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Abstract. Fuzzy Min-Max Neural Networks (FMNN) is a single epoch
learning Pattern Classification algorithm with several advantages for on-
line learning. The information loss due to Contraction step of FMNN
leads to several improvements in literature such as MLF, FMCN etc.
These approaches do not use Contraction step and provide additional
structures in FMNN for decision making in overlapped regions overcom-
ing the problem of Contraction with the cost of an increase in training
complexity of FMNN.This work proposes a hybridization of FMNN with
kNN algorithm for achieving the ability to handle decision making in
overlapped regions without altering the structure of FMNN. Compara-
tive studies with existing approaches over benchmark decision systems
have proved the utility of the proposed kNN-FMNN approach.

Keywords: Fuzzy Min-Max Neural Network · FMNN · Fuzzy Sets ·
Neural Networks · Classification · kNN · Hybrid System · MLF.

1 Introduction

In 1965, Zadeh [16] introduced the new concept called Fuzzy sets, to manipulate
the imprecise data into the fuzzy pattern. The Fuzzy logic aims at creating ap-
proximate human reasoning that is helpful on cognitive decision making. Several
Hybrid systems were developed with Fuzzy sets combining other soft computing
models such as artificial neural networks, expert systems and genetic algorithm
etc [6, 12, 14, 18, 19].

A hybrid system like the combination of the artificial neural network with
fuzzy logic has proved their effectiveness in being helpful for real-world prob-
lems [6]. In 1992, Simpson [15] proposed Fuzzy Min-Max Neural Network (FMNN)
classifier based on fuzzy hyperboxes. The union of fuzzy hyperboxes represents
individual decision classes. A hyperbox is defined as a region in n-dimensional
pattern space characterized by minimum points, maximum points and fuzzy
membership function. FMNN learning algorithm computes the min-max points
of hyperboxes to acquire knowledge. These placing and adjustment of hyper-
boxes create a granular structure of pattern in pattern space which is useful for
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pattern classification. This method also constitutes with several salient learning
features like online learning, non-linear separability and non-parametric classifi-
cation, thus, making FMNN more flexible.

FMNN has been applied successfully in different applications such as fault
detection, lung cancer, medical data analysis, classification of music and text
classification etc. [1, 4, 9–13, 20].

However, FMNN is facing problems due to contraint of the size of hyperboxes
and contraction process which may lead to gradation error in classification [8,
17]. Several developments have been proposed for FMNN in order to overcome
its limitation and for enhanced classification.

In 2000, Gabrys et al. [7] proposed a generalization and extension based
on FMNN known as General Fuzzy Min-Max Neural Network (GFMNN) that
incorporates a significant modification on conventional FMNN with the new
fuzzy membership function and hyperbox expansion criteria. But they used the
same contraction process as FMNN that tempered the acquired knowledge in
the boundary region causing gradation error in classification.

Many researchers have achieved an innovative way to exclude the contraction
process to retains overlapping information for better pattern classification. In
2004, Bargiela et al. [2] proposed a new classifier known as Inclusion/Exclusion
Fuzzy Hyperbox classifier (EFC) using an inclusion hyperboxes that includes
input patterns belonging to the same class, and exclusion hyperboxes (erroneous
hyperboxes) that includes input patterns in a confusion region of a different class.
However, this method resulted in the reduction in classification accuracy owing
to the removal of exclusion hyperboxes.

In 2007, Nandedkar et al. [8] introduced a novel concept called Fuzzy Min-
Max Neural Network classifier with Compensatory Neuron Architecture (FMCN).
This method can protect the min-max points of confusion overlap region to en-
hance the learning algorithm as this information is highly significant for pattern
classification. Although this method did not allow the overlapped hyperboxes to
be expanded for next time which tends to increase in cardinality of hyperboxes,
thus increasing the time and space complexity.

In 2007, Zhang et al. [17] proposed a new approach called as Data Core Based
Fuzzy Neural Network (DCFMN) to overcome the limitation in FMCN with the
help of geometrical centre and data core of hyperbox which can additionally
benefit to handle noisy data. Hence, this method results in high classification
accuracy than other prominent approaches like GFMNN, FMCN, EFC and also
classical FMNN. In 2014, Devtalab et al. [3] proposed a new method called
Multi-Level Fuzzy Min-Max Neural Network (MLF) classifier employing a multi-
level tree structure to classify the pattern. Each level of model operates the
smaller hyperboxes to handle the confusion region problem. It resulted in the
enhancement of classification accuracy in the boundary region compared with
existing approach GFMNN, EFC, FMCN, DCFMN and FMNN.

