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Abstract. In this paper, we propose a deep learning-based approach for
fine-grained naval ship image classification. To this end, we tackle fol-
lowing two major challenges. First, to overcome the lack of the amount
of training images in the target (i.e., real) domain, we generate a large
number of synthetic naval ship images by using a simulation program
which is specifically designed for our task. Second, to relieve performance
degradation caused by the disparity between the synthetic and the real
domains, we propose a novel regularization loss, named cross-domain
triplet loss. Experimental results show that both the synthetic images
and the proposed cross-domain triplet loss are essential to achieve the
state-of-the-art performance for fine-grained naval ship image classifica-
tion.

Keywords: Domain adaptation · Fine-grained image classification ·Deep
learning.

1 Introduction

Along with the rapid development of deep learning-based computer vision tech-
nologies, it has become a worldwide trend to develop intelligent systems that can
conduct various tasks which require recognition ability. One of the primary roles
of those systems is to support human operators by substituting repetitive and
tedious tasks. As a representative example, camera-based automatic surveillance

? This work was supported by Institute of Information & Communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.
2019-0-00524, Development of precise content identification technology based on
relationship analysis for maritime vessel/structure).



2 Y. Kim et al.

systems can be used to assist human observers by detecting and identifying ob-
jects in surveilling regions. Based on this perspective, we aim to develop such
an automatic system that surveils maritime areas, and the topic of this paper is
focused on identifying objects (i.e., naval ship classification) on the assumption
that the object locations are given.

There are two major challenges to develop a deep learning-based naval ship
classifier. First, a large-scale dataset is required to train deep neural networks,
but mining a large number of real naval ship images is realistically infeasible due
to the security issue. To overcome this limitation, we propose to generate a large
number of synthetic naval ship images and adopt them for training. The second
challenge is to maximize the classification performance by relieving the domain
disparity between source (synthetic) and target (real) domains. To this end, we
apply the minimax entropy method [13], which is one of the state-of-the-art
semi-supervised domain adaptation approaches. In addition, to further enhance
the classification performance, we propose a novel regularization loss, named
cross-domain triplet loss and embed the loss for the domain adaptive learning
process. Experimental results demonstrate that both the synthetic images and
the proposed triplet loss serve as key components to achieve the state-of-the-art
performance for fine-grained naval ship classification.

The rest of this paper is organized as follows. In Section 2, we introduce
our naval ship datasets. In Section 3, we explain the details of domain adaptive
learning process along with the proposed cross-domain triplet loss. Experimental
results and analysis are presented in Section 4 and concluding remarks are given
in Section 5.

2 Synthetic & Real Naval Ship Image Dataset

In this section, we introduce our naval ship image dataset. As mentioned ear-
lier, the naval ship dataset is composed of two domains, i.e., synthetic and real
domains. Both the synthetic and the real domain images share the same set of
classes. In Table 1, the details of the naval ship classes are given. For the eight
kinds of naval ships, we train and validate fine-grained classifiers. Note that,
in our paper, we call this task as “fine-grained classification” because all the
images belong to the same class “naval ship” and our goal is to distinguish the
slight differences among the eight sub-classes. A set of synthetic and real image
samples for the eight kinds of naval ships is illustrated in Fig. 1.

2.1 Synthetic Naval Ship Images

The process of generating synthetic naval ship images consists of following four
stages. First, various specifications of each naval ship are collected. Note that, in
this stage, only publicly available data (e.g., elementary specifications and rough
shapes of equipment for each naval ship) are collected by means of ordinary web
searching. Second, based on the specifications, 3D models of each naval ship
are rendered by using a 3D simulation program. As the third stage, texture



Title Suppressed Due to Excessive Length 3

Table 1. Specifications of the Korean naval ships that are used for our experiments.

