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ABSTRACT: The aim of this paper is to form a mathematical model to simulate the dynamics of a unique 
mechanism which can be used in a projectile launching machine. This mechanism is a bi-linkage mechanism 

with two sets of pivots having rigid and flexible links respectively and the torque to drive the mechanism is 

applied at the first pivot via a pneumatic cylinder. The mathematical model of this system is derived assuming 
the system to be a controlled double inverted pendulum and the trajectory of the ball, resulting from the 

combined motion of the links, is assumed to follow circular path for a small segment. The launch parameters 

i.e. launch velocity and launch angle are derived from the numerical analysis of the mathematical model using 
simulation software and these parameters are experimentally verified to a great degree of accuracy. 

KEYWORDS: Circular path, Controlled double inverted pendulum, Flexible link, Launch parameters, 

Mathematical model, Projectile launching machine.  

1 INTRODUCTION 

Projectile launchers have been a topic of research since the dawn of mankind. From toys to warfare siege 

machines, these mechanisms have been of great importance to us. From lever operated catapults (Rihll, 2007) 
to gun powder cannons (Dupuy & Nevitt, 1990), people use these machines to launch different projectiles. Most 

of these machines utilize the principle of mechanical advantage in their operation. Here, a unique bi-linkage 

mechanism is used to launch projectiles. Compared to conventional projectile launchers, this mechanism 
provides certain extra parameters to control the projectile’s trajectory, thus it is very versatile.  

The objective of this report is to establish a correlation between the system and the projectile’s desired 

outcomes which include its range and height. This report tries to derive a mathematical model to predict the 

outcomes and the potency of the simulated results of the model are tested experimentally. The simulation is 
carried out using the ‘OCTAVE’ software and the experimental values are analysed in a video analysis software 

‘TRACKER’. 

 The mechanism is assumed to be a controlled double inverted pendulum (Zhong & Rock, 2001) as shown 
in Figure 1 and the mathematical model is generated on this hypothesis. A double inverted pendulum is a system 

having two pendulums attached end to end with each other and it exhibits periodic, quasi-periodic and chaotic 

behaviour (Rafat, Wheatland, & Bedding, 2009). Here, the first pendulum is a continuous mass system while 
the second pendulum is a lumped mass system. Double pendulum’s motion is highly dynamic and nonlinear in 

nature (Ohlhoff & Richter, 2000), therefore its trajectory is difficult to predict. Here, Euler-Lagrange Equations 

(Morin, 2007) (Widnall, 2009) are used to derive the mathematical model of the dynamic system.  

After, the mathematical model is derived in terms of second order differential equations (Hand & Finch, 
1998) (Polking, Boggess, & Arnold, 2005), the software Octave is used for numerical simulation and to plot the 

trajectories and velocities of both links. Then, co-ordinate transformation of the trajectory points is done to 

coincide the assumed circle’s centre with the origin and the instantaneous velocity and the launch angle at the 
desired point are found and these resultant parameters are used to predict the outcomes. Finally the theoretical 

values are compared with experimental values to check the accuracy of the mathematical model. The 

experimental setup is an autonomous machine designed on the basis of this mechanism, which can launch the 

projectiles at different input parameters thus facilitating in verification process. 
 

2 MATHEMATICAL MODELLING 

As shown in figure 1, the first link is an aluminium extrusion, which is rotated about a fixed pivot point and it 
is extended to apply an external force (F) on the link i.e. torque to the fixed pivot. The external force is applied 
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using a pressure filled pneumatic cylinder which is mounted on a rigid frame in the system. The second link is 

a string suspended ball which rotates about the detachable pivot point due to the torque applied at the fixed pivot 

point. The second link is detached once the launch angle is reached. The model is based on certain underlying 

assumptions. Here, the frictional forces are neglected in the model. Also, the suspended ball causes no air 
resistance. Apart from this, the first link is assumed to be rigid and is considered as a continuous mass system 

and the string in second link is non elastic and massless. The centre of mass of first link is midway between 

origin and the detachable pivot (i.e. distance d is very small compared to l₁). Also, it is assumed that the centre 
of mass of second link moves in a near circular trajectory for a small path. 