The above-mentioned improvement to FMNN has been obtained at an in-
creased cost of training as additional is added to the simple three-layer archi-
tecture of FMNN. This motivated us to explore for the methodology for achiev-
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ing the better classification accuracies without resorting to modification of the
structure of FMNN. The proposed work introduces hybridization of k Near-
est Neighbour algorithm in FMNN as kNN-FMNN classifier for dealing with
overlapping regions without change of Neural Network structure of FMNN. We
perform the experiments on benchmark dataset mentioned in [3] to establish
the importance of kNN-FMNN. Comparative experiments are conducted against
the existing approaches GFMNN, EFC, FMCN, DCFMN and MLF respectively
for establishing the relevance of the proposed approach.

The remaining part in this paper is organized as follows: Section 2 briefly
introduces the basics of FMNN for Classification. Section 3 gives the proposed
kNN-FMNN algorithm. Section 4 provides the experiments and analysis of re-
sults. Paper ends with the conclusion.

2 Fuzzy Min-Max Neural Network

In 1992, Simpson [15] proposed the single-pass dynamic network structure with
salient learning features as online learning, non-linear separability and non-
parametric classification, to deal with pattern classification using fuzzy systems
known as the fuzzy min-max neural network (FMNN). It is a supervised learn-
ing neural network that uses n-dimensional hyperbox fuzzy sets to represent
pattern spaces [15]. FMNN learning process creates and adjusts hyperboxes in
n-dimensions space for all decision classes in the pattern space.

(a) Hyperbox

(b) Overlapped region by two hyperboxes

Fig. 1

Each hyperbox is determined by min points, max points with corresponding
fuzzy membership function, defined as:

Bj = {X,Vj ,Wj , f(X,Vj ,Wj)} ∀X ∈ In (1)

where X is the input pattern, Vj and Wj are the minimum and maximum
points of Bj hyperbox. In is the n-dimensional unit pattern space.
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The fuzzy membership function (bj) defined in Eq. [2]:

bj(Xh) =
1

2n

n∑
i=1

[max(0, 1−max (0, γ.min (1, xhi − wji)))

+max(0, 1−max (0, γ.min (1, vji − xhi)))] (2)

where Xh = (xh1, xh2, ..., xhn) is input pattern in n dimensional space and,
Vj = (vj1, vj2, ..., vjn) and Wj = (wj1, wj2, ..., wjn) are the corresponding min
points and max points for hyperbox Bj . γ is the sensitive parameter that reg-
ulates how fast the membership decreases as the distance between Ah and Bj

increases.
FMNN training is a single epoch algorithm. For each training pattern, the

learning involves three stages: 1) Expansion 2) Overlap Test 3) Contraction Pro-
cess of Hyperboxes. During the training phase, when an input pattern enters into
the network, the network tries to accommodate into one of existing same class
hyperbox that gives full membership value. Otherwise, the network attempts to
find the closest same label hyperbox which have the highest membership degree.
The input pattern attempts to expand the particular hyperbox, bounded by ex-
pansion criteria given in Eq. [3]. The range of user-defined parameter theta in
Eq. [3] is (0 < θ < 1) and controls the volume of hyperbox.

n∑
i=1

(max(wji, xhi)−min(vji, xhi)) ≤ nθ (3)

When the condition in Eq. [3] is satisfied, the Hyperbox expands to incor-
porate the input pattern by adjusting the min and max points by using the
equations [4] and [5].

vnewji = min(voldji , xhi) ∀i = 1, 2, 3, . . . , n. (4)

wnew
ji = min(wold

ji , xhi) ∀i = 1, 2, 3, . . . , n. (5)

If the condition Eq.[3] is not satisfied, a point hyperbox is created with min-
imum and maximum value same as the input pattern.

After the expansion process, the overlap test [15] examines the overlap for
the expanded hyperbox with all hyperboxes of other decision classes. Two hyper-
boxes don’t overlap as long as there is at least one dimension at which they are
not overlapping. If there is an overlap in all dimensions, then the test determine
the dimension at which the smallest overlap occurs. If overlap test results in
identifying the dimension having the smallest overlap, the contraction steps [15]
adjust the hyperboxes along that dimension resulting in non-overlapping hyper-
boxes.

For example in Fig. [1b], both hyperboxes have overlapped in all dimen-
sions. Overlap test determines that the least overlap exist horizontal dimension.
The contraction step adjusts the hyperboxes along this dimension and resulting
adjusting hyperboxes are given with a bold outline.
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In testing an FMNN for a given test pattern x, the fuzzy membership of x into
all the hyperboxes is computed. The test pattern x is classified to the decision
class corresponding to the hyperbox achieving highest fuzzy membership.

3 Proposed kNN-FMNN algorithm

Classical FMNN algorithm [15], described in section 2, results in non-overlapping
among the hyperbox of different classes. This results in information loss existing
in the overlapping (boundary) region and results in the possibility of objects of
one class being absolute members of hyperboxes of other class. The defuzzifi-
cation of the overlapping region affects the generalizability of the FMNN. The
existing approaches [2, 3, 7, 8, 17] dealing with the representation of overlapping
region by avoiding overlapping and contraction process, are resulting in increas-
ing the complexity of FMNN structure. The proposed kNN-FMNN approach
aims at retaining the simple structure of FMNN while having the ability to deal
with decision making in overlapping regions.