No. ID Full name Naval ship class Displacement (tons)

1 FF Frigate Frigate 1500

2 FFG Frigate Guided-missile Frigate 2800˜3300

3 KDX-1 Korea Destroyer eXperimental-1 Destroyer 3200

4 KDX-2 Korea Destroyer eXperimental-2 Destroyer 4500

5 PCC Patrol Combat Corvette Patrol Corvette 950

6 PKG Patrol Killer Guided-missile Patrol Vessel 440

7 PKM Patrol Killer Medium Patrol Killer 150

8 YUB Yard Utility Boat Patrol Boat 55

mapping and refinements are conducted to make the 3D models more realistic
and aesthetic. The final stage is to generate a large number of naval ship images
for various viewpoints by capturing the screen of the 3D simulation program.
Through this process, we obtained 17,811 synthetic naval ship images. The class-
wise quantities of synthetic images are 1,617, 1,840, 2,178, 2,397, 1,543, 1,744,
3,546, 2,946, respectively (in the order of the numbers in Table 1).

2.2 Real Naval Ship Images

By means of web image searching, we collected 124 naval ship images. The real
images are manually captured so that each naval ship’s identity can be clearly
represented. The number of samples for each class ranges from 10 to 20. By
comparing the naval ship images in Fig. 1, we can intuitively recognize the
domain disparity between the synthetic and the real images. The challenge here
is to make deep neural networks be robust to domain shifts and fully exploit the
whole training data for classification. This can be done by applying a domain
adaptive training scheme which is explained in the next section.

3 Semi-supervised Domain Adaptation for Fine-grained
Naval Ship Classification

3.1 Related Work

Domain adaptation is one of the transfer learning schemes for deep neural net-
works. Specifically, the aim of domain adaptation techniques is to transfer the
knowledge acquired by labeled data in a source domain to a target domain under
the condition that the amount of labeled data in the target domain is very scarce.
Since mining a large number of labeled data to train deep neural networks is
often very expensive and time-consuming, domain adaptive learning techniques
can be utilized to resolve this practical issue. Another setting for domain adap-
tation in our consideration is that source and target domains share the same set
of classes.
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Fig. 1. Visual comparison of the synthetic (left column) and the real (right column)
naval ship images. The class names are overlaid on the upper left side of the images.
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Generally, existing domain adaptation methods for image classification are
categorized into two major approaches, i.e., unsupervised and semi-supervised
approaches. The first one configures the case that only unlabeled images are
given for target domain while labeled images in source domain are accessible.
As an early work for unsupervised domain adaptation, Ganin and Lempitsky
[3] propose an adversarial learning approach by establishing a minimax game
between a feature generator and a domain classifier. By assigning a domain la-
bel for each domain (e.g., 0 and 1 for source and target domains, respectively),
the feature extractor is trained to deceive the domain classifier by generating
domain-invariant features. This process is implemented via the gradient reversal
layer (GRL). To further enhance the discriminative ability of classifiers, Long et
al. [10] propose an conditional adversarial learning strategy by using classifier
predictions as auxiliary clues. There are several methods that utilize generative
adversarial networks (GANs) for domain adaptation. In [17], Volpi et al. propose
a data augmentation approach by using a GAN-based approach. Hu et al. [6]
propose to use GANs for feature alignment, and they devise duplex discrimina-
tors to further enhance discriminative powers of features. The limitation of the
GAN-based approaches is that those methods require a large number of images
to train GANs, which is infeasible in our case. Motivated by the observation that
feature samples which are located near the decision boundary of a classifier often
result in misclassification, Saito et al. [14] propose to alternately maximize and
minimize the consensus of two classifiers by updating the feature generator and
the classifiers by turns. There are many other approaches for unsupervised do-
main adaptation such as an attention-guided method [9], using a pseudo labeling
strategy [1], self ensembling-based method [2], applying style transfer methods
for pixel-level domain transformation [4], adopting graph neural networks [11].

The second approach is semi-supervised domain adaptation that a few amount
of labeled data in a target domain are given. Although the above-mentioned un-
supervised methods can be adopted for semi-supervised domain adaptation, sev-
eral methods specialized for semi-supervised settings are also proposed recently.
Saito et al. [13] indicate that several unsupervised methods occasionally per-
form even worse under semi-supervised settings, and they propose the minimax
entropy-based method for semi-supervised domain adaptation. The key idea is to
minimize the distance between the class prototypes and neighboring unlabeled
target samples to extract discriminative features. To this end, they alternately
maximize and minimize the conditional entropy of target data with respect to the
classifier and the feature generator, respectively. This minimax entropy-based
method achieves the state-of-the-art performance for semi-supervised domain
adaptation and we adopt this approach as the baseline for fine-grained naval
ship classification.

