
EasyChair Preprint
№ 2817

Deep Learning Workload Performance
Auto-Optimizer

Connie Y. Miao, Andrew Yang and Michael J. Anderson

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 29, 2020

Deep Learning Workload Performance Auto-Optimizer
Connie Y. Miao1 Andrew Yang1 Michael J. Anderson1

ABSTRACT
The industry has seen a wave of new domain-specific accelerators
purpose-built for deep learning workloads. To obtain real-world
performance close to the highest theoretical performance from the
accelerators, the tensor layout and workload distribution need to be
optimized along with the accelerator instruction set,
communication fabric, and memory architecture.

In this paper, we introduce a general methodology for automating
hardware architecture and software co-optimization for domain-
specific accelerators. Applying this methodology to The Intel®
Nervana™ Neural Network Processor for Training (Intel®
Nervana™ NNP-T), it has achieved the state-of-the-art (SOTA)
deep-learning microbenchmark performance on convolution
benchmarks. A generic convolution context distribution algorithm
developed based on auto-optimizer results for ResNet50 is also
discussed in this paper.

Keywords
Deep learning; hardware-software co-optimization; domain-
specific accelerator; locality; parallelism

1. INTRODUCTION
The recent wave of domain-specific accelerators for deep-learning
workload has raised the challenge on how to generate instruction
code with optimized deep learning performance on a domain-
specific accelerator.

General-purpose compilers such as LLVM compile high-level
language input programs to a computer device with traditional
computer architectures, memory hierarchy and a single CPU
operating on scalar or vector values [1, 2]. Without low-level
accelerator architecture and instruction set knowledge, a generic
compiler is not able to generate executable code with high
performance on domain-specific accelerators.

In today’s deep learning accelerators or domains such as dense
linear algebra, it is still widely accepted and practiced to have
handwritten and optimized code surpassing the performance of
code output by compilers.

To extract the best deep learning workload performance from
accelerators, there are two main aspects to consider when
generating the programing codes: 1. Tensor layout and workload

1 Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA.
Correspondence to: Connie Y. Miao <connie.y.miao@intel.com>.

Proceedings of the First International Workshop on
Benchmarking Machine Learning Workloads on Emerging
Hardware. To be held along with the Third Conference on
Machine Learning and Systems (MLSys), 2020. Copyright 2020
by the author(s).

distributions, and 2. Accelerator microarchitecture dependent
optimization. The first varies with accelerator architecture, affected
by locality, parallelism, memory and compute throughput of the
device [3, 4]. Different solutions apply for different accelerators.
The second aspect is tightly related to accelerator micro-
architecture design and fine-tuning the instruction sequence will
provide a further performance improvement.
This paper focuses on the first issue which normally provides an
order of magnitude performance improvement with a highly
optimized solution compared with a naïve implementation. The
additional improvement provided by the second aspect normally is
less than 1x as it addresses corners cases where the instruction
bound occurs.
Automated search guided by performance feedback is a common
technique for dealing with complex tuning spaces in several
applications. Such techniques have been applied to dense linear
algebra [5], sparse linear algebra [6], image processing [7], and
neural networks [8,9], to name a few. In this work, we apply these
well-known open-source techniques to a novel deep learning
training accelerator architecture - Intel Nervana NNP-T, and we
derive actionable insights from the search itself to achieve SOTA
deep learning microbenchmark performance.

2. AUTO-OPTIMIZER
One of the main operations on deep learning workloads is General
Matrix Multiply (GEMM) and convolutions as dense linear algebra
calculations. The pseudo-code for GEMM is below:

for m, n, k {

C [m][n] += A [m][k] * B [k][n];

}

Where A and B are the two-input matrix and C is the output matrix.
All three matrices are two-dimension arrays.

For convolution, here is the pseudo-code:

for n, p, q, k, r, s, c {

 ofm [n][p][q][k] += ifm [n][c][p:p+r][q:q+s] * filter
[c][r][s][k]

}

Ofm is output feature map, and ifm is input feature map. Each
matrix has 4 independent dimensions.

Note that the above is one of the tensor layouts for convolution
computation. Notice that both GEMM and convolution have
tensors with at least 2 dimensions.

