm exhibits polynomial complexity.

We employ the algorithm to solve the problem for the matrix multiplica-
tion application using the five heterogeneous processors (Table 1). Based on our
experiments, the maximum dynamic energy savings can be up to 17% while
tolerating a performance degradation of 5% (an energy saving of 106 J for an
execution time increase of 0.05 seconds).

The main original contributions of this work are:

– Mathematical formulation of the bi-objective optimization problem which for
a given positive real number n aims to find a vector, X = {x0, · · · , xk−1} ∈
Rk

≥0, such that
∑k−1

i=0 xi = n, minimizing the maximum of k functions of
objective type one and the sum of k functions of objective type two.

– An exact algorithm of polynomial complexity solving the bi-objective opti-
mization problem when all the functions of objective type one are continuous
and strictly increasing, and all the functions of objective type two are linear
increasing.
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The rest of the paper is organized as follows. We discuss the related work in
section 2. The formulation of the bi-objective optimization problem is presented
in section 3. In section 4, we propose our algorithm solving the bi-objective
optimization problem. Section 5 contains the experimental results. Finally, we
conclude the paper in section 6.

2 Related work

In mathematical terms, a bi-objective optimization problem can be formulated
as [16],[20]:

minimize {T (x), E(x)}
Subject to x ∈ S

where there are two objective functions, T : Rk → R and E : Rk → R. We
denote the vector of objective functions by F(x) = (T (x), E(x))T . The decision
(variable) vectors x = (x1, ..., xk)T belong to the (non-empty) feasible region
(set) S, which is a subset of the decision variable space Rk. We denote the image
of the feasible region by Z (= F(S)), and call it a feasible objective region. It
is a subset of the objective space R2. The elements of Z are called objective
(function) vectors or criterion vectors and denoted by F(x) or z = (z1, z2)T ,
where z1 = T (x) and z2 = E(x) are objective (function) values or criterion
values.

The objective is to minimize both the objective functions simultaneously.
The objective functions are at least partly conflicting or incommensurable, due
to which it is not possible to find a single solution that would be optimal for
all the objectives simultaneously. There is no natural ordering in the objective
space because it is only partially ordered. Therefore, the concept of optimality is
handled differently from a single-objective optimization problem. The generally
used concept is Pareto optimality.

Definition 1. A decision vector x∗ ∈ S is Pareto optimal if there does not exist
another decision vector x ∈ S such that T (x) ≤ T (x∗), E(x) ≤ E(x∗) and either
T (x) < T (x∗) or E(x) < E(x∗) or both [16].

An objective vector z∗ ∈ Z is Pareto optimal if there does not exist another
objective vector z ∈ Z such that z1 ≤ z∗1 , z2 ≤ z∗2 and zj < z∗j for at least one
index j.

There are several classifications for methods solving bi-objective optimiza-
tion problems [16],[20]. Since the set of Pareto optimal solutions is partially
ordered, one classification is based on the involvement of the decision-maker in
the solution method to select specific solutions. There are four categories in this
classification, No preference, A priori, A posteriori, Interactive. The algorithms
solving bi-objective optimization problems can be divided into two major cat-
egories, exact methods and metaheuristics. While branch-and-bound (B&B) is
the dominant technique in the first category, genetic algorithm (GA) is popular
in the second category.
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Bi-Objective Optimization on High Performance Computing Plat-
forms There are two principal categories of solution methods for optimizing
applications on high performance computing (HPC) platforms for performance
and energy. The first category of system-level solution methods aim to opti-
mize the performance and energy of the executing environment of the applica-
tions. The dominant decision variable in this category is Dynamic Voltage and
Frequency Scaling (DVFS). DVFS reduces the dynamic power consumed by a
processor by throttling its clock frequency. The methods proposed in [22],[7],[19]
optimize for performance under a energy budget or optimize for energy under an
execution time constraint. The methods proposed in [8],[3],[10] solve bi-objective
optimization for performance and energy with no time constraint or energy bud-
get.

The second category of application-level solution methods [11],[2],[14],[15],[17],[9]
use application-level decision variables and models. The most popular decision
variables include the loop tile size, workload distribution, number of processors,
and number of threads.

Reddy et al. [15], [17] study bi-objective optimization of data-parallel ap-
plications for performance and energy on homogeneous clusters multicore CPUs
employing only one decision variable, the workload distribution. They propose an
efficient solution method. The method accepts as input the number of available
processors, the discrete function of the processor’s energy consumption against
the workload size, the discrete function of the processor’s performance against
the workload size. It outputs a Pareto-optimal set of workload distributions.
Khaleghzadeh et al. [9] propose exact solution methods solving bi-objective op-
timization problem for hybrid data-parallel applications on heterogeneous com-
puting platforms for performance and energy.

