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Abstract. Due to the beyond-classical capability of quantum comput-
ing, quantum machine learning is applied independently or embedded in
classical models for decision making, especially in the field of finance.
Fairness and other ethical issues are often one of the main concerns in
decision making. In this work, we define a formal framework for the
fairness verification and analysis of quantum machine learning decision
models, where we adopt one of the most popular notions of fairness in
the literature based on the intuition — any two similar individuals must
be treated similarly and are thus unbiased. We show that quantum noise
can improve fairness and develop an algorithm to check whether a (noisy)
quantum machine learning model is fair. In particular, this algorithm can
find bias kernels of quantum data (encoding individuals) during check-
ing. These bias kernels generate infinitely many bias pairs for investigat-
ing the unfairness of the model. Our algorithm is designed based on a
highly efficient data structure — Tensor Networks — and implemented
on Google’s TensorFlow Quantum. The utility and effectiveness of our
algorithm are confirmed by the experimental results, including income
prediction and credit scoring on real-world data, for a class of random
(noisy) quantum decision models with 27 qubits (227-dimensional state
space) tripling (218 times more than) that of the state-of-the-art algo-
rithms for verifying quantum machine learning models.

Keywords: Quantum Machine Learning · Fairness Verification · Quan-
tum Noise · Quantum Decision Model.

1 Introduction

Quantum Machine Learning: Google’s quantum supremacy (or advantage)
experiment demonstrated that a quantum computer Sycamore with 53 noisy
superconducting qubits can do a specific calculation, namely sampling, in 200
seconds that would take (arguably) 10,000 years on the largest classical com-
puter using existing algorithms [1]. More recently, a quantum computer Jiuzhang
with 76 noisy photonic qubits was used to perform a type of Boson sampling



in 20 seconds that would require 600 million years for a classical computer [2].
These experiments mark the beginning of the Noisy Intermediate-Scale Quan-
tum (NISQ) computing era, where quantum computers with tens-to-hundreds
of qubits become a reality, but quantum noise still cannot be avoided.

Quantum machine learning is believed to be a far frontrunner in setting a
path for practical beyond-classical applications of NISQ quantum devices. This
stimulates the fast development of various quantum machine learning (see [3]
for a review). Stepping into industries, Google recently built up a framework
TensorFlow Quantum for the design and training of quantum machine learning
within its well-known classical machine learning platform — TensorFlow [4].

Classical machine learning has led to automated decision models assuming a
signiïňĄcant role in making real-world decisions, especially in finance [5]. Such
(financial) decision tasks are known to face the curse of dimensionality as there
are too many features available to model customers/users. Principal component
analysis (PCA) is one of the most popular methods for dimensionality reduction.
It was recently shown that quantum PCA algorithm [6] can run exponentially
faster on a quantum processor. At the same time, the training process of quan-
tum machine learning could be sped up exponentially (compared with classical
training) by using quantum PCA to implement iterative gradient descent meth-
ods for network training [7]. It is worth noting that this quantum approach is
generic in the sense that it can be applied to various types of neural networks,
including shallow, convolutional, and recurrent networks, and thus can miti-
gate the high complexity issue of classical training. Because of these reasons,
quantum machine learning has been introduced to be applied independently or
embedded in classical decision-making models, e.g. fraud detection (in transac-
tion monitoring) [8,9], credit assessments (risk scoring for customers) [10,11],
and recommendation systems for content dissemination [12] (see reviews [13,14]
for more information). Similar to the classical counterparts, the quantum models
are trained on individuals’ information, e.g. saving, employment, salary (encoded
as quantum data).

Fairness in Machine Learning: It is well-known that classical decision
models are prone to discriminating against users/consumers on the basis of char-
acteristics such as race and gender [15], and have even led to legal mandates of
ensuring fairness. To develop fair models, various attempts have been made to
precisely define and quantify fairness. They broadly fall into two categories: group
and individual fairness. Group fairness aims to achieve through statistical parity
the same outcomes across different protected groups (e.g. gender or race) [16,17],
whereas individual fairness advocates treating similar individuals similarly (re-
ceiving the similar outcomes) [18] (see [19,20] for various definitions of fairness
and discussions about their relationship). The computer science community has
endeavoured to check and avoid bias in classical decision models in the sense
of different types of fairness (e.g. [18,19,21]). In particular, several verifiers for
formal analysis and fairness verification have been designed and implemented,
including FairSquare [22], VeriFair [23] and Justicia [24].
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Inevitably, the same issue of fairness arises in the quantum models too. Fur-
thermore, as quantum machine learning is principled by quantum mechanics,
which is usually hard to explain to the end-users, it is even more important
to verify fairness when a decision is made by a quantum machine learning algo-
rithm. However, to the best of our knowledge, the verification problem of fairness
in quantum algorithms has not yet been touched.

Contributions of This Paper: In this work, we define a formal framework
so that the fairness of quantum machine learning decision models can be verified
and analyzed in a principled way. Our design decision is as follows: we focus
on individual fairness — treating similar individuals similarly [18]. The trace
distance — one of the most widely used quantities in quantum information [25,
Section 9.2] — is chosen as the metric for measuring the similarity of quantum
data (individuals) in defining fairness. Our main technical contributions include:

(1) Problem Reduction : We prove that for a given (noisy) quantum decision
model, checking the fairness can be reduced to a variant of distinguishing
quantum measurements (states), a fundamental problem in quantum infor-
mation. We resolve this specific variant problem by finding the maximum
difference between the eigenvalues of the matrices generated by quantum
measurements. As a corollary, we show that quantum noise can improve
fairness.

(2) Algorithm : Based on (1), an algorithm is developed to exactly and effi-
ciently check whether or not a quantum machine learning decision model is
fair. A special strength of this algorithm is that it can identify bias kernels
during the checking, and these kernels generate infinitely many bias pairs,
that is, two similar quantum data that are not treated similarly. Then these
bias pairs can be used to investigate the bias of the decision model.