The core of the deep learning accelerator are matrix multiply
engines that speed up 2D tensor multiplication and accumulations.
Accelerators with multiple MM engines, tensor layout in memory,
locality and parallelism will have a big impact on the performance.
We will elaborate on this using Intel® Nervana™ NNP-T as an
example.

2.1 Intel® Nervana™ NNP-T SOC
Figure 1 shows the NNP-T chip diagram [10]. NNP-T consists of 4
HBM2 2400 with 2.5D packaging technology, providing 1.22 TBps
raw bandwidth and a 32GB total device memory. PCIe Gen4 x16
supports communication with the host CPU. It also includes 64
28Gbps SerDes lanes for a chip to chip scale-out communication.
The deep learning workload acceleration functionality resides in
the 24 tensor processing clusters (TPC), shown in Figure 2. NNP-
T can provide up to 119 TOPS compute. TPC consists of four main
subsystems. The on-chip router is the green block on the top right,
which directly passes data between the TPCs, as well as to and from
HBM, PCIe and SerDes. It is a bidirectional 2-D mesh architecture
with cut-through forwarding and multicast support. The on-chip
router provides a total of 2.6TBps cross-sectional BW and 1.3TBps
per-direction. The control block is for instruction decoding,
scheduling and retiring as well as managing the dependency for
computing and memory. The compute units are the two red blocks,
each with 32x32 matrix multiplication arrays, and support for
vector and deep learning specific operations. The TPC data pipeline
allows compound operations to reduce memory access and increase
throughput. Deep learning required operations such as activation
functions, random number generator, reductions, and
accumulations are supported. The local memory block in blue
sources and sinks data to and from the compute units and HBM, as
well as allowing sending or receiving data from other TPCs’
memory. The total on-chip memory is 60 MB, which is software
managed.

Figure 1. Intel® Nervana™ NNP-T chip diagram.

2.2 Auto-Optimizer Flow
Each GEMM or convolution operation requires a few operations:

1. load data from HBM to on-chip memory

2. send data from on-chip memory to compute unit and save
MM data output to on-chip memory

3. optionally store data back to HBM.

To obtain high utilization from GEMM or convolution, an efficient
way to layout and distribute the two or more dimensions tensor in
HBM and to each TPCs is needed. The best distribution will allow
the compute units within each TPC to be evenly fed with data. The
industry still sees hand-generated instruction code outperforming
the distribution generated by compilers for deep learning
workloads. However, the disadvantage of hand-generated code is
that it is time consuming to produce and not generic for all input
dimensions.

Figure 2. NNP-T Tensor Processing Cluster (TPC).

Figure 3 shows the generic deep learning performance auto-
optimizer flow. We approach this problem as a search problem. It
consists of two parts: the measurements and search. In the
measurement, a GEMM or convolution test with specific set hyper-
parameters runs on a hardware or hardware simulator, which
generates the user-defined cost function. In our case, the cost
function is the workload runtime. The search engine outputs
configurations with a set of parameters. In our case, they are the
hyper-parameters of workload and hardware supported parameter
space. Search techniques are methods for exploring the search
space and changing the configurations to the test in the
measurements. We employ several different search techniques to
explore the large available search space with several different test
configurations. Multiple test configurations can be run
simultaneously to provide faster measurements and feedback on the
distribution strategy. The search and measurement communicate
exclusively through a results database used to record all the
configurations and cost function results during the optimization
process.

For this work, we implemented OPENTURNER [11] framework as
our search engine. The measurement components are developed in
house. The main development is the hardware simulator used in this
work. It is a transaction-level simulator [12], which models the
entire NNP-T architecture including computing unit, on-chip
router, on-chip memory and controller. It has good accuracy for
latencies and bandwidth and can be configured to different network
topologies (e.g. 1 ring, or 2 rings) with different number of TPCs.
The convolution slice engine is modeled with accuracy on-chip
memory capacity and compute unit pipeline latency and
throughput. Loading data from HBM to on-chip memory and
storing data from on-chip memory back to HBM is also modeled
with good accuracy. One of the most important features of the
simulator is the capability of launching parallel processes to each
cluster and interacting with different subsystems as in the actual
hardware. The simulator is capable of producing the runtime of the
workload test.

