
EasyChair Preprint
№ 7282

The Existence of One-Way Functions

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 5, 2022

The Existence of One-Way Functions

Frank Vega1[0000−0001−8210−4126]

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
vega.frank@gmail.com

https://uh-cu.academia.edu/FrankVega

Abstract. Under the assumption that there exist one-way functions,
then we obtain a contradiction following a solid argumentation and there-
fore, one-way functions do not exist by contraposition. Hence, function
problems such as the integer factorization of two large primes can be
solved efficiently. In this way, we prove that is not safe many of the
encryption and authentication methods such as the public-key cryptog-
raphy. It could be the case that P = NP or P ̸= NP , even though there
are no one-way functions. However, this result proves that P = UP .

Keywords: complexity classes · one-way function · polynomial time ·

exponential time.

1 Introduction

The P versus NP problem is the major unsolved problem in computer science.
It was introduced in 1971 by Stephen Cook [1]. Today is considered by many
scientists as the most important open problem in this field [3]. A solution to
this problem will have a great impact in other fields such as mathematics and
biology.

During the first half of the twentieth century many investigations were fo-
cused on formalizes the knowledge about the algorithms using the theoretical
model described by Turing Machines. On this time appeared the first computers
and the mathematicians were able to model the capabilities and limitations of
such devices appearing precisely what is now known as the science of computa-
tional complexity theory.

Since the beginning of computation, many tasks that man could not do,
were done by computers, but sometimes some difficult and slow to resolve were
not feasible for even the fastest computers. The only way to avoid the delay
was to find a possible method that cannot do the exhaustive search that was
accompanied by “brute force”. Even today, there are problems which have not
a known method to solve easily yet.

This property has been used in the security methods inside of practical com-
putational applications using tools such as the suspected one-way functions. If
one-way functions do not exist, then this would imply that some algorithms used
in cryptography will be easy to break at some point. However, if some functions
are one-way, they would ensure that there are hundreds of problems that have

2 F. Vega

not a feasible solution. This is largely derived from this result that P ̸= NP , so
there will be a huge amount of problems that can be checked easily but without
some practical solution [8]. It will remain the best option to use brute force or a
heuristic algorithm in many cases. The existence of one-way functions is still an
open conjecture.

2 Ancillary Theory

The argument made by Alan Turing in the twentieth century proves mathe-
matically that for any computer program we can create an equivalent Turing
Machine [9]. A Turing Machine M has a finite set of states K and a finite set
of symbols A called the alphabet of M . The set of states has a special state s
which is known as the initial state. The alphabet contains special symbols such
as the start symbol ▷ and the blank symbol $.

The operations of a Turing Machine are based on a transition function δ,
which takes the initial state with a string of symbols of the alphabet that is
known as the input. Then, it proceeds to reading the symbols on the cells con-
tained in a tape, through a head or cursor. At the same time, the symbols on
each step are erased and written by the transition function, and later moved to
the left ←−, right −→ or remain in the same place − for each cell. Finally, this
process is interrupted if it halts in a final state: The state of acceptance “yes”,
the rejection “no” or halting h [7]. A Turing Machine halts if it reaches a final
state. If a Turing Machine M accepts or rejects a string x, then M(x) = “yes” or
“no” is respectively written. If it reaches the halting state h , we write M(x) = y,
where the string y is considered as the output string, i.e., the string remaining
in M when this halts [7].

A transition function δ is also called the “program” of the Turing Machine
and is represented as the triple δ(q, σ) = (p, ρ,D). For each current state q and
current symbol σ of the alphabet, the Turing Machine will move to the next
state p, overwriting the symbol σ by ρ, and moving the cursor in the direction
D ∈ {←−,−→,−} [7]. When there is more than one tape, δ remains deciding the
next state, but it can overwrite different symbols and move in different directions
over each tape.

Operations by a Turing Machine are defined using a configuration that con-
tains a complete description of the current state of the Machine. A configuration
is a triple (q, w, u) where q is the current state and w, u are strings over the
alphabet showing the string to the left of the cursor including the scanned sym-
bol and the string to the right of the cursor respectively, during any instant in
which there is a transition on δ [7]. The configuration definition can be extended
to multiple tapes using the corresponding cursors.

A deterministic Turing Machine is a Turing Machine that has only one next
action for each step defined in the transition function [6], [4]. However, a non-
deterministic Turing Machine can contain more than one action defined for each
step of the program, where this program is no longer a function but a relation
[6], [4].