(3) Case Studies: The effectiveness of our algorithm is confirmed by experi-
ments on quantum (noisy) decision models with 8 or 9 quantum bits (qubits)
for income prediction and credit scoring on real-world data. In particular, its
efficiency is shown by a class of random quantum decision models with 27
qubits, which works on a 227-dimensional state space. The state-of-the-art
verification algorithm [26] for quantum machine learning was only able to
deal with (the robustness with) 9 qubits. Our experiments can be consid-
ered a big step toward the demanded number (≥ 50) of qubits in practical
applications of the NISQ era.

1.1 Related Works and Challenges

To put our work in an appropriate context, let us further discuss some related
works and the challenges we face in this paper.

Classical versus Quantum Models: In order to identify and mitigate the
bias of classical machine learning decision models, an algorithm for maximizing
utility with fairness guarantee was proposed [18]. Then the strategy of search-
ing input data with linear and integral constraints is employed in a verifier for
proving individual fairness of a given decision model [21]. The verifier is sound
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but not complete in general. But in the case of linear models, it is exact (both
sound and complete) if the worst-case exponential time is allowed. However, al-
though quantum decision models are always linear, the above technique cannot
be directly generalized from the classical case to the quantum case. The main
obstacle here is that the corresponding constraints in the quantum models are
nonlinear, and thus searching the data set in a linear domain is ineffective in the
quantum case. In this paper, we surmount this obstacle by reducing the quantum
fairness verification problem to determining the distinguishability of a quantum
measurement, which is independent of input data. Then we resolve the latter
by eigenvalue analysis with polynomial time in the dimension of input quantum
data. As a result, our algorithm is exact (sound and complete) and efficient.

Fairness versus Robustness: As in the classical case, the individual fair-
ness considered in this paper can be thought of as a kind of global robust-
ness [21]. This will be formally discussed in Section 3. In the last few years,
quite a few papers have been devoted to (adversarial) robustness verification of
quantum machine learning (e.g. [26,27,28]), where a verifier is given a nominal
input quantum datum and it checks robustness in a neighborhood of that par-
ticular input datum. However, the techniques developed in these works cannot
be directly generalized to solve our problem of fairness verification, because we
are required to check a global property. Instead, we transfer the impact of the
evolution of the quantum machine learning model on input quantum data to
quantum measurements.

Efficiency: As the dimension of input data increases exponentially with the
number of qubits, efficiency is always a key issue in the verification of quantum
machine learning models. The state-of-the-art algorithms for robustness verifi-
cation mentioned above can only cope with quantum machine learning models
with 9 qubits4. In this paper, we boost the scale up to 27 qubits on a small
server, which represents a big step toward the demand in practical applications
of NISQ devices (≥ 50 qubits). The speedup originates from not only the high ef-
ficiency of our algorithm but also the based data structure we adopted — Tensor
Network [29] — which can exploit the locality and regularity of the underlying
circuits of quantum decision models and thus further optimize the algorithm.

2 Quantum Decision Models

For convenience of the reader, in this section, we review the setup of quantum
(machine learning) decision models in their most basic form.

Classical Models: In the classical world, a classification decision model is
a mapping fc : C → O, where C is a set of data to be classified, and O is a
set of outcomes corresponding to the classes we are interested in; for example
O = {0, 1} in the simplest non-trivial (binary) case. Such a model fc can be
4 The experiments of [26] were performed on a personal computer and the size is at
most 8 qubits. We have estimated and tested the same experiments on the server we
used in this paper and only 9 qubits can be handled.
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generalized to be a randomized mapping fr : C → D(O), where D(O) denotes
the set of probability distributions over O. fr is known as a regression decision
model to predict distributions and naturally describes a randomized classifica-
tion procedure: to classify x ∈ C, choose an outcome o ∈ O according to the
distribution fr(x). For example, o is chosen as the outcome corresponding to the
maximum probability of fr(x). Therefore, the basic form of a classical decision
model is a randomized mapping f = fr (f = fc when f is degenerated to be a
deterministic mapping).
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Fig. 1: Noisy Quantum (Machine Learning) Decision Model

Quantum Models: Due to the statistical nature of quantum mechanics, a
quantum decision model is inherently a randomized mapping A : D(H)→ D(O).
Here D(H) is the set of quantum states (data) and to be specific later. Inspired by
the classical models, A is not predefined but initialized as Aθ by a parameterized
quantum circuit Eθ (see Fig. 1) with a set of free parameters θ = {θj}Lj=1.
Following the training strategy of classical machine learning, Aθ is trained on a
set of input quantum states (training dataset) by tuning θ subject to some loss
function L(θ).

In the following, we explain the noisy quantum decision model from the left
side to the right one of Fig. 1. For the details of the training process, we refer to
a comprehensive review paper [30].

Input State ρ: The input state of the model is a quantum mixed state ρ,
which is mathematically modelled by a positive semi-definite complex matrix,
written as ρ ≥ 0, with unit trace5. ρ admits a decomposition form6: ρ =

∑
k pkψk

where {pk} is a probability distribution and each ψk is a rank-one positive semi-
definite matrix, i.e., ψk = |ψk〉〈ψk|. Here, |ψk〉 is a unit vector and 〈ψk| is
the entry-wise conjugate transpose of |ψk〉, i.e., 〈ψk| = |ψk〉†. Physically, |ψk〉

5 ρ has unit trace if tr(ρ) = 1, where trace tr(ρ) of ρ is defined as the summation of
diagonal elements of ρ.

6 This kind of decomposition is generally infinitely many, and one instance is eigen-
decomposition, i.e., pk and |ψk〉 are eigenvalues and eigenvectors of ρ, respectively
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represents a pure state, and ρ represents an ensemble {(pk, |ψk〉)}k, often called
a mixed state, meaning that ρ is at |ψk〉 with probability pk. In particular, if
ρ = ψ for some pure state |ψ〉, then the ensemble is deterministic; that is, it is
degenerated to a singleton {(1, ψ)}. In general, the statistical feature of ρ may
result from quantum noise, which is unavoidable in the current NISQ era, from
the surrounding environment.