Figure 3. Deep Learning performance auto-optimizer flow.

In the GEMM or convolution tests, test interfaces are developed
with hyper-parameters for either network layer descriptors or
hardware parameters. The test runtime is defined as the cost
function.

The search component is integrated into the simulator environment
to allow closed-loop auto-search to find the optimized workload
distribution with the shortest runtime.

2.3 Auto-Optimizer Setup for Convolution
The auto-optimizer setup flows for convolution layers are discussed
in detail in this section. A few considerations are taken into account
before setting up the auto-optimizer. The first one is data locality.
Notice that for NNP-T, there are a total of 24 TPCs and 4 HBM to
reduce the on-chip network conjunction and latency, as well as
power for data movement, 24 TPCs are grouped into four clusters
each grouped to the nearest. The data consumed or produced by one
of the six TPC in the group is only loaded or stored from the local
HBM. In the convolution case, the IFM, and OFM are split up into
4 portions and stored to one of the TPC.
The second consideration is the data layout. The NNP-T matrix
multiply array is 32x32. So, it computes matrix dimensions which
can be blocked into 32 for each dimension with the highest
efficiency. Due to this consideration, the convolution input and
filter matrix should be laid out in such a way that it can be blocked
into sub-matrices with each dimension being 32. Using Resnet as
an example, the IFM Height (H), Width (W) dimension is from 224
to 7, and the input Channel (C) dimension is from 3 to 2048, filter
output filter Channel (K) is from 64 to 2048. Two tensor layouts
are considered for IFM and OFM: HWCxN and CHWx N with N
as the minibatch size. When C is < than 32, CHWxN format is
selected, so that the convolution layer context can be split to
multiple TPCs with each having a subset of the full layer height
(H’) and width (W’). The context allocated to each TPC is
CH’W’xN. As for layers when C is small, the HxW value is
normally larger than 32. Blocking on height and width to distribute
to TPCs, the quantization impact to the performance is amortized.
For layer C is >=64, HWCxN data format can be used. Convolution
for each OFM pixel is computed as:

for n, r, s, c, k {

 ofm [n][k] += ifm [n][p:p+r][q:q+s][c] * filter [r][s][c][k]

}

Here, if both C, K and N are integer multiples of 32, the efficiency
of matrix multiple array does not suffer from quantization effects.
With these two considerations, we build the measurement for the
convolution auto-optimizer with a convolution test, hardware
simulator, and runtime output. The test input includes convolution
hyper-parameters, H, W, C, R, S, K, P, Q, Sr, and N, where Sr is
stride.
The search space is selected with many splits over H, W, C, and K
to TPC. To have the best compute efficiency, C or K context split
over each TPC should be multiple of 32, so this constraint is added
to the search space for C and K split. For H and W context split, the
search space is set from 1 to the number of TPCs. Other
microarchitecture or ISA constraints can also be added to the search
space for effective solution space.
In each iteration, the search engine configures the test input within
the search space based on the runtime results. Multiple tests can be
launched at the same time to reduce the overall simulation time. As
the hardware simulator models compute units, memory access, on-
chip router and on-chip memory with good accuracy, the best
context distribution represents the overall best scheme considering
locality, parallelism, memory and compute throughput.

3. GENERALIZED DISTRIBUTION
For scalable deep learning software, a generalized algorithm is
required to support all the input dimensions for convolutions. One
contribution to this auto-optimizer is to provide a base for a
generalized distribution algorithm. Multiple convolutional layer
dimensions are sent to auto-optimize. Based on the best output
results, we summarize them into a few lines of codes to be
integrated into instruction code generation software. Below is one
example pseudo-code of the generalized convolution distribution:

For (C, K =< 64):

Split on W, H
(W_split * H_split) % active_TPC = 0

elif (C, K == 128):
Split on C, K, W
(C_split * K_split * W_split) % active_TPC = 0
With K context = 64
Minimize(C_split – 2) to make C is as close to 64 as

else:
Split on C , K
(C_split * K_split) % active_TPC = 0
K context = 64
Rest Split from C_split

Figure 4 shows the auto-optimizer and deep learning training flow.
The auto-optimizer for context distribution with various input
dimensions can be run offline and generate the optimized context
distribution results. The generalized distribution algorithm can be
developed based on the results. The distribution algorithm can be

integrated into the training software stack and generate the
optimized distribution at runtime based on input convolution layer
dimension size.
For deep learning networks with dynamic shapes for convolution,
it is expected this flow is instrumental to obtain the best
performance.

