
EasyChair Preprint

№ 614

Getting started on Co-Emulation: Why and How

to Transition your Design and UVM Testbench to

an Emulator

Jigar Savla

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 31, 2018

	

	

Pre-print	version.	To	be	published	in	IEEE	
Conference	 Proceedings.	 ©	 Jigar	 Savla,	
Member	IEEE	

	

	

	

Getting	started	on	Co-Emulation:	Why	and	How	to	
Transition	your	Design	and	UVM	Testbench	to	an	

Emulator	

	
	

Jigar	Savla	
IEEE	MTV18,	Austin	

	
Juniper	Networks	
Sunnyvale,	CA,	USA	

	
jigar.savla@gatech.edu	

	
	
	

ABSTRACT	
As	we	move	to	more	complex	and	intricate	designs,	time	spent	in	testing	is	ever	crucial.	With	
several	avenues	to	test	our	design,	we	have	to	pick	and	choose	best	ways	to	optimize	the	overall	
time	spent	on	testing.	
In	our	endeavor	to	move	some	test	benches	and	designs	to	Emulation,	we	learnt	several	things	
that	could	be	optimized	from	TestBench	(TB)	setup,	Design	changes	to	even	SVA	changes	to	
achieve	better	simulation	performance.		
We	also	identified	the	kinds	of	tests	and	the	nature	of	test	benches	to	run	on	Emulation	that	
would	give	the	most	ROI.	
In	this	paper,	we	start	with	an	overview	and	then	boil	down	to	some	code	samples.	Then	we’ll	
dig	into	things	to	be	mindful	of,	in	making	effective	use	of	the	emulator	platform.	
	 	

Page	2	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

Table	of	Contents	
1.	Introduction	..	4

1.1	Short	walkthrough	of	the	paper	...	4

2.	Why	Emulation?	..	4
2.1	Goal:	TB	Speedup	...	4
2.2	Goal:	Software	/	Driver	Bringup	..	5
2.3	Tests	which	are	great	candidates	to	be	run	on	an	Emulator	...	6

3.	Architecture	..	6
3.1	Architecture:	Timed	and	Untimed	sections	and	DPI-C...	6
3.2	SCE-MI2	modes	of	communication	...	7

4.	Porting	and	Optimizations...	7
4.1	Design	Porting	and	optimizations	...	8
4.2	TestBench	Porting	and	Optimizations	..	9

4.2.1	Key	principle	..	9

4.2.2	How	Vif++	uses	SCE-MI2	modes	of	communication	underneath	...	9
4.2.3	Virtual	Interface++	...	9
4.2.4	Typical	Driver	...	10

4.2.5	Typical	Monitor	...	11
4.2.6	Typical	Sequence	..	12

5.	Summary	of	Coding	Guidelines	..	12
6.	Miscellaneous	things	seen	in	TB	/	Design	..	13

6.1	Mimicing	atomic	multiple	register	reads	in	passive	mode:	..	13
6.2	Block	or	system	configuration:	..	14

7.	Planning..	14
7.1	Timeline	...	14

8.	Results	...	16

9.	Conclusions...	16
10.	Acknowledgements	...	16
11.	References	..	16

	

Table	of	Figures	
Figure	1:	Reaching	the	TB	speedup	promise	land	..	5

Figure	2:	SCE-MI2	Modes	of	communication	..	7
Figure	3:	Example	code	for	synopsys	translate	on	off	...	8

Page	3	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

Figure	4:	Virtual	Interface++	code	example	...	10
Figure	5:	Driver	code	example	..	11
Figure	6:	Monitor	example	..	12

Figure	7:	Timeline	..	15

	

Table	of	Tables	
Table	1	:	Software	/	Driver	Silicon	Bringup	options	...	5
	
	 	

Page	4	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

1.	Introduction		
As	we	move	to	more	complex	and	intricate	SoC	designs,	test	time	is	ever	crucial.	With	several	avenues	
to	test	our	design,	we	have	to	pick	and	choose	the	best	ways	to	optimize	the	testing	and	time	spent.	
Emulation	 stands	 out	 as	 a	 way	 to	 improve	 your	 testing	 time,	 though	 the	 porting	 process	 is	 not	
seamless.	

