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Building on old ideas to explain domain-specific propagations performed by constraint
solvers [7, 2], we recently introduced a method that takes as input a satisfiable set of constraints
and explains the solution-finding process in a human-understandable way [1]. Explanations
in that work are sequences of simple inference steps, a.k.a an explanation sequence, involving
as few constraints and previously-derived facts as possible. Every explanation derives at
least one new fact, implied by a combination of constraints and already derived facts.

The explanation steps of [1] are heuristically optimized with respect to a given cost
function that should approximate human-understandability, e.g., taking the number of
constraints and facts into account, as well as an estimate of their cognitive complexity. For
example, in the evaluation of explanations for logic grid puzzles, the given clues of the puzzle
are considered more difficult than simpler reasoning tricks, and therefore have a higher cost.

In practice, the explanation-generation algorithms presented in our previous work rely
heavily on calls for Minimal Unsatisfiable Subsets (MUS) [5] of a derived unsatisfiable formula,
exploiting a one-to-one correspondence between so-called non-redundant explanations and
MUSs.

▶ Example 1. (Sudoku) A traditional Constraint Satisfaction Problem (CSP) can be
represented as a triple CSP = (V, D, C) with variables V, domain D and constraint set
C. Let V(r,c), D(V(r,c)) = {1, ..., 9} be the decision variables of the 9x9 Sudoku CSP.

Let C be the alldiferent constraints such that:
all different digits on the same row r,
∀r ∈ 1..9 : alldifferent({V(r,c)|c ∈ 1..9});
all different digits in the same column c

∀c ∈ 1..9 : alldifferent({V(r,c)|r ∈ 1..9}) ;
all different digits in the same block
∀br, bc ∈ 0..2 : alldifferent({V(ri,cj)|
ri ∈ 3br + 1 .. 3br + 3, cj ∈ 3bc + 1 .. 3bc + 3}).

Let I contain the assigned variables at the current
state of the grid (e.g. I = {V(3,3) = 2, . . . }). Figure 1 Example of a non-redundant ex-

planation for V(9,2) = 2
Figure 1 is an example of a non-redundant explanation that explains explaining how to derive
V(9,2) = 2. The explanation is generated by computing a MUS of {C ∪ I ∪ V(9,2) ≠ 2}. The
MUS of the explanation depicted in Figure 1 corresponds to

{alldifferent({V(r,1)|r ∈ 1..9}), alldifferent({V(r,3)|r ∈ 1..9}), V(3,3) = 2, V(4,1) = 2

alldifferent({V(ri,cj)|ri ∈ 7..9, cj ∈ 1..3}, V(7,2) = 2, V(8,2) = 2, V(9,2) ̸= 2}
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However, the algorithm developed in [1] has two main weaknesses. First, it provides no
guarantees on the quality of the produced explanations due to internally relying on the
computation of ⊆-minimal unsatisfiable subsets, which are often suboptimal with respect to
the given cost function. Second, it suffers from performance problems: the lack of optimality
is partly overcome by calling a MUS algorithm on increasingly larger subsets of constraints
for each candidate fact to explain. However, using multiple MUS calls per literal in each
iteration quickly triggers efficiency problems, causing the explanation generation process to
take several hours, even for simple puzzles that are designed to be solvable by humans. We
observe that in the explanation setting, many of the individual calls for MUSs can actually
be replaced by a single call that searches for an optimal unsatisfiable subset among subsets
satisfying certain structural constraints. In this talk, we present the following contributions
to tackle the limitations discussed above:

We develop an algorithm that computes (cost-)Optimal Constrained Unsatisfiable Subsets
(OCUSs) based on the well-known hitting-set duality that is also used for computing
cardinality-minimal MUSs [4, 6].
We develop techniques for optimizing the OCUS algorithms further, exploiting domain-
specific information coming from the fact that we are in the explanation-generation
context. Such optimizations include

(1) the development of methods for information re-use between consecutive OCUS calls;
(2) an explanation-specific version of the OCUS algorithm.

Finally, we extensively evaluate the different extensions of the base OCUS algorithm on a
large number of CSP instances including the puzzles from [1, 3], as well as, generated
Sudoku instances of varying difficulty.

The algorithms we present rely on the implicit hitting set duality between Minimum
Correction Subsets and Minimal Unsatisfiable Subsets. However, the main bottleneck of this
approach is having to repeatedly compute optimal hitting sets, checking its satisfiability by
calling the SAT solver and computing a correction subset.

Based on the runtime for explaining the puzzles in our benchmark data set we notice
that most of the time is spent in computing hitting sets when calling the OCUS algorithm.
This is mainly because the hitting set solver needs to consider an increasingly large collection
of sets-to-hit, potentially combining an exponential number of literals and clauses.

To compensate, we develop a correction subset enumeration method that balances the
trade-off between efficiency and quality of generated subsets. Results show that, within a
given timeout window, our correction subset enumeration method is able to explain more
instances, compared to a naive approach, by shifting the computation away from the hitting
set solver.

For efficiently generating the whole explanation sequence, we introduce incrementality,
which allows the re-use of computed information, specifically satisfiable subsets that remain
valid from one explanation call to another. Our results show that adding incrementality
improves the speed of generating a full explanation sequence and require less sets-to-hit to
be computed.

To conclude, with the observed impact of different methods for enumerating correction
subsets, an open question remains whether we can quantify precisely, and in a generic way,
what a good or even the best set-to-hit is in a hitting set approach.

Finally, the concept of (incremental) OCUS is not limited to explanations of satisfaction
problems and we are keen to explore other applications too. One potential avenue for future
work is to ask how these explanation generating methods map to a constraint optimization
setting where branching or searching is required for solving the problem at hand.
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