Example 1 (Qubits – Quantum Bits). A pure state of a single qubit q is described
by a 2-dimensional unit vector and in the Dirac notation it can be written as:

|ψ〉 =

(
a
b

)
= a|0〉+ b|1〉 for |0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
and |a|2 + |b|2 = 1,

and ensembles {( 1
2 , |0〉), (

1
2 , |+〉)} and {(

1
6 , |1〉), (

5
6 , |φ〉)} of q are represented by

the same 2-by-2 mixed state

ρ =
1

4

(
3 1
1 1

)
=

1

2
|0〉〈0|+ 1

2
|+〉〈+| = 1

6
|1〉〈1|+ 5

6
|φ〉〈φ|,

where |+〉 = 1√
2
(|0〉+ |1〉) and |φ〉 = 1√

10
(3|0〉+ |1〉).

For a system of multiple qubits q1, ..., qn, the state space is a 2n-dimensional
Hilbert (linear) space, denoted by H. As a result, pure and mixed states onH are
2n-dimensional unit vectors and 2n×2n positive semi-definite matrices with unit
trace, respectively. It is worth noting that the dimension 2n of the state space H
of quantum states is exponentially increasing with the number n of qubits. Thus,
describing a quantum system with a large number of qubits and verifying its
properties on a classical computer is challenging. For our purpose of verifying
fairness in quantum machine learning, we adopt a compact data structure —
Tensor Networks — to mitigate this issue (see this in Section 6).

Parameterized Quantum Circuit Eθ: Several different types of param-
eterized quantum circuits have been proposed; e.g. quantum neural networks
(QNNs) [31] and quantum convolutional neural networks (QCNNs) [32]. Ba-
sically, Eθ consists of a sequence of quantum operations: Eθ = Ed,θd ◦ · · · ◦
E1,θ1 . For each input quantum state ρ, the output of the circuit is Eθ(ρ) =
Ed,θd(. . . E2,θ2(E1,θ1(ρ))). In the current NISQ era, each component Ei,θi is:

– either a parameterized quantum gate Ui,θi (the full boxes in Fig 1) with
Ui,θi(ρ) = Ui,θiρU

†
i,θi

, where Ui,θi is a unitary matrix with parameters θi,
i.e., U†i,θiUi,θi = Ui,θiU

†
i,θi

= I (the identity matrix), and U†i,θi is the entry-
wise conjugate transpose of Ui,θi ;

– or a quantum noise Ei (the dashed boxes in Fig 1). Mathematically, it can
be described by a family of Kraus matrices {Eij} [25]: Ei(ρ) =

∑
j EijρE

†
ij

with
∑
j E
†
ijEij = I. Briefly, Ei is represented as Ei = {Eij}.

Note that in constructing a quantum machine learning model, only quantum
gate Ui,θi is parameterized, and noises Ei are not because they come from the
outside environment.
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It should be pointed out that, in a practical model, as shown in Fig. 1, each
quantum operation E = Ei,θi non-trivially applies on one or two qubits. For
example, if E only works on the first qubit, then E = E1 ⊗ id2⊗ . . . ⊗ idn and
E(ρ1⊗ρ2⊗. . .⊗ρn) = E1(ρ1)⊗ρ2⊗. . .⊗ρn, where ρi is the mixed state applied on
qubit qi and tensor product ρ1⊗ρ2⊗ . . .⊗ρn is the joint state of multiple qubits
q1, . . . , qn. This locality feature will be exploited by Tensor Networks to optimize
our verification algorithm for fairness in the Evaluation Section — Section 6.

Example 2. Consider the 1-qubit noise model: EU (ρ) = (1− p)ρ+ pUρU† where
0 ≤ p ≤ 1 is a probability and U is a unitary matrix. It includes the following
typical noises depending on the choice of U : U = X for bit flip, U = Z for phase
flip and U = Y = ıXZ for bit-phase flip [25, Section 8.3], where I,X, Y, Z are
the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −ı
ı 0

)
, Z =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
,

where ı denotes imaginary unit. The depolarizing noise combines the above three
kinds of noise: ED(ρ) = (1− p)ρ+ p I2 = (1− 3p

4 )ρ+ p
4 (XρX + Y ρY + ZρZ).

Measurement {Mi}i∈O: At the end of parameterized quantum circuit Eθ,
we cannot directly read out the output Eθ(ρ). The only way allowed by quantum
mechanics to extract classical information from Eθ(ρ) is through a quantum
measurement, which is mathematically modeled by a set {Mi}i∈O of matrices
with O being the set of possible outcomes and

∑
i∈OM

†
iMi = I. This observing

process is probabilistic: for the measurement on state Eθ(ρ), an outcome i ∈ O
is obtained with probability pi = tr(MiEθ(ρ)M†i )7. Therefore, the output of
quantummachine learning modelAθ upon an input ρ is a probability distribution
Aθ(ρ) = {pi : pi = tr(MiEθ(ρ)M†i )}, as depicted at the rightmost of Fig. 1.

In this paper, we focus on the well-trained quantum machine learning models
(i.e., θ has been tuned), so we ignore the θ in Eθ and Aθ. Now, we can formally
specify quantum decision model A as follows:

Definition 1. A quantum decision model A = (E , {Mi}i∈O) is a randomized
mapping:

A : D(H)→ D(O) A(ρ) = {tr(MiE(ρ)M†i )}i∈O ∀ρ ∈ D(H),

where E is a super-operator on Hilbert space H, and {Mi}i∈O is a quantum
measurement on H with O being the set of measurement outcomes (classical
information) we are interested in.