3.2 Semi-supervised Domain Adaptation via Minimax Entropy and
Cross-domain Triplet Loss

Our goal is to train a naval ship classification model by using image data in
the source (synthetic) and the target (real) domains. In the source domain, we
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nt
i=1 are given. Using the three image sets, we train

a classification model on Ds, Du, Dt and we test on Du. The classification model
is composed of a feature extractor F and a classifier C. For an input image x,
the output prediction of the model is denoted as p(x).

As indicated earlier, we adopt the minimax entropy-based training method
[13] as the baseline. Two objective functions are used for training and the first
one is the standard cross-entropy loss to train F and C:

Lsup = E(x,y)∈Ds,Dt
Lce(p(x), y). (1)

With the guidance of the above loss function, the model is trained to discriminate
naval ship images with respect to the synthetic source images and the real target
images. However, since the number of labeled images in the target domain is
much smaller than that of the source domain, the model is inclined to be biased
to the source domain. To overcome this limitation, the entropy is introduced as
the second objective function which is defined as follows [13]:

H = −Ex∈Du

K∑
i=1

p(y = i|x) log p(y = i|x), (2)

where K indicates the number of naval ship classes, which is set to eight in our
experiments. In (2), p(y = i|x) is the probability of an output prediction for the
ith class. The entropy function is maximized for the uniform output distribution
and is minimized for the one-hot output distribution. The key motivation of the
minimax entropy method [13] consists of the following two components. First,
by increasing the entropy with respect to the feature generator, the feature
distributions of two different domains get closer resolving the domain disparity.
On the other side, by decreasing the entropy with respect to the classifier, the
classifier is induced to produce more discriminative outputs. By incorporating
these motivations, the adversarial objective function is defined as follows[13]:

ŴF = argmin
WF

Lsup + λentH, (3)

ŴC = argmin
WC

Lsup − λentH, (4)

where ŴF and ŴC indicate the weight parameters of the feature extractor and
the classifier, respectively. The constant λent in (4) is the balancing factor.

In our experimental setting, not only the amount of labeled target images but
also that of unlabeled target images are very scarce. As a result, the effectiveness
of the minimax entropy-based method is restricted in our case. Based on this
observation, we propose to apply a novel loss function named cross-domain triplet
loss to further enhance the domain alignment of the feature distribution. Our
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proposed cross-domain triplet loss is defined as follows:

Ltri = Exs∈Ds,xt∈Dt
max

(∥∥f(xta)− f(xsp)
∥∥2
2
− ‖f(xta)− f(xsn)‖22 + αtri, 0

)
,

(5)
where f(·) indicates the function of feature extraction by F . In (5), xta denotes
an anchor image in the target domain, xsp is a source image whose class is
identical to that of the anchor image, and xsn is a source image whose class
is different from that of the anchor image. For each anchor image, two feature
distances are measured via the l2 norm. Based on the feature distances, the
triplet loss encourages the distance between a feature pair with the same class
be smaller, and vice versa. In this way, the feature extractor F is encouraged to
produce more discriminative features across the two domains. The constant αtri

in (5) is a marginal threshold for the triple loss.
By incorporating the proposed triple loss, the final adversarial objective func-

tion is established as follows:

ŴF = argmin
WF

Lsup + λtriLtri + λentH, (6)

ŴC = argmin
WC

Lsup + λtriLtri − λentH. (7)

To conduct the adversarial learning with the above objective, a gradient reversal
layer (GRL) [3] is inserted between the feature extractor and the classifier. The
details of experimental settings and results are given in the next section.