 
 

Figure 1.Double Inverted Pendulum Controlled Using an External Force  

 

The dynamic modelling of the system is derived using the Lagrange formulation, 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) − 

𝜕𝐿

𝜕𝜃𝑖
= 𝜏𝑖          (1) 

Where, L = Lagrange function, 𝜃𝑖  = Generalized coordinate, 𝜏𝑖=External Torque, i =1, 2 

2.1 Position of masses 

As shown in Figure 1, the centre of mass of first link lies at  
𝑙₁

2
  distance from origin and centre of mass of second 

link is at distance 𝑙₂ from detachable pivot, as string is considered as massless. The position vectors of centre of 

masses of first and second links are  𝑟₁⃗⃗  ⃗ and  𝑟₂⃗⃗  ⃗  respectively. 
 

𝑟₁⃗⃗  ⃗  =  [
    

𝑙₁

2
sin (θ₁)

−
𝑙₁

2
cos(θ₁)

]      and      𝑟₂⃗⃗  ⃗  = [
  𝑙₁ 𝑠𝑖𝑛(θ₁) + 𝑙₂ 𝑠𝑖𝑛(𝜃₂)

−𝑙₁ 𝑐𝑜𝑠(𝜃₁) − 𝑙₂ 𝑐𝑜𝑠(𝜃₂)
]      (2) 

Differentiating and squaring the equations: 

 |𝑟₁̇⃗⃗  ⃗|
2
= (

𝑙₁

2
)
2

𝜃₁̇2       and      |𝑟₂̇⃗⃗  ⃗|
2
= 𝑙₁2�̇�₁2 + 𝑙₂2�̇�₂2  +  2𝑙₁𝑙₂ �̇�₁�̇�₂cos(𝜃₁ −  𝜃₂))  (3) 

2.2 Energy Equations: 

The system has two different forms of energy: kinetic energy (the energy of motion) and potential energy. T₁ 
and T₂ are kinetic energies and V₁ and V₂ are potential energies for first and second links respectively. Kinetic 
energy for each link is the summation of translational and rotational energies and potential energy for each link 

is the potential energy of their centre of masses with respect to the origin. 

𝑇𝑖 = 
1

2
𝑚𝑖|𝑟�̇�⃗⃗ |

2
+ 

1

2
𝐼𝑖𝜃�̇�

2
     and        𝑉𝑖 = 𝑚𝑖𝑔𝑦𝑖       (4) 

Where, 𝑚𝑖 = Mass of link, 𝑟𝑖⃗⃗ = Position vector, 𝐼𝑖 = Moment of Inertia, 𝜃𝑖 =Generalized coordinate, 

g=Gravitational Constant, 𝑦𝑖= y coordinate of centre of mass.  

Substituting (2) and (3) in equation (4): 

 T₁ =  
1

6
𝑚₁𝑙₁2𝜃₁̇2          (5) 

 T₂ =  
1

2
𝑚₂(𝑙₁2�̇�₁2  + 𝑙₂2�̇�₂2  + 2𝑙₁𝑙₂ �̇�₁�̇�₂cos(𝜃₁ −  𝜃₂))      (6) 

 V₁ = −𝑚₁𝑔(
𝑙₁

2
cos(𝜃₁))         (7) 

 V₂ = −𝑚₂𝑔(𝑙₁ cos(𝜃₁) + 𝑙₂cos (𝜃₂))        (8) 



2.3 Lagrange function 

It is the difference of total kinetic energy and potential energy in the system. Following equation gives the 
Lagrangian:   

𝐿 = 𝑇₁ + 𝑇₂ − (𝑉₁ + 𝑉₂)          (9) 

Substituting (5), (6), (7) and (8) in equation (9) and simplifying: 

𝐿 = (
1

6
𝑚₁ +

1

2
𝑚₂) 𝑙₁2𝜃₁̇2 +  

1

2
𝑚₂𝑙₂2�̇�₂2  + 𝑚₂𝑙₁𝑙₂ �̇�₁�̇�₂cos(𝜃₁ −  𝜃₂) + (

1

2
𝑚₁ + 𝑚₂)𝑔𝑙₁ cos(𝜃₁)  +

 𝑚₂𝑔𝑙₂cos (𝜃₂)            (10) 

 

Differentiating equation (10) with respect to �̇�𝑖  and then differentiating the result with respect to time, also 

differentiating equation (10) with respect to 𝜃𝑖 and putting these values in equation (1) for i =1,2 respectively : 