Like their classical counterparts, quantum decision models are usually classi-
fied into two categories: regression and classification models. Regression models
generally predict a value/quantity, whereas classification models predict a la-
bel/class. More specifically, a regression model AR uses the output of A directly
7 After measuring Eθ(ρ) with outcome i ∈ O, the state Eθ(ρ) will be collapsed
(changed) to ρ′i = MiEθ(ρ)M†i /pi. As we can see, the post-measurement state ρ′i
is dependent on the measurement outcome i. This special property is vitally differ-
ent from the classical computation.
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as the predicted value of the regression variable ρ ∈ D(H). That is AR(ρ) = A(ρ)
for all ρ ∈ D(H). In the classical world, regression models have been success-
fully applied to many real-world applications, such as stock market prediction
and object detection. Quantum regression models were recently used to pre-
dict molecular atomization energies [33] and the demonstration of IBM’s pro-
gramming platform—Qiskit [34, Variational Quantum Regression]. On the other
hand, classification model AC further uses the measurement outcome probability
distribution A(ρ) to sign a class label on the input state ρ. The most common
way is as follows:

AC : D(H)→ O AC(ρ) = arg max
i
A(ρ)i ∀ρ ∈ D(H), i ∈ O,

where A(ρ)i denotes the i-th element of distribution A(ρ). Classical classification
models have broad applications in our daily life, such as face recognition and
medical image classification. Quantum classification models have been used to
implement quantum phase recognition [32] and cluster excitation detection [4]
from real-world physical problems, and fraud detection [8] in finance.

As we saw above, although classical and quantum decision models f and A
are both randomized mappings, the input data to them and their procedure of
processing the data are fundamentally different. These differences make that the
techniques for verifying classical models cannot be directly applied to quantum
models and we have to develop new techniques for the latter.

3 Defining Fairness

As discussed in the Introduction, an important issue in classical machine learning
is: how fair is the decision made by machines. The same issue exists for quantum
machine learning. Intuitively, the fairness of quantum decision model A is to
treat all input states equally, i.e., there is not a pair of two closed input states
that has a large difference between their corresponding outcomes. Formally,

Definition 2 (Bias Pair). Suppose we are given a quantum decision model
A = (E , {Mi}i∈O), two distance metrics D(·, ·) and d(·, ·) on D(H) and D(O),
respectively, and two small enough threshold values 1 ≥ ε, δ > 0. Then (ρ, σ) is
said to be an (ε, δ)-bias pair if the following is true

[D(ρ, σ) ≤ ε] ∧ [d(A(ρ),A(σ)) > δ]. (1)

The first condition in (1) indicates that the distance between input states
ρ and σ is within ε, and the second condition shows the difference between
outcomes A(ρ) and A(σ) is beyond δ. Sometimes, without any ambiguity, (ρ, σ)
is called a bias pair if ε and δ are preset.

Definition 3 (Fair Model). Let A = (E , {Mi}i∈O) be a decision model. Then
A is (ε, δ)-fair if there is no any (ε, δ)-bias pair.
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The intuition behind this notion of fairness is that small or non-significant
perturbation of a sample ρ to σ (i.e. D(ρ, σ) ≤ ε) must not be treated “differ-
ently” by a fair model. The choice of input distance function D(·, ·) identifies the
perturbations to be considered non-significantly, while the choice of the output
distance function d(·, ·) limits the changes allowed to the perturbed outputs in
the model.

Fairness Implying Robustness: As the same in the classical situation [21],
robustness of quantum machine learning is a special case of fairness defined
above. Formally, robustness is defined on a specific state ρ: given a quantum
model A = (E , {Mi}i∈O), ρ is (ε, δ)-robust if for all σ ∈ D(H), D(ρ, σ) ≤ ε
implies d(A(ρ),A(σ)) ≤ δ. In contrast, fairness is established on all quantum
states: A is (ε, δ)-fair if and only if ρ is (ε, δ)-robust for all states ρ ∈ D(H). So,
fairness implies robustness and can be thought of as global robustness.

Choice of Distances: The reader should have noticed that the above def-
inition of fairness for quantum decision models is similar to that for classical
decision models. But an intrinsic distinctness between them comes from the
choice of distances D(·, ·) and d(·, ·). In the classical case, the distances define
the similarity between individuals and their appropriate choices have been inten-
sively discussed [18]. One of the most used distances is total variation distance,
measuring the closeness of individuals encoded by probability distributions. In
this paper, we use it as d(·, ·) for measurement outcome distributions in Defini-
tion 1 and choose D(·, ·) to be the trace distance. Trace distance is essentially a
generalization of total variation distance, and has been widely used by the quan-
tum computation and quantum information community to define the closeness of
quantum states [25, Section 9.2]. Formally, for two quantum states ρ, σ ∈ D(H),

D(ρ, σ) =
1

2
tr(|ρ− σ|),

where |ρ − σ| = ∆+ + ∆− if ρ − σ = ∆+ − ∆− with tr(∆+∆−) = 0 and
∆± being positive semi-definite matrix. On the other hand, for two probability
distributions p = {pi}i∈O, q = {qi}i∈O over O, d(p, q) = 1

2

∑
i |pi − qi|. In

particular, for the measurement outcome distributions, we have:

d(A(ρ),A(σ)) =
1

2

∑
i

|tr(M†iMiE(ρ− σ))|.

If ρ and σ are both diagonal matrices, i.e., ρ = diag(p1, · · · , p|O|) and σ =
diag(q1, · · · , q|O|), then D(ρ, σ) = d(p, q).

4 Characterizing Fairness

In this section, we give a characterization of fairness in terms of the Lipschitz
constant and clarify its relationship with quantum noises.
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4.1 Fairness and Lipschitz Constant

The Lipschitz constant has been widely used in classical machine learning for
applications ranging from robustness and fairness certification of classifiers to
stability analysis of closed-loop systems with reinforcement learning controllers
(e.g. [35,36]). In this subsection, we show that there also exists a close connection
between the Lipschitz constant and fairness in the quantum setting. Let us start
from an observation:

Lemma 1. Let A = (E , {Mi}i∈O) be a quantum decision model. Then

d(A(ρ),A(σ)) ≤ D(ρ, σ). (2)

Proof. See Appendix A in [37] for the proof.

The above lemma indicates that quantum decision model A is automatically
(ε, δ)-fair whenever ε = δ. Furthermore, we see thatA is unconditionaly Lipschitz
continuous: there exists a constant K > 0 (K ≤ 1 by Lemma 1) such that for
all ρ, σ ∈ D(H),

d(A(ρ),A(σ)) ≤ KD(ρ, σ). (3)

As usual, K is called a Lipschitz constant of A. Furthermore, the smallest K,
denoted by K∗, is called the (best) Lipschitz constant of A.