Figure 4. Auto-optimizer and DL training flow.

4. RESULTS
Table 1 lists selected measured results based on this methodology.

Table 1. Measured NNP-T convolution utilization*

Description NNP-T Utilization

c64xh56xw56_k64xr3xs3_st1_n128 86%

c128xh28xw28_k128xr3xs3_st1_n128 71%

c32xh120xw120_k64xr5xs5_st1_n128 87%

*All products, computer systems, dates, and figures are preliminary
based on current expectations and are subject to change without
notice.
 NNP-T Performance measured on pre-production NNP-T1000
silicon, using 900MHz core clock and 2GHz HBM clock, Host is
an Intel® Xeon® Gold 6130T CPU @ 2.10GHz with 64 GB of
system memory.
Comparing with the published benchmark from competitive
devices, the above utilization represents SOTA [13].

5. SUMMARY
In this paper, a deep learning workload auto-optimizer
methodology and application flow are discussed. The detailed
implementation of Intel NNP-T has demonstrated SOTA utilization
on convolution layers.
It should be noted that with this scalable methodology, it can be
used to optimize other deep learning performance matrices, such as
power or TOPS/W.

6. ACKNOWLEDGMENTS
Our thanks to Crest architecture and software team for their support
during this work.

7. REFERENCES
[1] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. A

(sub)graph isomorphism algorithm for matching large
graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(10):1367–1372, 2004.

[2] Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L.,
Guestrin, C., and Krishnamurthy, A. Learning to optimize
tensor programs. arXiv preprint arXiv:1805.08166, 2018b.

[3] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand,
F., and Amarasinghe, S. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. ACM SIGPLAN Notices, 48 (6):519–
530, 2013.

[4] Hennessy, J., Patterson, D. A., Computer Architecture – A
Quantitative Approach, 6th Edition, 2019

[5] Whaley, R. Clinton, and Jack J. Dongarra. "Automatically
tuned linear algebra software." SC'98: Proceedings of the
1998 ACM/IEEE conference on Supercomputing. IEEE,
1998.

[6] Vuduc, Richard, James W. Demmel, and Katherine A.
Yelick. "OSKI: A library of automatically tuned sparse
matrix kernels." Journal of Physics: Conference Series. Vol.
16. No. 1. IOP Publishing, 2005.

[7] Ragan-Kelley, Jonathan, et al. "Halide: a language and
compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines." Acm Sigplan
Notices 48.6 (2013): 519-530.

[8] Moreau, Thierry, et al. "VTA: an open hardware-software
stack for deep learning." arXiv preprint
arXiv:1807.04188 (2018).

[9] Chen, Tianqi, et al. "Learning to optimize tensor
programs." Advances in Neural Information Processing
Systems. 2018.

[10] Yang, A, Garegrat, N, Miao, C, Vaidyanathan, K,
Deep Learning Training at Scale – Spring Crest Deep
Learning Accelerator, Hotchips, Palo Alto, 2019

[11] Ansel, J., Kamil, S., Veeramachaneni, K, Ragan-Kelley, J,
Bosboom, J, O’Reilly U, Amarasinghe, S, OpenTuner: An
Extensible Framework for Program Autotuning, International
Conference on Parallel Architecture and Compilation
Techniques. Edmonton, Canada. August 2014

 [12] Cai, Lukai, and Daniel Gajski. "Transaction level
modeling: an overview." Proceedings of the 1st
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM,
2003. APA

[13] Baidu. DeepBench: Benchmarking deep learning operations
on different hardware, 2017. URL https://github. com/baidu-
research/DeepBench