(
1

3
𝑚₁ + 𝑚₂) 𝑙₁2�̈�₁ + 𝑚₂𝑙₁𝑙₂𝜃₂̈cos(𝜃₁ −  𝜃₂) − 𝑚₂𝑙₁𝑙₂ �̇�₂sin(𝜃₁ −  𝜃₂) (�̇�₁ − �̇�₂) +

  𝑚₂𝑙₁𝑙₂�̇�₁�̇�₂ sin(𝜃₁ −  𝜃₂) + (
𝑚₁

2
+ 𝑚₂)𝑔𝑙₁ sin(𝜃₁) = 𝜏₁            (11) 

𝑚₂𝑙₂2𝜃₂̈ + 𝑚₂𝑙₁𝑙₂𝜃₁̈cos(𝜃₁ −  𝜃₂) −𝑚₂𝑙₁𝑙₂ �̇�₁sin(𝜃₁ −  𝜃₂) (�̇�₁ − �̇�₂) −

𝑚₂𝑙₁𝑙₂ �̇�₁�̇�₂sin(𝜃₁ −  𝜃₂) + 𝑚₂𝑔 𝑙₂sin (𝜃₂) = 𝜏₂       (12) 
 

The torque (𝜏₁) in equation (11) can be determined using Figure 2, where F is the external force applied to the 

link at a distance ‘d’ from the origin. Here, ‘φ’ is the angle of piston with horizontal and ‘α’ is the angle of force 
with the link. And, ‘b’ is the distance of origin with X axis and cylinder’s intersection. 

𝜏₁ = 𝐹𝑑 sin𝛼  and    𝐹 =
𝑃𝜋𝐷2

4
       (13) 

Where, P = Pressure in pneumatic cylinder, D = Bore diameter of pneumatic cylinder 

 
Figure 2. The force co-relation triangle 

Using Figure 2, 

𝑏 = 𝑑 cos (𝜃₁ −
𝜋

2
) + 𝑎 cos𝜑  and  𝑎 = −(

𝑑

sin𝜑
) cos 𝜃₁      (14) 

 sin(𝛼) =
𝑏 sin 𝜑

𝑑
           (15) 

Substituting equation (14) in equation (15) and simplifying the equation: 

sin(𝛼) =  sin𝜃₁ sin𝜑 − cos 𝜃₁ cos 𝜑 =  −cos(𝜃₁ + 𝜑)       (16) 

Substituting equation (16) in (13), 

𝜏₁ = −𝐹𝑑 cos(𝜃₁ + 𝜑)          (17) 

Comparing equation (11) and (17) and solving for �̈�₁,  

𝜃₁̈ =  
− 𝑚₂𝑙₂ 𝜃₂̈cos(𝜃₁− 𝜃₂)− 𝑚₂𝑙₂ �̇�₂2sin(𝜃₁− 𝜃₂)−(

𝑚₁

2
+𝑚₂)𝑔sin(θ₁)− 

𝐹

𝑙₁
𝑑 cos(𝜃₁+𝜑) 

 

(
1

3
𝑚₁+𝑚₂)𝑙₁

    (18) 

The torque (  𝜏₂ ) in equation (12) is zero, as no external torque is applied at the detachable pivot point. 

Substituting  𝜏₂ = 0  in equation (12) and solving for �̈�₂,  

𝜃₂̈ =
−𝑙₁ 𝜃₁̈cos(𝜃₁− 𝜃₂)+𝑙₁�̇�₁2 sin(𝜃₁− 𝜃₂)−𝑔sin (𝜃₂) 

𝑙₂
       (19) 

The equations (18) and (19) are coupled, therefore they are made independent in the following steps. 