1.1	Short	walkthrough	of	the	paper	
In	this	paper,	we	start	with	an	overview,	the	reasons	why	emulation	is	awesome.	Understand	the	
architecture.	Understand	the	industry	standards	in	this	frontier.	

Then	boil	down	to	some	code	samples,	then	things	to	look	out	for	and	finally	how	to	plan	effectively.		

We’ll	also	cover	guidelines	to	help	make	your	process	smooth	and	rewarding.	

We’ll	come	up	with	an	improved	Virtual	Interface	(Vif++)	to	help	us	in	our	porting	process.	As	we	
know,	a	virtual	interface(Vif)	is	a	shared	piece	of	code	between	components	in	an	interface.		

For	 purposes	 of	 this	 document,	 the	 term	 Emulator	 is	 used	 interchangeably	 with	 any	 simulator	
capable	of	executing	RTL	or	gate-level	models,	including	software	HDL	simulators.	Highest	speedup	
will	be	for	hardware	based	ones	and	that’ll	be	our	focus	for	this	document.		

2.	Why	Emulation?	
To	verify	complex	designs	we	now	have	several	tools	at	our	disposal	such	as	Simulators,	Emulators,	
SVAs,	functional	coverage	and	Formal	verification.	All	of	them	target	different	aspects	to	bring	us	
closer	to	the	ultimate	goal	of	getting	bug-free	design	as	fast	as	possible.	

With	proper	planning	and	effort,	Emulators	can	help	speed	up	runtimes	in	the	order	of	5x-1000x	or	
more	compared	to	CPU	based	RTL	simulation	(Level	1	performance	in	Fig1)	.	

2.1	Goal:	TB	Speedup	

Page	5	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

	
Figure	1:	Reaching	the	TB	speedup	promise	land	

	

In	Figure	1,	we	show	the	time	consumed	by	TB	and	RTL	at	various	performance	levels	and	how	it	
compares	to	the	ideal	goal	the	industry	is	aiming	for.	This	paper	discusses	optimizations	to	get	closer	
to	the	ideal	goal.		

2.2	Goal:	Software	/	Driver	Bringup	
An	 essential	 part	 of	 improving	 overall	 product	 development	 time	 is	 an	 improved	 bringup	
environment	for	Software	prior	to	actual	chip	delivery	in	the	lab.	Software	bringup	is	anything	which	
needs	as	close	to	silicon	functionality	for	developing	or	testing	driver,	software	and	systems.	

With	Software	bringup	/	driver	development,	the	options	available	for	target	design:		

	
OPTIONS	 PROS		 CONS	

CYCLE	ACCURATE	SIMULATOR	 No	need	to	maintain	a	special	code	
base	

Level	 1	 performance,	 relatively	
slow.	Overkill	sometimes.		

SIMPLIFIED	 /	 ABSTRACT	
MODEL	

Very	fast	and	can	be	customized	to	
consumer’s	(SW	/	Drv)	tastes	

Need	 to	 maintain	 a	 separate	 a	
code	base	

EMULATOR	 Fast,	no	separate	code	base	 Some	 maintenance	 needed,	 but	
lower	than	the	other	options.	

Table	1	:	Software	/	Driver	Silicon	Bringup	options	

	

Page	6	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

2.3	Tests	which	are	great	candidates	to	be	run	on	an	Emulator	
We	found	that	performance,	 long	running	tests	which	have	already	undergone	significant	cleanup	
(high	level	of	testing	and	running	clean	for	some	time)	in	simulation	are	great	candidates.	

• Performance	tests:	Tests	that	may	need	to	be	run	for	long	periods	of	time	to	get	an	accurate	
measure	of	performance.	

• Long	running	tests:	Tests	which	do	resource	or	memory	exhaustion,	aging	(any	element	in	
the	design	which	has	a	timeliness	property	to	it),	system	reconfiguration	tests,	hot	banking,	
recycling	used	objects.	

• Reproduced	‘wedges’:	‘Wedges’	are	tests	where	several	things	have	to	happen	together	and	
can	take	some	time	to	reach	a	triggering	state.	These	kind	of	scenarios	are	typically	hard	to	
hit	or	find	at	level	1	performance	(ref	Figure	1:	Reaching	the	TB	speedup	promise	land).	