Tarplee et al. [21] consider optimizing two conflicting objectives, the make-
span and total energy consumption of all nodes in a HPC platform. They employ
linear programming and divisible load theory to compute tight lower bounds on
the make-span and energy of all tasks on a given platform. Using this formula-
tion, they then generate a set of Pareto front solutions. The decision variable is
task mapping. Aba et al. [1] present an approximation algorithm to minimize
both make-span and the total energy consumption in parallel applications run-
ning on a heterogeneous resources system. The decision variable is task schedul-
ing. Their algorithm ignores all solutions where energy consumption exceeds a
given constraint and returns the solution with minimum execution time.

3 Formulation of the Bi-objective Optimization Problem

Given a positive real number n ∈ R>0 and two sets of k functions each, F =
{f0, f1, · · · , fk−1} and G = {g0, g1, · · · , gk−1}, where fi, gi : R≥0 → R≥0, i ∈
{0, · · · , k − 1}, the problem is to find a vector X = {x0, · · · , xk−1} ∈ Rk

≥0 such

that
∑k−1

i=0 xi = n, minimizing the objective functions T (X) = maxk−1
i=0 fi(xi)

and E(X) =
∑k−1

i=0 gi(xi). We use T × E to denote the objective space of this
problem, R≥0 × R≥0.

Thus, the problem can be formulated as follows:
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BOPGVEC(n, k, F,G):

T (X) =
k−1
max
i=0

fi(xi), E(X) =

k−1∑
i=0

gi(xi)

minimize
X

{T (X), E(X)}

s.t. x0 + x1 + · · ·+ xk−1 = n

(1)

We aim to solve BOPGVEC by finding both the Pareto front containing
the optimal objective vectors in the objective space T × E and the decision
vector for a point in the Pareto front. Thus, our solution finds a set of triplets
Ψ = {(T (X), E(X), X)} such that X is a Pareto-optimal decision vector, and
the projection of Ψ onto the objective space T ×E, Ψ ↓T×E , is the Pareto front.

4 Bi-objective Optimization Problem for Max of
Continuous Functions and Sum of Linear Functions

In this section, we solve BOPGVEC for the case where all functions in the set F
are continuous and strictly increasing, and all functions in the set G are linear
increasing, that is, G = {g0, · · · , gk−1}, gi(x) = bi× x, bi ∈ R>0, i = 0, . . . , k− 1.
Without loss of generality, we assume that the functions in G are sorted in the
decreasing order of coefficients, b0 ≥ b1 ≥ · · · ≥ bk−1.

Our solution consists of two algorithms, Algorithm 1 and Algorithm 2. The
first one, which we call LBOPA, constructs the Pareto front of the optimal
solutions in the objective space Ψ ↓T×E . The second algorithm finds the decision
vector for a given point in the Pareto front.

The inputs to LBOPA (see Algorithm 1 for pseudo-code) are two sets of
k functions each, F and G, and an input value, n ∈ R>0. LBOPA constructs
a Pareto front, consisting of k − 1 segments {s0, s1, · · · , sk−2}. Each segment
si has two endpoints, (ti, ei) and (ti+1, ei+1), which are connected by curve

Pf (t) = bi×n−
∑k−1

j=i+1(bi−bj)×f−1
j (t) (0 ≤ i ≤ k−2). Figure 2 illustrates the

functions in the sets, F and G, when all functions in F are linear, fi(x) = ai×x.
In this particular case, the Pareto front returned by LBOPA will be piece-wise
linear, Pf (t) = bi × n− t×

∑k−1
j=i+1

bi−bj
aj

(0 ≤ i ≤ k − 2), as shown in Figure 2.

The main loop of the Algorithm 1 computes k points (Lines 3-7). In an itera-
tion i, the minimum value of objective T , ti, is obtained using the algorithm, solv-
ing the single-objective min-max optimization problem, minX{maxk−1

j=i fj(xj)}.
We do not present the details of this algorithm. Depending on the shapes of
functions, {f0, . . . , fk−1}, one of the existing polynomial algorithms solving this
problem can be employed [12],[13].