Using equations (18) and (19), 

 



𝜃₁̈ =

− 𝑚₂𝑙₁�̇�₁2 sin(𝜃₁− 𝜃₂) cos(𝜃₁− 𝜃₂)+𝑚₂𝑔sin (𝜃₂) cos(𝜃₁− 𝜃₂)− 𝑚₂𝑙₂ �̇�₂2sin(𝜃₁− 𝜃₂)

− (
𝑚₁

2
+𝑚₂)𝑔 sin(𝜃₁)−

𝐹

𝑙₁
𝑑 cos(𝜃₁+𝜑) 

(
1

3
𝑚₁+𝑚₂)𝑙₁−𝑚₂𝑙₁ cos2(𝜃₁− 𝜃₂)

   (20) 

and,  

𝜃₂̈ =  

𝑚₂ 𝑙₂𝜃₂̇2 𝑠𝑖𝑛(𝜃₁− 𝜃₂) 𝑐𝑜𝑠(𝜃₁− 𝜃₂)+(
𝑚₁

2
+𝑚₂)𝑔 𝑠𝑖𝑛(𝜃₁) 𝑐𝑜𝑠(𝜃₁− 𝜃₂)

+
𝐹

𝑙₁
𝑑𝑐𝑜𝑠(𝜃1− 𝜃2) 𝑐𝑜𝑠(𝜃₁+𝜑) +(

1

3
𝑚₁+𝑚₂)𝑙₁�̇�₁2 𝑠𝑖𝑛(𝜃₁− 𝜃₂)

−(
1

3
𝑚₁+𝑚₂)𝑔 𝑠𝑖𝑛(𝜃₂)

(
1

3
𝑚₁+𝑚₂)𝑙₂−𝑚₂𝑙₂𝑐𝑜𝑠2(𝜃₁− 𝜃₂)

      (21) 

 
Converting these second order differential equations into four first order differential equations using state space 

representation and solving using computer software, the solution of these equations at each time step within a 

defined time span is found. The observed time span decides the operating range of θ₁ and θ₂. The values of θ₁ 

and θ₂ are inserted in equation (2) to get the values of trajectory co-ordinates. Now the centre of mass of second 

link (𝑟₂⃗⃗  ⃗) is assumed to move in a near circular trajectory for a small path as shown in Figure 3. 

 

Figure 3. Coordinate transformation 

Inputting the trajectory points of  𝑟₂⃗⃗  ⃗  in the equation of a general circle, the radius and the centre of the arc are 

found. Making the origin and centre of the circle coincident and transforming the trajectory coordinates, the 

values of 𝜓 are found for each trajectory point as: 

𝜓 = tan−1 (
�̅�

�̅�
) = tan−1 (

𝑦−𝑓

𝑥−𝑒
)         (22) 

Here, �̅� and �̅� are transformed coordinate of arc, e and f are coordinate of centre point.  

Plotting ψ vs t, the instantaneous slope at  𝜓𝑓𝑖𝑛𝑎𝑙  is found, which will give �̇�. 

Thus, 

Final launch angle = θ = 
𝜋

2
− 𝜓𝑓𝑖𝑛𝑎𝑙   and Final launch velocity = 𝑣𝑖  = 𝑅ψ̇     (23) 

3  SIMULATION RESULTS AND EXPERIMENTAL VALIDATION 

Here, the double inverted pendulum’s trajectory is simulated using a computer program and finally the angles 

and velocities of both the links are plotted with respect to time. The simulation is carried out using the ordinary 
differential equations obtained in the mathematical model.  

Table 1: Input parameters 

m₁ 0.4kg 

m₂ 0.1kg 

l₁ 0.57m 

l₂ 0.35m 

g 9.81
𝑚

𝑠2 

d 0.08m 

P 5.6*105pascal 

φ 270 

t 0.5s 

D 0.025m 
 

Table 2: Initial Boundary Conditions 

𝜃₁ 1250 

𝜃₂ 00 

�̇�₁ 0 

�̇�₂ 0 
 



Here, the governing input parameters are Force (F), Length of first link (l₁) and Angle of first link (θ₁). 

Furthermore, the Force is dependent on other primary parameters like Pressure in cylinder (P), Bore diameter 

(D). Every other parameter (e.g. m₁, m₂, θ₂, d etc.) is fixed for the analysis. Table 1 shows a set of values for 

which the experiment was carried out and finally it is compared with the simulation results. 
 

3.1 Simulation results:  

To evaluate the performance of the system, the mathematical model is used to plot the positions of both links 

with respect to time. Initial angles of first link and second link are 1250 and 00 respectively with vertical axis. 

The curves obtained are non-linear and without any periodicity. From figure 4, it is inferred that both the curves 
have increasing trends but the rate of increase of second link’s angle is greater than the rate of increase in first 

link’s angle. Here, the first link’s final angle is constrained and the time it took to reach that angle is found. This 

time decides the launch position, angle and velocity of the projectile.  
 