In the context of quantum machine learning, the following theorem shows
that K∗ actually measures the fairness of decision model A, i.e., the best (max-
imum) ratio of δ and ε in a fair model, and the states ψ, φ achieving K∗ can be
used to find bias pairs in fairness verification.

Theorem 1. 1. Given a quantum decision model A = (E , {Mi}i∈O) and 1 ≥
ε, δ > 0, A is (ε, δ)-fair if and only if δ ≥ K∗ε.

2. If A is not (ε, δ)-fair, then (ψ, φ) achieving K∗ is a bias kernel; that is, for
any quantum state σ ∈ D(H), (ρψ, ρφ) is a bias pair where

ρψ = εψ + (1− ε)σ ρφ = εφ+ (1− ε)σ. (4)

Proof (Outline). The “if” direction of the first claim is derived by the definitions
of (ε, δ)-fairness and K∗ together with (3). The “only if” direction of the first
claim and the second claim are both based on the existence of pure states |ψ〉 and
|φ〉 achieving K∗: d(A(ψ),A(φ)) = K∗D(ψ, φ). The detailed proof is presented
in Appendix B in [37].

4.2 Fairness and Noises

In this subsection, we turn to consider the relation between fairness and noise.
Let us first examine a simple example. Assume a noiseless quantum decision
model A = (U , {Mi}i∈O) where U is a unitary operator, i.e., U = {U} for
some unitary matrix U . The 1-qubit depolarizing noise in Example 2 can be
generalized to a large-size system with the following form:

E(ρ) = (1− p)ρ+ p
I

N
∀ρ ∈ D(H),

10



where 0 ≤ p ≤ 1 and N is the dimension of the state space H of the system.
By introducing it into A, we obtain a noisy model AE = (E ◦ U , {Mi}i∈O). Let
K∗ and K∗E be the Lipschitz constants of A and AE , respectively. A calculation
(with the help of Theorem 3 below) yields:

K∗E = (1− p)K∗. (5)

Theorem 1 indicates that the less the Lipschitz constant is, the fairer the quan-
tum machine learning model will be. So, depolarizing noise improves fairness by
the order of (1 − p). By the way, it was shown in [38] that depolarizing noise
can improve the robustness of quantum machine learning. This result can be
strengthened by using (5) to quantitatively characterize the robustness improve-
ment.

The observation in the above example can actually be generalized to the
following:

Theorem 2. Let A = (U , {Mi}i∈O) be a quantum decision model. Then for any
quantum noise represented by a super-operator E, we have K∗E ≤ K∗, where K∗
and K∗E are the Lipschitz constants of A and AE = (E ◦ U , {Mi}i∈O).

Proof (Outline). The proof of this theorem mainly depends on the observation
that the range of AE is a subset of the range of A, i.e. {E ◦ U(ρ) : ρ ∈ D(H)} ⊆
{U(ρ) : ρ ∈ D(H)} = D(H). Subsequently, by Definition 2 of fairness, the output
distributions of AE are contained in that of A. A restatement of this theorem
in terms of quantum states (measurements) distinguishability and its full proof
are presented in Appendix C in [37].

Remark 1. The above theorem indicates that adding noises at the end of noise-
less computation can always improve fairness. Indeed, this is also true when the
noises appear in the middle (after any gate in the circuit).

5 Fairness Verification

In this section, we develop an algorithm for the fairness verification of quantum
decision models based on the theoretical results obtained in the last section.
Formally, the major problem concerned in this paper is the following:

Problem 1 (Fairness Verification Problem). Given a quantum decision model A
and 1 ≥ ε, δ > 0, check whether or not A is (ε, δ)-fair. If not then (at least) one
bias pair (ρ, σ) is provided.

5.1 Computing the Lipschitz Constant

First of all, we note that essentially, Theorem 1 gives a verification condition
for fairness in terms of the Lipschitz constant K∗. Therefore, computing K∗ is
crucial for fairness verification. However, this problem is much more difficult than
that in the classical counterpart as discussed in Subsection 1.1. The following
theorem provides a method to compute the Lipschitz constant K∗ by evaluating
the eigenvalues of certain matrices.
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Theorem 3. 1. Given a quantum decision model A = (E , {Mi}i∈O). The Lip-
schitz constant K∗ is:

K∗ = max
A⊆O

[λmax(MA)− λmin(MA)] with MA =
∑
i∈A
E†(M†iMi),

where E† is the conjugate map8 of E, and λmax(MA) and λmin(MA) are the
maximum and minimum eigenvalues of positive semi-definite matrix MA,
respectively.

2. Furthermore, let A∗ ⊆ O be an optimal solution of reaching the Lipschitz
constant, i.e.,

A∗ = arg max
A⊆O

[λmax(MA)− λmin(MA)]

and |ψ〉 and |φ〉 be two normalized eigenvectors corresponding to the maxi-
mum and minimum eigenvalues of MA∗ , respectively. Then we have

d(A(ψ),A(φ)) = K∗D(ψ, φ) = K∗,

where ψ = |ψ〉〈ψ| and φ = |φ〉〈φ|.

Proof (Outline). This theorem can be proved by reducing the problem of calcu-
lating the Lipschitz constant to determining the distinguishability of a quantum
measurement. Then we claim that the distinguishability is the maximum dif-
ference between the eigenvalues of the matrices generated by the measurement.
The details are quite involved, and we postpose them into Appendix C in [37].

Based on the above theorem, we are able to develop Algorithm 1 for com-
puting the Lipschitz constant K∗. The correctness and complexity are provided
in the next subsection.

5.2 Fairness Verification Algorithm

Now we are ready to present our main algorithm — Algorithm 2 — for verifying
fairness of quantum decision models.

To see the correctness of Algorithm 2, let us first note that the second part
of Theorem 3 shows that K∗ can be achieved by d(A(ψ),A(φ)) for two mutually
orthogonal quantum (pure) states ψ and φ. On the other hand, the second part
of Theorem 1 asserts that such states ψ and φ form a bias kernel. Moreover,
since state σ ∈ D(H) in (4) is arbitrary and D(H) is an infinite set, infinitely
many bias pairs can be generated from this kernel.