The end point (tmin, emax) = (t0, e0) represents decision vectors with the
minimum value of objective T and the maximum value of objective E, while the
end point (tmax, emin) = (tk−1, ek−1) represents decision vectors with the maxi-
mum value of objective T and the minimum value of objective E (as illustrated
for the case of all linear increasing functions in Figure 2).
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Fig. 2. Sets F and G of k linear increasing functions each. Functions in G are arranged
in the decreasing order of slopes. LBOPA returns a linear piece-wise Pareto front shown
in the bottom plot comprising a chain of k − 1 linear segments.

Algorithm 1 Algorithm LBOPA constructing the Pareto front of the optimal
solutions, minimizing the max of continuous and strictly increasing functions
and the sum of linear increasing functions, in the objective space T × E.

1: function LBOPA(n, k, F,G)
2: S ← ∅
3: for i← 0, k − 1 do
4: ti ← minX { maxk−1

j=i fj(xj) }
5: ei ← bi × n−

∑k−1
j=i+1(bi − bj)× f−1

j (ti)
6: S ← S ∪ (ti, ei)
7: end for
8: for i← 0, k − 2 do
9: Connect (ti, ei) and (ti+1, ei+1) by curve bi × n−

∑k−1
j=i+1(bi − bj)× f−1

j (t)
10: end for
11: end function

Given an input t ∈ [t0, tk−1], Algorithm 2 finds a decision vector X = {x0,

x1, · · · , xk−1} such that
∑k−1

i=0 xi = n, maxk−1
i=0 fi(xi) = t, and

∑k−1
i=0 gi(xi) is

minimal. The algorithm first initialises X with {x0, x1, · · · , xk−1 | xi = f−1
i (t)}

(Line 2) so that fi(xi) = t for all i ∈ [0, k − 1]. For this initial X the condition

maxk−1
i=0 fi(xi) = t is already satisfied but

∑k−1
i=0 xi may be either equal to n or

greater than n. If
∑k−1

i=0 xi = n, then this initial X will be the only decision vector

such that
∑k−1

i=0 xi = n and maxk−1
i=0 fi(xi) = t and hence the unique (Pareto-

optimal) solution. Otherwise,
∑k−1

i=0 xi = n+nplus where nplus > 0. In that case,

this initial vectorX will maximize both
∑k−1

i=0 xi and
∑k−1

i=0 gi(xi) in the set Xt of

all vectors in the decision space satisfying the condition maxk−1
i=0 fi(xi) = t. The



Bi-objective optimization algorithm 9

Algorithm 2 Algorithm finding a Pareto-optimal decision vector X =
{x0, x1, · · · , xk−1} for the problem BOPGV EC(n, k, F,G), where functions in
F are continuous and strictly increasing and functions in G are linear increasing,
for a given point (t, e) from the Pareto front of this problem, (t, e) ∈ Ψ ↓T×E .
Only the first coordinate of the input point, t, is required for this algorithm.

1: function Partition(n, k, F,G, t)
2: X = {x0, · · · , xk−1 | xi ← f−1

i (t)}
3: nplus ←

∑k−1
i=0 xi − n

4: if nplus < 0 then
5: return (0, 0,∅)
6: end if
7: i ← 0
8: while (nplus > 0) ∧ (i < k − 1) do
9: if xi ≥ nplus then

10: xi ← xi − nplus

11: nplus ← 0
12: else
13: nplus ← nplus − xi

14: xi ← 0
15: i ← i + 1
16: end if
17: end while
18: if nplus > 0 then
19: return (0, 0,∅)
20: end if
21: e←

∑k−1
i=0 bi × xi

22: return (t, e,X)
23: end function

algorithm then iteratively reduces elements of vector X until their sum becomes
equal to n. Obviously, each such reduction will also reduce

∑k−1
i=0 gi(xi). To

achieve the maximum reduction of
∑k−1

i=0 gi(xi), the algorithm starts from vector
element xi, the reduction of which by an arbitrary amount ∆x will result in the
maximum reduction of

∑k−1
i=0 gi(xi). In our case, it will be x0 as the functions in

G are sorted in the decreasing order of coefficients bi. Thus, at the first reduction
step, the algorithm will try to reduce x0 by nplus. If x0 ≥ nplus, it will succeed
and find a Pareto-optimal decision vector X = {x0 − nplus, x1, · · · , xk−1}. If
x0 < nplus, it will reduce nplus by x0, set x0 = 0 and move to the second step.
At the second step, it will try to reduce x1 by the reduced nplus, and so on. This

way the algorithm minimizes
∑k−1

i=0 gi(xi), preserving maxk−1
i=0 fi(xi) = t and

achieving
∑k−1

i=0 xi = n.

The correctness of these algorithms is proved in Theorem 1.