P vs NP 3

A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [2]. There are four
complexity classes that have a close relationship with the previous concepts
and are represented as P , UP , EXP and NP . In computational complexity
theory, the class P contains the languages that are decided by a deterministic
Turing Machine in polynomial time [6]. The class UP has all the languages
that are decided in polynomial time by a non-deterministic Turing machines
with at most one accepting computation for each input [10]. The complexity
class EXP is the set of all decision problems solvable by a deterministic Turing
machine in O(2p(n)) time, where p(n) is a polynomial function of n. The classNP
contains the languages that are decided by a non-deterministic Turing Machines
in polynomial time [4].

On the other hand, a language L ∈ NP if there is a polynomial-time decid-
able, polynomially balanced relation RL such that for all strings x: There is a
string y with RL(x, y) if and only if x ∈ L [7]. The function problem associated
with L is the following computational problem: Given x, find a string y such
that RL(x, y) if such a string exists; if no such string exists, return “no” [7]. The
class of all function problems associated as above with languages in NP is called
FNP [7]. The resulting class from FNP is the class FP which represents all
function problems that can be solved in polynomial time [7].

The P versus NP problem asks whether P is equal to NP or not. This
would be equivalent to prove whether FP is equal to FNP or not. A one-way
function f is a function from strings to strings, one-to-one, for all input x we
have | x | 1k≤| f(x) |≤| x |k for some k > 0 and f is in FP but f−1 is not [7].
It holds the following statement: P = UP if and only if there are no one-way
functions [7]. If one-way functions exist, then P ̸= NP [5].

3 Results

Definition 1. We denote every language in EXP that is not in P as Lexp.
Moreover, we denote Mexp as the one-tape deterministic Turing Machine which
decides Lexp.

Lemma 1. Every language Lexp can be actually decided by some one-tape deter-
ministic Turing Machine Mexp, such that for every element x ∈ Lexp the Turing
Machine Mexp will accept in the configuration (“yes”,▷, x).

Proof. Every Turing Machine of multiple tapes could be transformed into an-
other Turing Machine of one tape which has a polynomial time difference in
relation with the running time of the original one [7]. Therefore, the determin-
istic Turing Machine that decides Lexp could be of one tape. This one-tape
deterministic Turing Machine can be transformed into two-tapes deterministic
Turing Machine that receives the input in the first tape. This new Turing Ma-
chine will copy the input in the second tape and there, it will simulate the
original Turing Machine of one tape. When the simulation of the original Turing
Machine accepts, it will delete the content in the second tape. Finally, it will set

4 F. Vega

the cursors in the start symbols of each tape and halt in the state of acceptance.
In case of rejection, the two-tapes deterministic Turing Machine will reject too.
This new Turing Machine can be transformed again into the one-tape Turing
Machine Mexp according to the Lemma 1. ⊓⊔

Definition 2. We call config(x) as any configuration which belongs to the ac-
cepting computation of some input x ∈ Lexp on the deterministic Turing Machine
Mexp of Lemma 1 and config(x) complies with the following conditions:

1. The configuration config(x) is at most polynomially longer than the corre-
sponding input x ∈ Lexp.

2. We can compute the execution of Mexp(x) from the configuration config(x)
until the state of acceptance with the string x ∈ Lexp using only a polynomial
amount of steps in relation with the size of x.

Definition 3. We denote FLexp
as the function problem of finding the configu-

ration config(x) of the Definition 2 for some input x ∈ Lexp.

This definition will help us to state the following theorem.

Theorem 1. For every language Lexp, the function problem FLexp is not in FP .

Proof. FLexp
is not in FP , because if we could find the configuration config(x)

which belongs to the accepting computation of some input x ∈ Lexp in poly-
nomial time, then we could simulate Mexp(x) in polynomial time by reaching
config(x) in polynomial time with x, accepting in the following polynomial
steps in relation with the size of x and checking if the final configuration is
(“yes”,▷, x). However, this is not possible, because Lexp ∈ EXP is not in P .

⊓⊔

Definition 4. We call fake(x) as any configuration for the input x on the de-
terministic Turing Machine Mexp of Lemma 1 and fake(x) complies with the
following conditions:

1. The configuration fake(x) is at most polynomially longer than the corre-
sponding input x.

2. We can compute the execution of Mexp(x) from the configuration fake(x)
until the state of acceptance with the string x using only a polynomial amount
of steps in relation with the size of x.

3. x is not in Lexp

Theorem 2. For every language Lexp, there could be many configurations fake(x)
for some inputs x when x does not belong to Lexp.