• Host	 interface	 connectivity	 checked	 very	 quickly	 by	 being	 able	 to	 quickly	 run	 a	 test	 that	
touches	every	register	in	the	design.		

• Infrastructure	check	 test	 (with	 IOs)	–	Tests	which	check	 for	 connectivity	within	blocks	or	
SoCs,	ring	test,	etc.	You	can	get	any	custom	IOs	integrated.	Encrypted	Verilog	is	not	easily	
handled,	so	you	might	have	to	create	fake	behavioral	model	to	replace	it.		

Remember	 that	 in	 emulators,	 you	 generally	 have	 support	 for	 only	 two	 state	 values.	 Tests	which	
depend	on	‘X’	and	‘Z’	values,	are	better	checked	using	X-prop	and	Formal	solutions.		

3.	Architecture	
To	ensure	 consistency	across	 generations	and	vendors	 it’s	 best	 to	 follow	 industry	standards.	For	
Design	 and	 Verification	 language,	 we	 have	 SystemVerilog[2].	 For	 DV	 libraries	 we	 have	 UVM.	
Fortunately,	in	Emulation	too	there’s	an	interface	working	group:	Accellera’s	SCE-MI2	[1].	Leading	
Emulation	vendors	support	the	SCE-MI2	transactor	approach.		

Before	we	dig	into	the	SCE-MI2	standard,	lets	understand	the	architecture.		

3.1	Architecture:	Timed	and	Untimed	sections	and	DPI-C	
We	 call	 the	 untimed	 sections	 as	 HVL	 (Hardware	 Verification	 Language)	 domain	 and	 the	 timed	
sections	as	HDL	(Hardware	Description	Language)	domain.	In	this	section	‘time’	implies,	simulation	
time:	which	advances	RTL	simulation.	Most	UVM	Testbench	code	sits	in	the	untimed	domain.	We	can	
think	of	Testbenches	as	executing	 in	zero	simulation	 time.	Drivers	and	monitors	are	 the	primary	
exception	as	they	drive	data	with	respect	to	clock	edges.		

Designs	are	obviously	timed	or	clock	edge	aware.	There	is	even	untimed	code	which	sits	in	modern	
designs:	Concurrent	SVAs[8]a	and	some	Functional	Coverage.		

DPI:	 As	 defined	 in	 the	manual	 [2]:	 “DPI	 (Direct	 Programming	 Interface)	 is	 an	 interface	 between	
SystemVerilog	 and	 a	 foreign	 programming	 language.	 It	 consists	 of	 two	 separate	 layers:	 the	
SystemVerilog	 layer	 and	 a	 foreign	 language	 layer.	 Both	 sides	 of	 DPI	 are	 fully	 isolated.	 Which	
programming	language	is	actually	used	as	the	foreign	language	is	transparent	and	irrelevant	for	the	
SystemVerilog	side	of	this	interface.”	

DPI	communication	is	one	of	the	central	ideas	used	to	separately	execute,	yet	synchronize	the	timed	
(HDL)	and	the	untimed	(HVL)	domain.		

	

Page	7	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

3.2	SCE-MI2	modes	of	communication	
There	are	three	primary	modes	of	SCE-MI2	communication,	for	more	details	refer	[1]	–		

1. Function	based	–	Functions	(leveraging	DPI	–	C)	providing	mid	level	abstraction.		
2. Macro	based	–	Message	passing	 interface	 intended	to	be	used	 in	several	use	cases	and	by	

different	groups	of	users.	
3. Pipe	based	-	A	transaction	pipe	is	a	construct	that	is	accessed	via	function	calls	that	provides	

a	means	for	streaming	transactions	to	and	from	the	HDL	side	

Function	based	is	the	easiest	to	implement.	

	
Figure	2:	SCE-MI2	Modes	of	communication	

One	Source	of	slowdown	may	be	the	communication	between	timed	(HDL)	domain	and	the	untimed	
(HVL)	domain.	