To analyze the complexities of Algorithm 2 and its subroutine — Algorithm 1,
we first see by Theorem 1 that for evaluating the (ε, δ)-fairness of quantum de-
cision model A, the Lipschitz constant K∗ is sufficient and necessary. Thus the
first step (Line 1) of Algorithm 2 is to call Algorithm 1 to compute K∗ by the
mean of Theorem 3. The complexity of Algorithm 1 mainly attributes to com-
puting Wi =

∑
j∈J E

†
jM
†
iMiEj for each i ∈ O, and for each A ⊆ O,

∑
i∈AWi

8 E†(ρ) =
∑
j∈J E

†
jρEj if E admits Kraus matrix form E(ρ) =

∑
j∈J EjρE

†
j .
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Algorithm 1 Lipschitz(A)
Input: A quantum decision model A = (E = {Ej}j∈J , {Mi}i∈O) on a Hilbert space
H with dimension N .

Output: The Lipschitz constant K∗ and (ψ, φ) as in Theorem 3.
1: for each i ∈ O do
2: Wi = E†(M†iMi) =

∑
j∈J E

†
jM
†
iMiEj

3: end for
4: K∗ = 0, A∗ = ∅ be an empty set and MA∗ = 0, zero matrix.
5: for each A ⊆ O do
6: MA =

∑
i∈AWi and KA = λmax(MA)− λmin(MA)

7: if KA > K∗ then
8: K∗ = KA, A∗ = A and MA∗ =MA

9: end if
10: end for
11: |ψ〉 and |φ〉 are obtained two normalized eigenvectors corresponding to the maxi-

mum and minimum eigenvalues of MA∗ , respectively.
12: return K∗ and (ψ, φ)

Algorithm 2 FairVeriQ(A, ε, δ)
Input: A quantum decision model A = (E = {Ej}j∈J , {Mi}i∈O) on a Hilbert space
H with dimension N , and real numbers 1 ≥ ε, δ > 0.

Output: true indicates A is (ε, δ)-fair or false with a bias kernel pair (ψ, φ) indicates
A is not (ε, δ)-fair.

1: (K∗, (ψ, φ))=Lipschitz(A) // Call Algorithm 1
2: if δ ≥ K∗ε then
3: return true
4: else
5: return false and (ψ, φ)
6: end if

and its maximum and minimum eigenvalues (and the corresponding eigenvectors
for A = A∗ at the end). The former calculation needs O(N5) as the multipli-
cation of N × N matrices needs O(N3) operations, and the number |J | of the
Kraus operators {Ej}j∈J of E can be at most N2 [39, Chapter 2.2]; the com-
plexity of the latter one is O(2|O||O|N2) since the number of subsets of O is 2|O|,
|A| ≤ |O| for any A ⊆ O and computing maximum and minimum eigenvalues
with corresponding eigenvectors of N × N matrix costs O(N2). Therefore, the
total complexity of Algorithm 1 is O(N5 + 2|O||O|N2). After that, in Lines 2-6,
we simply compare δ and K∗ε to answer the fairness verification problem. So,
Algorithm 2 shares the same complexity with Algorithm 1.

Theorem 4. The worst case complexities of Algorithms 1 and 2 are both O(N5+
2|O||O|N2), where N is the dimension of input Hilbert state space H and |O| is
the number of the measurement outcome set O.

Like their classical counterparts, quantum machine learning models usually
downscale large-dimension input data to small-size outputs. This means that the
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number |O| of the measurement outcome set O is far smaller than the dimension
N of input Hilbert state space H. It is even a constant 2 in most real-world tasks
for binary decisions/classifications, such as income prediction and credit scoring
(see the examples in Section 6), and in this case, the complexities of Algorithms 1
and 2 are both O(N5). However, the dimension N is exponential in the number
n of the input qubits, i.e., N = 2n. Thus the complexity turns out to be O(25n).
In verification of classical models, this state-space explosion problem [40] can be
mitigated by using some custom-made data structures to capture the features of
the underlying data, e.g. Binary Decision Diagrams (BDDs) [41]. In the quantum
case, we cross this difficulty by employing a quantum data structure — Tensor
Networks (TNs), originating from quantum many-body physics — to exploit the
locality and regularity of the circuits representing quantum machine learning
models. As a result, quantum models with up to n = 27 qubits can be handled
by our verification algorithm.

6 Evaluation

In this section, we evaluate the efficiency of our verification algorithm (Algo-
rithm 1) on noisy quantum decision models. The algorithm is implemented on
TensorFlow Quantum [4] — a platform of Google for designing and training
quantum machine learning algorithms. Then we test it by verifying the fairness
of two groups of examples:

– Small-scale models trained from real-world data (Subsection 6.1): There is
still no public benchmarks for quantum decision models. We choose two
publicly available financial datasets, German Credit Data [42] and Adult
Income Dataset from Diverse Counterfactual Explanations Dataset [43] and
train small-scale quantum models from them on TensorFlow Quantum. Then
we evaluate the Lipschitz constant K∗ of the trained models by Algorithm 1.

– Medium-scale models (Subsection 6.2): Medium-scale models (10-30 qubits)
are difficult to be trained on TensorFlow Quantum with a personal computer
or a small server since the simulated quantum noises lead to large-size (up
to 230× 230) matrix manipulations. Thus we turn to using a model from the
tutorial of TensorFlow Quantum as a seed to generate a group of medium-
scale models. The efficiency of our algorithm is then demonstrated on these
models with randomly sampled parameters.

All source codes can be found at: https://github.com/Veri-Q/Fairness. All
our experiments are carried out on a server with Intel Xeon Platinum 8153
@ 2.00GHz × 256 Processors, 2048 GB Memory and no dedicated GPU. The
machine runs Centos 7.7.1908 and each experiment is run with at most 80 pro-
cessors. We use the NumPy and Google TensorNetwork [44] Python packages to
compute Lipschitz constants and bias kernels for small-scale models and medium-
scale models, respectively. These two packages have their own advantages in
different sizes.
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6.1 A Practical Application in Finance

Adult Income Dataset. The original version of this dataset is extracted from
the 1994 Census database by Barry Becker [45]. We use the modified version
of the adult income dataset by DiCE [43]. Each individual in this modi-
fied dataset has 8 features and the classification whether the income exceeds
$50, 000/year or not. We randomly select 1, 000 and 400 data from the train-
ing dataset and test dataset contained in this modified dataset, respectively.
The task of the quantum decision model task is to predict whether an indi-
vidualâĂŹs income exceeds $50, 000/year or not.