Theorem 1. Consider bi-objective optimization problem BOPGV EC(n, k, F,G)
where all functions in F are continuous and strictly increasing and G = {gi(x) | gi(x) =
bi × x, bi ∈ R>0, i ∈ {0, · · · , k − 1}}. Then, the piece-wise function S, returned
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by LBOPA(n, k, F,G) (Algorithm 1) and consisting of k − 1 segments, is the
Pareto front of this problem, Ψ ↓T×E, and for any (t, e) ∈ Ψ ↓T×E, Algorithm 2
returns a Pareto-optimal decision vector X such that T (X) = t and E(X) = e.

Proof. First, consider Algorithm 2 and arbitrary input parameters n > 0 and
t > 0. If after initialization of X (Line 2) we will have

∑k−1
i=0 xi < n, it means

that t is too small for the given n, and for any vector Y = {y0, y1, · · · , yk−1}
such that

∑k−1
i=0 yi = n, maxk−1

i=0 fi(yi) > t. In this case, there is no solution to
the optimization problem, and the algorithm terminates abnormally.

Otherwise, the algorithm enters the while loop (Line 8). If i < k − 1 upon
exit from this loop, then the elements of vector X will be calculated as

xj =


0 j < i

n−
∑k−1

m=j+1 f
−1
m (t) j = i

f−1
j (t) j > i

(2)

and therefore satisfy the conditions
∑k−1

j=0 xj = n and maxk−1
j=0 fj(xj) = t. More-

over, the total amount of n will be distributed in X between vector elements
with higher indices, which have lower G cost, gi(x), because bi ≥ bi+1,∀i ∈
{0, · · · , k− 2}. Therefore, for any other vector Y = {y0, y1, · · · , yk−1} satisfying

these two conditions, we will have
∑k−1

i=0 gi(yi) ≥
∑k−1

i=0 gi(xi). Indeed, such a
vector Y can be obtained from X by relocating certain amounts from vector
elements with higher indices to vector elements with lower indices, which will
increase the G cost of the relocated amounts. Thus, when the algorithm exits
from the while loop with i < k − 1, it will return a Pareto-optimal decision
vector X.

If the algorithm exits from the while loop with i = k− 1, it will mean that t
is too big for the given n. We would still have nplus > 0 to take off the last vector
element, xk−1, but if we did it, we would make maxk−1

j=0 fj(xj) < t. This way we

would construct for the given n a decision vector, which minimizes
∑k−1

i=0 gi(xi)

but whose maxk−1
j=0 fj(xj) will be less than t, which means that no decision

vector X such that maxk−1
j=0 fj(xj) = t can be Pareto optimal. Therefore, in this

case the algorithm also terminates abnormally.

Thus, for any t ∈ T , Algorithm 2 either finds a Pareto-optimal decision vector
X such that T (X) = t and E(X) =

∑k−1
i=0 bi × xi = e, or returns abnormally

if such a vector does not exist. Let Algorithm 2 return normally, and the loop
variable i be equal to s upon exit from the loop. Then, according to formula
2, e =

∑k−1
i=0 bi × xi = bs × (n −

∑k−1
i=s+1 f

−1
i (t)) +

∑k−1
i=s+1(bi × f−1

i (t)) =

bs × n−
∑k−1

i=s+1(bs − bi)× f−1
i (t), where s, n, bi, bs, ai are all known constants.
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Therefore, the Pareto front e = Pf (t) can be expressed as follows:

e = Pf (t) = bs × n−
k−1∑

i=s+1

(bs − bi)× f−1
i (t)

tmin = min
X
{ k−1

max
j=i

fj(xj) }, tmax = fk−1(n)

t ∈ [tmin, tmax]

s ∈ Z[0,k−2],

which is the analytical expression of the piece-wise function constructed by Al-
gorithm 1 (LBOPA).
End of Proof.

Theorem 2. LBOPA (Algorithm 1) and PARTITION (Algorithm 2) have poly-
nomial time complexities.

Proof. The for loop in LBOPA (Algorithm 1, Lines 3-7) has k iterations. At
each iteration i, the computation of ti has a time complexity of O(k2 × log2 n)
[12], the computation of ei has a time complexity of O(k), and the insertion of
the point in the set S has complexity O(1). Therefore, the time complexity of
the loop is O(k2× log2 n). The time complexity of the loop (Lines 8-10) is O(k).
Therefore, the time complexity of the Algorithm 1 is O(k2 × log2 n).