4.		Porting	and	Optimizations	
As	long	as	we	ensure	the	HVL	and	HDL	side	transactors	are	SCE-MI2	compatible,	we	have	won	most	
of	the	battle.	Of	course,	that’s	easier	said	than	done,	so	let’s	see	what	it	takes.		

Emulation	 gets	 it’s	 major	 speedup	 from	 the	 fact	 that	 it’s	 running	 on	 FPGAs,	 and	 other	 such	
accelerators	mapped	to	hardware.	Therefore,	we	need	to	have	synthesizable	code.		

Page	8	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

Constructs	 like	 :	 class, constraint, intersect, throughout, solve, super,
within, tagged unions, rand, randc, extern	are	not	synthesizable.	This	list	is	non-
exhaustive	and	is	only	used	as	a	representation.		

4.1	Design	Porting	and	optimizations	
Design	is	built	for	synthesis,	making	it	easier	to	port.	But	when	you	start	looking	at	the	overall	picture,	
there	might	be	changes	needed	or	you	might	have	to	cut	down	on	parts	of	the	chip.	

Eg:	Multiple	clock	domains.	Analog	logic	such	as	Serdes	or	PLL’s	must	be	replaced	with	simple	digital	
models.	

Since	the	advent	of	SVAs	and	Functional	coverage	(FCov),	we’ve	had	code	added	to	Design	which	is	
typically	not	synthesizable.	This	kind	of	code	would	generally	be	guarded	by	Synopsys	pragmas	to	
avoid	 compilation	 errors	 during	 synthesis	 as	 it’s	 non-synthesizable.	 There	 exist	 syntheziable	
variants,	but	that	adds	mental	overhead	when	writing	these	SVAs.	

SVA	and	FCov:	Emulation	vendors	have	started	offering	specialized	hardware	to	take	care	of	a	sub-
set	of	SVA	and	FCov	constructs.	Refer	to	their	reference	material	to	see	if	all	of	the	constructs	used	in	
your	design	are	supported.	We	can	then	port	nearly	the	whole	RTL	code	unmodified.		

You	can	always	choose	to	not	let	this	code	run	on	your	emulator	but	then	you’ll	lose	out	on	the	test	
and	coverage	checking	which	these	functions	give.		

Eg:		

Figure	3:	Example	code	for	synopsys	translate	on	off	

Guideline:	 If	 possible,	 write	 SVAs	 with	 Synthesis	 in	 mind.	 Emulation	 vendors	 also	 respect	 the	
synopsys	pragmas,	 so	 you’ll	 have	 to	 find	 creative	ways	 to	 include	 SVAs	 and	FCovs	 in	 Emulation	
compiles	but	not	in	design	synthesis.	

Eg:		

Page	9	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

1. If	writing	an	else	statement,	can’t	use	$plusargs	but	have	to	tie	it	to	a	pin	which	can	toggle.		
2. Avoid	concurrent	statements	in	SVAs[8]a	or	guard	them	with	another	pragma.	
3. Instead	of	doing	inline	or	end	of	file	additions,	create	a	separate	file	with	your	SVAs	and	FCovs,		

So	that	you	can	create	file-lists	during	compilation.	
4. Analyze	your	SVAs	and	FCovs	for	vacuous	passes.	In	our	experience,	we’ve	seen	significant	

slowdown	happen	due	to	very	loose	trigger	mechanisms	and	antecedent	code	(like	triggering	
at	every	posedge	clk,	even	though	valid	condition	is	seen	rarely).	

5. To	reduce	state	space	issues	while	dealing	with	SVAs	and	FCov,	code	up	some	small	combo	
logic	(RTL)	to	set	the	trigger	and	counting	bits,	instead	of	having	it	all	sit	in	the	property	itself.	
This	has	helped	speed	up	our	runtimes.		

4.2	TestBench	Porting	and	Optimizations	
Clearly	this	is	the	section	where	most	time	is	going	to	be	spent	during	the	porting	process.		

