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1 Introduction
The determination of critical parameters or control signals of a multibody system (MBS) is
a common problem arising in the analysis and synthesis of dynamic systems. The indirect
methods of optimal control constitute a powerful toolbox to address these complex non-linear
problems. The adjoint method is one such approach, which has been employed in various
applications, such as parameter identification [3] or sensitivity analysis of systems with flexible
components [1]. This contribution presents how the adjoint method can be utilized to control
complex electromechanical multibody system with closed-loop kinematic chain. Although the
underlying dynamic problem is highly non-linear, we reported a satisfactory convergence of the
optimization procedure.

2 Problem statement

Table 1: Model parameters

Parameter Value

Links’ 1–4 lengths li = 0.127 m (5 inches)

Masses of bodies 1–4 mi = 0.065 kg

Moment of inertia for bodies 1–4 Jz = 9 · 10−5 kg m2

Pendulum’s length l5 = 0.3365 m

Pendulum’s mass m5 = 0.125 kg

Pendulum’s moment of inertia Jx = 6.5 · 10−6 kg m2

Jy = Jz = 1.8 · 10−4 kg m2

Transmission ratio kg = 70

Motor’s moment of inertia Jm = 4.6 · 10−7 kg m2

Initial position of P P(0) = (0.127, 0.127) m

Figure 1: Motor-actuated five-bar linkage with
inverted pendulum

The test model investigated in this paper is a spatial MBS composed of an inverted pendulum
and a five-bar linkage. Its motion is modeled with a set of Hamilton’s equations of motion in
redundant coordinates [4]. The layout of the MBS is depicted in figure 1. The linkage is actuated
by two DC motors that actuate bodies 1 and 4 via transmission modeled with constraint equation
Φtrans ≡ φmi−kg ·φi = 0, i = {1, 4}. The motor torque is calculated with the following formula:
τmi(t) = g(Vi(t), φ̇mi(t)), where g is a known relation dependent on the voltage, motor actual
velocity, and known motor parameters.
A physical pendulum is attached to the five-bar linkage at point P via a Hooke joint. The config-
uration of the pendulum can be conveniently described by means of joint coordinates {α1,α2},
which has been demonstrated in fig. 1. Angle γ denotes absolute value of the pendulum’s
inclination against global z axis.
At the initial time the pendulum is tilted about γ ≈ 14◦ from global z axis (α1 = α2 = 10◦).
The goal is to compute input voltage signals that stabilize the pendulum in the vertical position
while avoiding the singular configurations of the five-bar. These criteria can be achieved by
formulating the following performance measure:
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where point P is depicted in figures 1 and at initial time P = P(0). The maneuver is supposed
to end at final time tf = 0.5 s, while the results of the forward dynamics problem are stored in
computer memory with a constant step size of ∆t = 0.005 s.

3 Simulation results
The continuous input voltage signals are discretized into a set of k = 2 · ( tf

∆t + 1) variables
b ∈ Rk of the non-linear programming problem. A cubic spline interpolation is employed when
the integrator requests an intermediate input signal value. The starting guess is simply b0 = 0,
which means no actuation from the motors. The SQP algorithm has been employed for the
optimization.
The adjoint method consists of two main steps: MBS forward dynamics simulation and backward
adjoint system integration [2]. The optimization took 14 iterations to converge, and the results
can be seen in figure 2 presenting input voltage signals u1(t) and u2(t). Furthermore, figure 3
shows the dynamic response of the multibody system for the initial and final input signal vectors.
The presented quantity is the total tilt of the pendulum from the vertical axis γ. One can notice
that correct actuation properly stabilizes the pendulum.
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Figure 2: Computed input control signals that
stabilize the pendulum in vertical position
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Figure 3: Angle γ for different vectors
of input variables
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