Proof. We could invert the deterministic Turing Machine Mexp changing the
state of acceptance with the initial state and reversing the transition function
of Mexp. In this way, we would create a new non-deterministic Turing Machine
Nexp. We are going to define the rejection state in Nexp in the following way:
For every q state in the set of states of Nexp and every σ symbol of its alphabet,

P vs NP 5

then δ(q, σ) = (“no”, σ,−), where δ will be the program of Nexp. The non-
deterministic Turing Machine Nexp will simulate the behavior of Mexp moving
backwards.

In this simulation, we are going to interrupt the usual exponential execution
of Nexp(x) just in the first | x |2 steps for example where | x | is the size of
some input x when x does not belong to Lexp, and thus, we start executing
Nexp from the initial configuration (s,▷, x) until some candidate configuration
fake(x). The configuration fake(x) is at most polynomially longer than the
corresponding string x, because from the initial configuration we cannot add
more than | x |2 symbols until the candidate configuration. In this way, we can
compute the execution of Mexp(x) from the configuration fake(x) until the state
of acceptance with the string x using only a polynomial amount of steps. ⊓⊔

Theorem 3. For every language Lexp, the function problem of F−1
Lexp

is not in
FP too.

Proof. We could find x ∈ Lexp in polynomial time if we have the configuration
config(x) as input. However, the function problem F−1

Lexp
should return “no” for

the configurations fake(y). However, the principal difference between config(x)
and fake(y) is that x is in Lexp and y is not. Therefore, whether F−1

Lexp
return

“no” or not, it would be equivalent to decide the elements of the language Lexp ∈
EXP , but Lexp is not in P . Then, the Theorem is true. ⊓⊔

Theorem 4. There are no one-way functions.

Proof. We are going to assume that exists a function f that is one-way. We could
define a new function problem as the composition of functions f(f−1(x)) for the
strings x in the domain of f−1 and in case of x is not in that domain, then
the function problem return “no”. That function problem is associated with a
language Lexp ∈ EXP which is not in P , because f−1 is not in FP . Indeed,
x ∈ Lexp if and only if f(f−1(x)) = x.

On the other hand, for the language Lexp ∈ EXP , the deterministic Turing
Machine Mexp of Lemma 1 could be simulated by two deterministic Turing
Machines Mf−1 and Mf of one-tape which simulate the functions f−1 and f
respectively. The running of Mexp with x ∈ Lexp consist of: First, it will execute
Mf−1(x) and next, if there is no rejection, it will continue the execution of
Mf from the halting configuration of Mf−1(x). The final configuration for every
element x ∈ Lexp on the deterministic Turing MachineMexp will be (“yes”,▷, x),
because the halting configuration in Mf could be (h,▷, x) and we could replace
the state of halting in Mf by the state of acceptance in Mexp.

In this way, the halting configuration of Mf−1(x) for some input x ∈ Lexp

has all the properties of a config(x) in the Definition 2, because the function
f is one-way. Hence, we could define the function problem FLexp

of finding the

halting configuration of Mf−1(x) for some input x ∈ Lexp. However, F−1
Lexp

would
be in FP , because f is in FP , but this is a contradiction with the Theorem 3.
Therefore, there are no one-way functions by contraposition. ⊓⊔

6 F. Vega

Lemma 2. P = UP .

Proof. This is a direct consequence of Theorem 4. ⊓⊔

4 Conclusions

This result shows in a formal way that many currently mathematically problems
can be solved efficiently such as the integer factorization of two large primes. In
this way, we prove that is not safe many of the encryption and authentication
methods such as the public-key cryptography. It could be the case of P = NP
or P ̸= NP , even though there are no one-way functions. However, we prove
that P = UP .

Acknowledgments

The author would like to thank Chenggang Lu for remind him this old approach
and his mother, maternal brother and his friend Sonia for their support.

References

1. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of
the 3rd Annual ACM Symposium on the Theory of Computing (STOC’71). pp.
151–158. ACM Press (1971)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Second Edition. MIT Press (2001)

3. Fortnow, L.: The status of the P versus NP problem. Communications of the ACM
52(9), 78–86 (Sep 2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, first edition edn. (1979)

5. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press (2001)

6. Lewis, H.R., Papadimitriou, C.H.: Elements of the theory of computation (2. ed.).
Prentice Hall (1998)

7. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
8. Sipser, M.: Introduction to the Theory of Computation. International Thomson

Publishing (1996)
9. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society 42, 230–265
(1936)

10. Valiant, L.G.: Relative complexity of checking and evaluating. Inf. Process. Lett.
5(1), 20–23 (1976)