Key	things	to	remember:		

1. Keep	 the	 HVL	 and	 HDL	 sections	 separate.	 Ref:	 3.1	 3.2	 Figure	 2:	 SCE-MI2	 Modes	 of	
communication	

2. Keep	the	HVL	sections	untimed.	Most	UVM	code	is	naturally	untimed.	Use	events	wherever	
time	is	needed.	We	do	this	to	avoid	needing	clocks	in	HVL	untimed	domain.	(eg:	Incorrect	
Driver	code:	Will	have	##s	instead	of	@vi.driver_cb)	

3. HDL	sections	to	not	have	any	non-synthesizable	code.	
4. Communications	to	happen	through	the	standard	interface	protocols	of	SCE-MI2,	Ref:	Figure	

2:	SCE-MI2	Modes	of	communication,	4.2.3		

To	keep,	HVL	and	HDL	sections	separate	there	are	several	approaches.	Quite	a	few	of	them,	would	
involve	breaking	the	Monitor	or	Driver	down	into	two	separate	components	which	can	communicate	
with	each	other.		

4.2.1	Key	principle	

We	take	the	approach	of	making	small	changes	in	the	monitor	and	driver	to	make	them	feel	nearly	
the	same.	Through	this,	we’ll	have	less	code	to	maintain.	As	we	know,	a	virtual	interface(Vif)	is	a	
shared	piece	of	code	between	components	in	an	interface.	Naturally,	we	can	have	the	HDL	aware	
code	sit	in	a	Vif.	We’ll	have	the	monitor	and	driver	access	functions	and	tasks	as	defined	in	the	Vif	
to	toggle	or	read	the	actual	DUT	pins.		

You	can	think	of	these	calls	to	code	within	the	Vif	as	DPI-C	calls:	Define	a	call	in	one	language,	call	
it	from	the	other	[1].	It’s	also	a	System-verilog	standard	[2]	

4.2.2	How	Vif++	uses	SCE-MI2	modes	of	communication	underneath	

Lets	look	at	some	code	samples	for	the	‘function’	approach	described	in	Section	3	of	this	paper.	
You	can	consider	the	function	/	task	call	as	the	‘transaction’	and	the	function	/	task	itself	as	the	
transactor.	[1]	

We’ll	start	with	the	interface	improvements	and	then	how	the	modified	driver	and	monitor	would	
look:		

4.2.3	Virtual	Interface++	

As	we	see	in	Figure	3,	we’ve	added	several	tasks	which	are	clock	aware	as	well	as	deal	with	the	
actual	toggling	of	the	RTL	signals.	

Page	10	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

	
Figure	4:	Virtual	Interface++	code	example	

4.2.4	Typical	Driver	

							We’ll	now	call	the	driver	related	tasks	as	we	defined	in	the	Vif	from	the	driver.	

Page	11	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

	

	
Figure	5:	Driver	code	example	

4.2.5	Typical	Monitor	

We’ll	now	call	the	monitor	related	tasks	as	we	defined	in	the	Vif	from	the	monitor.	

	

Page	12	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

	
Figure	6:	Monitor	example	

	

4.2.6	Typical	Sequence	

							Generally,	 simple	 sequences	 are	 not	 clock	 aware.	 But	 for	 complex	 sequences,	 based	 on	 your	
coding	style,	there	may	be	clock	edges	you	need	to	wait	for.	For	that,	we’d	recommend	creating	a	Vif	
handle	in	your	sequencer.	 	A	sequencer	too,	normally	wouldn’t	need	a	Vif,	but	for	the	purposes	of	
providing	task	handles	to	the	sequence,	we’ll	need	to	add	a	Vif	here.		

From	 the	 sequence	 then,	 it	 becomes	 a	 simple	 call	 to	
p_sequencer.vif.wait_one_seq_clk()whenever	you	need	to	consume	time.

Additionally,	as	you	progress	in	your	emulation	effort,	you’ll	see	that	the	interfaces	from	the	HVL	
domain	to	HDL	domain	are	not	getting	utilized	as	highly.	You’d	want	to	look	into	creating	‘aggregate	
transactions’,	which	are	just	several	transactions	bundled	and	sent	over	to	the	HDL	domain.	Then	the	
HDL	domain	driver	will	handle	the	new	bundled	transaction.		

5.	Summary	of	Coding	Guidelines	
1. Write	SVAs	with	synthesis	in	mind.	If	writing	an	else	statement,	can’t	use	$plusargs	but	have	

to	tie	it	to	a	pin	which	can	toggle.		