German Credit Dataset. This dataset contains 1, 000 loan applicants with 20
features and the classification whether they are considered as having good
credit risk or not (Creditability). It provides 500 applicants for the train-
ing and 500 applicants for the test. By using the p-value with creditability
for each variable [46], we have 9 features (e.g., Account Balance, Payment
Status) left as significant predictors. The task of the quantum model to be
trained is to classify whether the person has good credit risk or not.

These datasets contain some categorical features, which are transformed into
different integer numbers for further operations. Then we have n ∈ {8, 9} num-
bering features in total and use the following data-encoding feature map:

~x = (x1, x2, . . . , xn) 7→ |ψ(~x)〉 =

n⊗
j=1

Xxj |0〉

for Pauli matrix X defined in Example 2 to encode an n-dimensional feature vec-
tor ~x (each dimension is normalized by its maximum value) to an n-qubits quan-
tum state ψ(~x) = |ψ(~x)〉〈ψ(~x)|.

Models: For the quantum decision model, we choose the basic rotation and
entangling building blocks [47] to construct parameterized quantum circuits (see
Fig. 2). In the rotation block, without any ambiguity, we directly use X and
Z to represent parameterized X-rotation e−ı

θ1
2 X and parameterized Z-rotation

e−ı
θ2
2 Z on one qubit, respectively. It is worth noting that the parameterized

(Z-X-Z)-rotation induces universal gates on each qubit [25, Theorem 4.1], and
thus the expressiveness of the models on one qubit is ensured. In the entangling
block, XX stands for the parameterized (X ⊗ X)-rotation e−ı

θ3
2 X⊗X on two

qubits. The entangling block can create entanglement between each qubit. Here
entanglement is a unique feature of quantum models to express the interactions
of qubits. The model is constructed by alternately using these two blocks with
a quantum measurement M at the end of the model.

Since TensorFlow Quantum is inefficient in training noisy models, we only use
3 rotation blocks and 2 entangling blocks in the training models. In addition, to
simulate noisy models, we put different quantum noises introduced in Example 2
on each qubit, including bit flip, phase flip, depolarizing, and the mixtures of
them, behind the first rotation block. Note that the number of qubits for the
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Fig. 2: Parameterized Quantum Circuits for Quantum Finance Decision Models.

Table 1: Experimental results of Lipschitz constant K∗ of the trained models.
Dataset Noise Accuracy

K∗ Timetype probability train test

German Credit

None 0.732 0.686 1.0000× 100 \

Phase flip
10−4 0.726 0.692 9.9997× 10−1 2.36s
10−3 0.724 0.714 9.9800× 10−1 2.02s
10−2 0.704 0.708 9.6918× 10−1 1.94s

Depolarizing
10−4 0.709 0.686 9.9977× 10−1 2.77s
10−3 0.701 0.712 9.9789× 10−1 2.93s
10−2 0.709 0.682 9.7916× 10−1 3.44s

Bit flip
10−4 0.712 0.728 9.9975× 10−1 2.27s
10−3 0.710 0.690 9.9743× 10−1 2.47s
10−2 0.724 0.678 9.7981× 10−1 2.05s

Mixed noise
10−4 0.710 0.704 9.9980× 10−1 2.15s
10−3 0.731 0.682 9.9834× 10−1 2.08s
10−2 0.731 0.692 9.7021× 10−1 1.95s

Adult Income
(DiCE)

None 0.777 0.770 1.0000× 100 \

Phase flip
10−4 0.784 0.767 9.9992× 10−1 0.44s
10−3 0.771 0.770 9.9805× 10−1 0.51s
10−2 0.773 0.767 9.8057× 10−1 0.48s

Depolarizing
10−4 0.774 0.767 9.9987× 10−1 0.57s
10−3 0.781 0.767 9.9867× 10−1 0.58s
10−2 0.779 0.767 9.8667× 10−1 0.69s

Bit flip
10−4 0.780 0.767 9.9980× 10−1 0.57s
10−3 0.777 0.767 9.9800× 10−1 0.49s
10−2 0.778 0.770 9.8117× 10−1 0.54s

Mixed noise
10−4 0.762 0.720 9.9987× 10−1 0.68s
10−3 0.752 0.720 9.9812× 10−1 0.67s
10−2 0.759 0.720 9.7647× 10−1 0.67s

models is the same as the number of features of datasets due to the above
choice of the data-encoding feature map. The final measurement M = {M0 =
I ⊗ |0〉〈0|,M1 = I ⊗ |1〉〈1|} is a local measurement performed on the last qubit.
With the binary classification task, the loss function we choose is binary cross-
entropy: − 1

N

∑N
j=1 cj · log c̄j + (1 − cj) log(1 − c̄j)), where N is the size of the

batch fixed in the training process, cj is the true label and c̄j is the outcome
of the measurement. All models are well trained and achieve around 70% train
and test accuracy (see Column “Accuracy” in Table 1), matching that of the
previously used classical and quantum finance decision models (e.g. [10,21]).

Evaluation Details and Results: The results of evaluating Algorithm 1 on
the models trained from different datasets and different quantum noises are
presented in Table 1. For different datasets, we train noise-free models to serve
as the baseline for training and test accuracy (see Row “None”). Furthermore,
different types of noise are added with different levels of probabilities. We list
the Lipschitz constant K∗ and the running time of Algorithm 1 aided by NumPy
for each column. It can be seen that the higher level of noise’s probability, the
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smaller value of constant K∗. Therefore, the claim of quantum noise improving
fairness in Section 4.2 is confirmed by the numerical results. This is also observed
in Table 2 later.