Let us consider the PARTITION algorithm 2. The initialization of X (Line
2) and computation of nplus has time complexity O(k) each. The while loop
(Lines 8-17) iterates as long as nplus > 0 and i < k − 1, of which i < k − 1
is the worst case scenario. The time complexity of the loop is, therefore, O(k).
The time complexity of computation of e in Line 21 is O(k). Therefore, the time
complexity of the Algorithm 2 is bounded by O(k).

End of Proof.

5 Experimental Results
We employ the LBOPA and PARTITION algorithms to obtain the Pareto fronts
for the matrix multiplication application using the five heterogeneous processors
illustrated in Table 1. An automated tool, HCLWATTSUP [4], is used to de-
termine the dynamic and total energy consumptions using system-level physical
power measurements using power meters. HCLWATTSUP has no extra over-
head and, therefore, does not influence the energy consumption of the kernel.
The HCLWATTSUP interface is explained in the supplemental. Several precau-
tions are taken in computing energy measurements to eliminate the potential
disturbance due to components such as SSDs and fans. The input performance
and dynamic energy functions, (F,G), to LBOPA and PARTITION are linear
approximations of the profiles shown in the Figure 1.

To obtain an experimental data point, the application is executed repeatedly
until the sample mean lies in the 95% confidence interval and a precision of 0.025
(2.5%) has been achieved. For this purpose, Student’s t-test is used assuming
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Fig. 3. Pareto front for the matrix multiplication application using five heterogeneous
processors specified in Table 1 for two workloads. Each Pareto front contains four linear
segments.

that the individual observations are independent and their population follows the
normal distribution. We verify the validity of these assumptions using Pearson’s
chi-squared test.

Figure 3 shows the Pareto fronts for two workloads, 12352×10112 and 15552×
10112. Each Pareto front contains four linear segments. Each segment is con-
nected by two endpoints. All the points lying on a segment are the performance-
energy optimal solutions in the objective space.

For the workload 12352× 10112, 17% dynamic energy saving is gained while
allowing 5% performance degradation. Similarly, for the workload 15552×10112,
13% dynamic energy saving can be achieved while tolerating 5% performance
degradation.

The first linear segment has a steep slope signifying a significant dynamic
energy saving for a slight increase in execution time. The energy savings are 93
J and 106 J for execution time increases of 0.03 seconds and 0.05 seconds for
the two workloads. The energy-performance tradeoff (that is, the gain in energy
saving for a corresponding increase in execution time) decreases with each next
linear segment.

Based on an input user-specified energy-performance tradeoff, one can selec-
tively focus on a specific linear segment to return the Pareto-optimal solutions
(workload distributions). The shapes of the two Pareto fronts are similar, sug-
gesting that the qualitative conclusions apply for all workloads for this specific
application.

6 Conclusion

Performance and energy are the two most important objectives for optimization
on modern heterogeneous HPC platforms. Khaleghzadeh et al. [9] discovered
that moving from the single-objective optimization for performance or energy
to the bi-objective optimization for performance and energy on heterogeneous
processors results in a drastic increase in the number of optimal solutions in the
case of linear performance and energy profiles, with practically all the solutions
load imbalanced. They prove that for two processors with linear execution time
and energy functions, the Pareto front is linear and contains an infinite number
of solutions, out of which one solution is load balanced while the rest are load
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imbalanced. They then propose an algorithm solving the bi-objective optimiza-
tion problem for discrete execution time and dynamic energy functions with any
arbitrary shape and returns the Pareto front of load imbalanced solutions and
best load balanced solutions.

This work introduced a mathematical problem motivated by the bi-objective
optimization of a matrix multiplication application on heterogeneous HPC plat-
forms for performance and energy. The application exhibits performance func-
tions that are continuous and strictly increasing and energy functions that are
linear increasing.

We first formulated the problem, which for a given positive real number
n aims to find a vector X = {x0, · · · , xk−1} ∈ Rk

≥0 such that
∑k−1

i=0 xi = n,
minimizing the max of k-dimensional vector of functions of objective type one
and the sum of k-dimensional vector of functions of objective type two. We then
proposed an algorithm of polynomial complexity solving the problem for the
case where all the functions of objective type one are continuous and strictly
increasing, and all the functions of objective type two are linear increasing.

We solved the bi-objective optimization problem using the algorithm for the
matrix multiplication application employing five heterogeneous processors, two
Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCIe GPU, and
an Intel Xeon Phi. Based on our experiments, 17% dynamic energy saving can
be achieved while tolerating a performance degradation of 5% (a saving of 106
Joules for an execution time increase of 0.05 seconds).
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