2. Avoid	concurrent	statements	in	SVAs[8]a	or	guard	them	with	another	pragma.	

Page	13	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

3. Instead	of	doing	inline	or	end	of	file	additions,	create	a	separate	file	with	your	SVAs	and	FCovs,		
So	that	you	can	create	file-lists	during	compilation.	

4. Analyze	your	SVAs	and	FCovs	for	vacuous	passes.	In	our	experience,	we’ve	seen	significant	
slowdown	happen	due	to	very	loose	trigger	mechanisms	and	antecedent	code	(like	triggering	
at	every	posedge	clk,	even	though	valid	condition	is	seen	rarely).	

5. To	reduce	state	space	issues	while	dealing	with	SVAs	and	FCov,	code	up	some	small	combo	
logic	(RTL)	to	set	the	trigger	and	counting	bits,	instead	of	having	it	all	sit	in	the	property	itself.	
This	has	helped	speed	up	our	runtimes.		

6. Don’t	use	##1	anywhere.	Clocking	blocks	exist	for	a	reason.	For	the	rest,	use	events.		
7. Don’t	peek	/	poke	into	the	RTL.	Have	the	Design	expose	it	as	a	register.	Each	time	a	value	is	

sampled,	it	causes	latency,	slowing	down	the	overall	emulation.	Adv:	You’ll	be	less	sensitive	
to	pipeline	/	hierarchy	changes.	Even	Software	/	Driver	folks	can	use	it	for	debug	just	like	DV	
folks	during	simulations.		

8. In	config_db,	every	time	you	have	a	set	or	a	get	with	“*”	as	your	context	or	Instance	name,	you	
are	forcing	a	search	through	the	whole	object	tree.	With	an	SoC	like	environment,	can	be	very	
expensive.	Try	to	contstrain	the	search	space.		

Great	thing	about	TB	coding	guidelines	is	that,	these	guidelines	are	also	highly	recommended	to	get	
most	performance	out	of	even	regular	simulators.	As	Amdahl’s	law	states,	a	system’s	performance	
can’t	 be	 improved	 beyond	 it’s	 slowest	 link.	 In	 these	 co-emulation	 [1]	 environments,	 Testbench	
communication	tends	to	be	the	slowest	link.		

You’ll	essentially	get	double	the	benefit	by	improving	your	coding	style:	Regular	simulations	would	
speed	up	as	well	as	less	work	when	porting	to	Emulation	environments.	

6.	Miscellaneous	things	seen	in	TB	/	Design	
• DPI	is	deprecated.	Use	DPI-C	instead.	There	maybe	code	changes	needed	in	your	DPI	call	[2]	

6.1	Mimicing	atomic	multiple	register	reads	in	passive	mode:	
Unlike	 simulation	where	 we	 can	 do	 a	 backdoor	 read	 to	 gather	 the	 state	 of	 a	 register	 set,	 in	 an	
emulation	environment	multiple	registers	in	a	set	cannot	be	read	at	the	same	time.	 	We’ll	have	to	
serialize	the	reads	just	like	on	the	real	hardware.		

By	serializing	we’ll	be	accessing	individual	registers	within	the	set	at	different	times.	A	single	register	
read	via	the	host	interface	based	on	a	ring	topology	can	consume	several	(order	of	10^4)	clocks.	This	
is	significant	time	lapse	causing	state	in	the	design	to	change	considerably,	breaking	the	intent	of	time	
grouping.	

Our	approach:	 Create	 a	 small	 synthesizable	design	 to	 go	along	with	 your	 actual	 design.	This	new	
design	module	will	be	setup	such	that,	only	one	write	to	a	register	within	this	new	design	causes	the	
design	itself	to	grab	all	relevant	fields	and	store	them	in	it’s	own	memory.		

The	 emulator	 can	 then	 read	 out	 all	 of	 this	data	 at	 a	 later	 time,	while	 still	mainintaining	 relative	
atomicity.	
Caveat	emptor:	This	does	not	work	if	the	test	bench	needs	to	react	to	a	register	value	or	needs	to	check	register	
content	on	that	cycle	–	so	this	may	require	a	change	in	verification	strategy.		