6.2 Scalability in the NISQ era

Models: To reflect an actual application in the NISQ era, we choose not to ran-
domly generate a parameterized quantum circuit model. Instead, we expanded
the existing example of Quantum Convolutional Neural Network (QCNN) [32]
in the QCNN tutorial9 of TensorFlow Quantum from 8 qubits (see Fig. 3) to 27
qubits. In the experiment, we use the QCNN model with one convolution layer
and one pooling layer. The noise is applied between convolution and pooling
layers on each qubit. The final measurement is M = {M0 = I ⊗ |0〉〈0|,M1 =
I ⊗ |1〉〈1|} performed on the last qubit with a gate U appended before. Since
training a noisy model of this size is currently intractable on TensorFlow Quan-
tum, the parameters in the model are all randomly sampled.

C1
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C4

C5

C6

C7

C8

C8

P1

P1

P2

P2

P3

P3

P4

P4

C9

C10

C11

C12

C12

P5

P5

P6

P6
U

MConvolution Pooling Fully
Connected

· · ·

Fig. 3: The QCNN model in the tutorial of TensorFlow Quantum. Each Ci in the
convolution layer is a parameterized 2-qubit gate to find a new state between
adjacent qubits. Each Pi in the pooling layer is also a parameterized 2-qubit gate
with another form that attempts to extract the information of two qubits into a
single qubit.

Evaluation Details and Results: We choose the models with 25 and 27
qubits to run experiments. Since the parameters are randomly sampled, for each
noise with different levels of probability, we generate the model and evaluate
the Lipschitz constant K∗ for 3 times. However, because a 225× 225 or 227× 227

complex matrix consumes a huge amount of memory, it is not feasible to directly
use Algorithm 1 as the previous experiment, where we represent the MA in
Algorithm 1 as a matrix and use the package NumPy to evaluate eigenvalue.
We instead use a tensor network [48] to represent the MA and the subroutine
of evaluating eigenvalue in Algorithm 1 is implemented with the basic power
9 https://tensorflow.google.cn/quantum/tutorials/qcnn

17

https://tensorflow.google.cn/quantum/tutorials/qcnn


Table 2: Experimental results of Lipschitz constant K∗ of QCNN models.
#Qubits Noise Evaluation I Evaluation II Evaluation III

type probability K∗ Time K∗ Time K∗ Time

25

None 1.0000 \ 1.0000 \ 1.0000 \

Phase flip
10−4 0.9998 2.15m 0.9997 1.92m 0.9999 2.12m
10−3 0.9983 1.71m 0.9982 1.35m 0.9987 1.10m
10−2 0.9865 1.75h 0.9870 54.49m 0.9831 39.07m

Depolarizing
10−4 0.9998 2.22m 0.9998 1.59m 0.9998 2.38m
10−3 0.9985 2.46m 0.9980 1.62m 0.9982 2.04m
10−2 0.9824 2.33m 0.9802 2.53m 0.9809 1.77m

Bit flip
10−4 0.9997 1.74m 0.9998 1.60m 0.9999 2.15m
10−3 0.9986 2.44m 0.9980 1.80m 0.9991 2.37m
10−2 0.9943 1.78h 0.9854 20.78m 0.9919 49.36m

Mixed noise
10−4 0.9998 3.68m 0.9998 1.34m 0.9998 1.94m
10−3 0.9980 1.66m 0.9966 2.06m 0.9983 0.96m
10−2 0.9901 37.24m 0.9861 1.95h 0.9759 6.03m

27

None 1.0000 \ 1.0000 \ 1.0000 \

Phase flip
10−4 0.9999 6.75m 0.9998 7.34m 0.9998 8.62m
10−3 0.9980 6.66m 0.9977 9.55m 0.9981 6.56m
10−2 0.9896 7.64m 0.9839 54.12m 0.9709 4.45m

Depolarizing
10−4 0.9998 6.10m 0.9998 6.89m 0.9998 6.77m
10−3 0.9981 4.51m 0.9985 5.34m 0.9978 21.75m
10−2 0.9809 1.20h 0.9767 6.48m 0.9773 8.48m

Bit flip
10−4 0.9998 6.52m 0.9999 5.39m 0.9999 6.86m
10−3 0.9986 4.38m 0.9984 7.96m 0.9971 10.37m
10−2 0.9917 5.03h 0.9894 4.15h 0.9854 3.90h

Mixed noise
10−4 0.9998 6.67m 0.9998 5.19m 0.9997 10.39m
10−3 0.9976 7.06m 0.9976 5.91m 0.9986 6.62m
10−2 0.9806 7.70m 0.9850 7.98m 0.9881 6.02h

method for eigenvalue problem [49] by using TensorNetwork package. Although
there are some packages for sparse matrix in Python that can collaborate with
TensorNetwork, their implementation for computing eigenvalues still consumes a
huge amount of memory. The evaluation results on QCNN models with randomly
sampled parameters and different quantum noises are listed in Table 2. These
results prove that our fairness verification algorithm is efficient and can handle
27-qubit quantum decision models on a small server. For further exploring the
scalability of our verification algorithm, we also test on 29-qubit QCNN models;
Please see Appendix D in [37] for the results.

Last but not least, it is worth noting that in all experiments, we also obtain
bias kernels by Algorithm 1 at the running time presented in Tables. 1 and 2,
but as they are large-size (up to 227-dimensional) vectors, we do not show them.

7 Conclusion

In this work, we initiate the studies on algorithmic verification of fairness of
quantum machine learning decision models. In particular, we showed that this
verification problem can be reduced to computing the Lipschitz constant of the
decision models, and then resolved the latter by introducing and estimating sin-
gle measurement distinguishability. Based on these theoretical results, we devel-
oped an algorithm that can verify the (ε, δ)-fairness of quantum decision models
and provides useful bias kernels for explaining the unfairness of the models.
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An interesting topic for future research is how to improve the results pre-
sented in this paper for training quantum decision models with fairness guaran-
tee. On the other hand, further investigations are required to better understand
the bias kernels detected by our verification algorithm, especially through more
experiments on real-world applications.
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