 
Figure 4. 𝜃₁/𝜃₂ vs time 

 
Figure 5. �̇�₁/�̇�₂ vs time 

In Figure 5 the profile of angular velocity vs time of both links have a high degree of non-linearity. Here, the 

first link shows non-periodic oscillatory motion, while the second link shows a general increasing trend with 

one sided oscillations. Figure 6 shows the angle of projectile (centre of mass of second link) with horizontal axis 
after the coordinate transformation. The curve shows rapid increasing trend with time. This curve is derived 

from the projectile’s trajectory using the transformed coordinates.  

 
Figure 6. 𝜓 vs time 

 
Figure 7. Actual trajectory of the projectile 

 

The curve fitting tool is used to fit this curve into a four degree polynomial with R square value = 1 and RMSE 
= 0.0582. The analysed time span is less than 0.25 seconds because that is the experimental limit on the 

developed physical setup. Following equation is the result of curve fitting data:  

𝜓 = 𝑝₁𝑡4 + 𝑝₂𝑡3 + 𝑝3𝑡
2 + 𝑝4𝑡

1 + 𝑝5𝑡
0        (24) 

Here, 𝑝1 = 16620,  𝑝2 = −5073, 𝑝3 = 1530, 𝑝4 = −14.34, 𝑝5 = 1.824 

Substituting the value of time in this equation will give the angle (𝜓) at required instant i.e. launch angle will 

be 𝜃 =  
𝜋

 2
− 𝜓. 

As the limit for first link is 1900, so from figure 4 the time required to reach this point is 0.198 seconds. Inputting 

this value in above equation yields 𝜓 = 45.120, thus 𝜃 =  44.880. And substituting the value of time in its 



derivative will give the angular velocity at that instant i.e. launch velocity will be 𝑣𝑖 = 𝑅ψ̇. Inputting value of 

time yields, ψ̇ = 510.9350𝑠−1 or 8.91
𝑟𝑎𝑑

𝑠
 and R = 0.75m from circle’s equation so 𝑣𝑖 = 6.68

𝑚

𝑠
. 

3.2 Experimental validation 

The results from the dynamic model have been tested on a physical system within tolerable limits. The projectile 

launcher is built using a ISO 6432/ CETOP RP52P standard pneumatic cylinder having bore diameter 25mm 
and stroke length 125mm and a 5/2 solenoid to control its actuation .The first link is made of a hollow aluminium 

extrusion of cross section 22*22mm with thickness 1mm. The second link consists of a non-elastic thread and a 

rigid ball as the projectile at the end. The fixed pivot point has bearing support with two 8mm SKF bearings. 
The joint between first link and the second link is a detachable pin joint which is detached from the system, 

when the launch angle is reached. 

Table 3: Comparison of simulation and experimental results 

Output Parameters Final Angle (𝜃 =  
𝜋

 2
− 𝜓) Final Velocity(𝑣𝑖) 

Simulation 44.880 6.68
𝑚

𝑠
 

Experimentation 45.30 6.59
𝑚

𝑠
 

 
Here, a video analysis software ‘TRACKER’ is used to record the actual trajectory of the projectile. The 

trajectory is divided into two phases i.e. when the projectile is attached with the system, in figure 7 from start of 

red marks to the intersection of magenta lines and after that. After the intersection point the projectile leaves the 

system and follows the projectile motion with the output parameters of the system i.e. angle and velocity. The 
actual trajectory matches with the simulation results and gives same output parameters as predicted by the 

mathematical model within tolerable limits. Thus, it is observed that the experimental values match with the 

simulation results within tolerable limits. The small variations can be attributed to the assumptions made in the 
mathematical model. 

4 CONCLUSION 

The system is analysed using a mathematical model derived using Lagrangian mechanics approach to the double 

inverted pendulum incorporating the dynamics of the system. Furthermore, the simulation results match with 
the experimental results thus, proving the applicability of this model. The equation obtained from the curve 

fitting data for the input parameters used in the simulation will vary with another set of data. As, this model 

predicts the trajectory and the launch parameters accurately, it has widespread applications in industrial 
launchers, weapons technology, sports training machines etc.  The present model can be further extended by 

considering the frictional forces and air resistance to predict more realistic behaviour of the launching 

mechanism.  
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