Page	14	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

6.2	Block	or	system	configuration:	
We	use	a	similar	approach	of	having	a	design	do	our	work	faster.	In	this	case,	you	can	use	the	spare	
registers	in	your	design	to	store	the	configuration	state	and	then	a	new	logic	can	read	and	program	
all	of	them	in	the	order	you	desire.			

7.	Planning	

7.1	Timeline	
Early	engagement	with	any	new	platform	or	tool	is	always	beneficial.	Based	on	our	experiences,	and	
balancing	time	and	effort	with	needs,	we	found	that	this	worked	for	us.		

Page	15	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

	
Figure	7:	Timeline	

	

	

Page	16	 Getting	started	on	Co-Emulation:	Primer	on	Why	and	How	to	Transition	
your	Design	and	UVM	Testbench	to	an	Emulator-	IEEE	MTV18	

	

8.	Results	
Our	networking	chips	don’t	have	widely	used	benchmarks	like	SPEC	for	CPUs,	ResNet	inference	for	
ML,	DL	ASICs.	What	we	do	have	our	throughput	benchmarks.		

Across	the	board,	we	saw	2-3x	improvement	in	run	times.	Our	best	improvement	was	on	the	order	
of	100x	for	a	full	fledged	UVM	TB.	Clearly,	we	have	more	room	to	improve.	

For	a	rather	barebones	UVM	TB,	we	saw	even	higher	improvement	in	run	times.		

Section	2.3	covers	our	current	top	tests	we	like	to	run	on	the	emulator.		

9.	Conclusions	
Good	 coding	 guidelines	 coupled	with	 some	 planning	 right	 at	 the	 beginning	 can	 yield	 astounding	
results.	Although,	early	functional	or	brinup	tests	have	limited	ROI,	performance	and	long	running	
tests	have	substantial	savings	on	time.	

The	level	and	ability	to	peek	into	the	RTL	during	simulations	will	vary	with	emulation	systems,	with	
some	providing	the	same	view,	while	others	require	planning	for	the	parts	of	your	design	you	wish	
to	inspect.	However,	the	raw	throughput	increase	should	more	than	compensate	for	the	extra	effort.	

10.	Acknowledgements	
The	author	would	like	to	thank	his	colleagues	:	David	Skinner,	Pradeep	Joginipally,	Rajesh	Nair	for	
their	 valuable	 inputs	 and	 help	 in	 reviewing	 the	manuscript.	Mike	 Bartley	 contributed	 as	 part	 of	
technical	committee	at	SNUG	in	reviewing	and	offering	prudent	suggestions.	

The	author	would	love	to	hear	from	readers	with	comments	and	feedback	at	emu@jigarsavla.com		

11.	References	
 	Standard	Co-Emulation	Modeling	Interface	(SCE-MI)	 Reference	Manual,	ver.	2.4,	Accellera	Interfaces	 
Technical	Committee,	November,	2016.	 	

 IEEE	1800	SystemVerilog:	 http://www.systemverilog.org/.	 	

 Understanding	the	Accellera	SCE-MI	Transaction	Pipes	–	Stickley	et	al	-	IEEE	Design	&	Test	2012	

 IEEE	802.3	Ethernet	Standard:	 http://www.ieee802.org/3/.	 	

 OSCI	TLM-2.0	Standard:	 http://www.systemc.org/downloads/standards/tlm20.	 	

 Yikes!	Why	is	My	SystemVerilog	Testbench	So	Slooooow?	-	Kampf	et	al	–	DVCon	2012		

 Are	OVM	&	UVM	Macros	Evil?	A	Cost-Benefit	Analysis	-	Erickson,	Adam	-	DVCon	2011	

 Concurrent	SVA	example:		

a. Concur_sva_example	:	assert	property	(vld	|=>	ack);	

 ‘Wedges’	 are	 tests	where	 several	 things	 have	 to	 happen	 together	 and	 can	 take	 some	 time	 to	 reach	 a	
triggering	state.	These	kind	of	scenarios	are	typically	hard	to	hit	or	find	at	level	1	performance	(ref	Figure	
1:	Reaching	the	TB	speedup	promise	land).	