4 Experiments

4.1 Experimental Setups

To train the networks, we used 17,811 synthetic naval ship images as the source
image set Ds. For the target domain, we randomly selected 5 images for each
class (thus, 40 images in total) for the labeled image set Dt and used the other
84 images for the unlabeled image set Du. All experiments in this paper are
implemented in PyTorch [12]. To demonstrate the consistency of performance
improvements, we employ AlexNet [8], VGGNet [16], ResNet [5], and DenseNet
[7] for the experiments. The batch sizes for Ds,Dt,Du are set to 16, 4, 16,
respectively. The balancing factors λtri and λent are set to 0.1. The marginal
threshold αtri is set to 2.0 for AlexNet, 1.0 for VGGNet, and 3.0 for ResNet
and DenseNet. We followed [13] for all the other training setups such as feature
normalizations, learning rates, and data augmentations (horizontal flipping and
random cropping).

4.2 Experimental Results and Analysis

The comparative evaluation results are given in Table 2. To validate the effective-
ness of our proposed method, we compare with four other training approaches.
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Table 2. Performance comparison in terms of classification accuracy (%) for fine-
grained naval ship image classification.

Method
Baseline architecture

AlexNet VGGNet ResNet-18 ResNet-50 DenseNet-121 DenseNet-161

S only 20.64 22.62 23.81 22.62 20.64 24.60

T only 53.17 58.12 44.41 48.41 41.67 53.17

S+T 51.98 59.52 58.30 62.32 73.91 73.43

MME 55.16 66.00 61.11 61.51 76.59 74.21

Proposed 63.49 77.78 65.88 63.49 78.97 76.59

In Table 2, ‘S only’ and ‘T only’ indicate the training strategies that exploit
labeled source images and labeled target images, respectively. ‘S+T’ stands for
training by using both labeled source and target images. ‘MME’ means mini-
max entropy-based training method [13]. All numerical results in Table 2 are the
average score obtained by three times of training.

Various analysis can be found by the results in Table 2. First, training by
using the images from both domains (S+T) generally leads to the better per-
formance than using either the synthetic (S only) or the real (T only) images
only. This indicates that the synthetic images obviously contribute to achieve
the better performance on the real domain. Second, the domain adaptive learn-
ing method with minimiax entropy leads to the better performance than the
non-adaptive training strategy. By using our proposed method, the accuracies
are further increased achieving the best performances for all cases. In particu-
lar, applying the triplet loss for our task leads to a large increasement of per-
formance for simpler networks such as AlexNet and VGGNet. Therefore, our
proposed triplet loss can be used to obtain the optimal performance upon the
situation that computational resources are restricted. Finally, the accuracies are
not always proportional to the depth of the networks. Since we used very small
number of target images, the networks are prone to be overfitted. We anticipate
that the performance would be increased for deeper networks if the amount of
target images becomes larger.

To further analyze the results, we generated visualization images by using
the gradient-weighted class activation mapping (Grad-CAM) algorithm [15]. A
Grad-CAM result is a heatmap which highlights image regions that are paid
attentions by a classification network. Thus, we can deduce the decision process
of the network by observing Grad-CAM results. In Fig. 2, we can see that the
classification network generally concentrates on the most discriminative parts
of naval ships such as radar antennas (FF, PCC), canons (FFG), and other
apparatuses. On the other hand, as illustrated in Fig. 3, the classification network
fails to correctly recognize the naval ships when an image is blurred by a smoking
effect (FFG) or when apparatuses or decoration patterns are very similar to those
of other classes (KDX-1, PKM).



Title Suppressed Due to Excessive Length 9

Fig. 2. Grad-CAM[15] visualization of correctly classified samples. The classification
network is DenseNet-161 [7].

Fig. 3. Grad-CAM[15] visualization of failure cases. The classification network is
DenseNet-161 [7].
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5 Conclusion

In this paper, we have proposed a deep learning-based approach for fine-grained
naval ship image classification. The major contribution of our work consists of
the following two components. First, we produced a large number of synthetic
naval ship images and utilized them for training deep neural networks. Second,
we proposed a novel cross-domain triplet loss to align features of two distinct
domains. By means of extensive comparative evaluations, the effectiveness of
using synthetic images and the triplet loss are demonstrated. We expect that
our work would be a useful and practical benchmark for researchers in computer
vision fields.
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