In kNN-FMNN approach, the kNN classification algorithm is used for deci-
sion making when a testing pattern falls into an overlapping region.

kNN classification algorithm doesn’t have any training phase. For every in-
put test pattern, the distance is evaluated between the test pattern with all
the training patterns. The nearest k training patterns are selected as the near-
est neighbours. Based on the classes of those k nearest neighbours, voting is
conducted, and the test pattern is characterized to majority class of nearest
neighbours. But in the presence of large training data, kNN requires significant
testing time.

FMNN gives a natural way to group the nearest objects into the granular
structure of hyperbox. So, using this we can restrict the space in which k nearest
neighbour computation needs to be performed. This aspect we are employing in
dealing with respect to overlapping region of FMNN testing algorithm.

The rest of section described the training and testing phases of kNN-FMNN
algorithms given in algorithm [1] and [2] respectively.

3.1 Training of kNN-FMNN algorithm

Let DT represents the set of the training pattern, and FM represents the FMNN
model be constructed. Initially, FM is empty, and as training proceeds, hyper-
boxes are added to the FM model extending the representation of hyperbox H
in FMNN, given in section 2.1. The index list of objects belonging to H is main-
tained in our approach. For each input pattern x belonging to DT , only the
expansion step is performed to preserve the overlapping region. In traditional
FMNN based on expansion criteria, given in equation [3], hyperbox can expand
non-uniformly in a different dimension as cumulative widths of all dimensions
needs to be less than nθ. This can result in a narrow strip of hyperboxes along
few dimension and found to be unsuitable for decision making with respect to
kNN. To overcome this, we have adopted the modified expansion criteria given
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by Gabriel et al. [7] in their work on General Fuzzy Min-Max Neural Network
for Clustering and Classification (GFMNN). For a hyperbox H with V and W as
min and max points, and x as the input pattern, the modified expansion criteria
is given in Eqn. [6].

∀i=1...n(max(wji, xhi)−min(vji, xhi) ≤ θ (6)

This modified expansion criteria bounds every width of hyperbox on each di-
mension by θ and helps in generation of more uniform hyperboxes found suitable
for kNN based decision making.

Algorithm 1: Training of kNN-FMNN

Input : DT:Training Samples, γ, θ
Output: Learning Model FM

1 Let FM: FMNN model (Initial empty);
2 for every x in DT do
3 if FM.Belong(x) == True then
4 H = FM.HMemb(x);
5 FM.Save(H,x);

6 else
7 H = FM.HMemb(x);
8 if H exist then
9 if ExpH(x) == True then

10 FM.Expand(H,x);
11 FM.Save(H,x);

12 else
13 FM.Create(x);
14 FM.Save(H,x);

15 end

16 else
17 FM.Create(x);
18 FM.Save(H,x);

19 end

20 end

21 end
22 Return FM

For every training pattern x, the method Belongs(x) finds fuzzy membership
value of x with all hyperboxes pertaining to class of x using equation [2] and
determine whether there exists a hyperbox giving full membership of one to x.

Belong(x) = {∃h ∈ HBS | Membh(x) == 1 & class(x) == class(h)} (7)

where HBS represents a set of hyperboxes.
If Belongs(x) is true, x is added to the hyperbox giving the full membership

without resulting in any modificaiton of hyperbox. Otherwise using HMemb(x)
the hyperbox H giving the highest membership is obtained. In case of the exis-
tence of such H, if expansion criteria are satisfied the hyperbox H is expanded
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using equation [4] and [5] and object x stored as a member of resulting hyperbox.
In case of expansion criteria not being met, or no hyperbox of a corresponding
class existing, a point hyperbox is created using Create(x), and x is added to
the point hyperbox created.

3.2 Testing of kNN-FMNN Algorithm

Let DS be a set of testing sample. For every testing pattern x in DS, we compute
the fuzzy membership value with all hyperboxes in FM. Because the overlap-
ping among hyperboxes is allowed in the training phase, it is possible to obtain
absolute membership of 1 to multiple hyperboxes. The absMemb(x) returns all
the hyperboxes giving full membership. If this set is empty, then the testing
pattern is not belonging to any of hyperboxes and decision is taken like tra-
ditional FMNN testing by assigning the decision class corresponding to nearest
hyperbox. In case absMemb(x) return a non-empty collection of hyperboxes then
the purity of collection is examined. The resulting collection is pure if only if
all hyperboxes correspond to a single decision class and in which case, without
ambiguity that class is assigned to the testing pattern. In case of impurity ob-
jects belonging to all this hyperboxes collected in LocalSet function and kNN
is performed locally for determining the decision class of x. The descriptions of
functions used is given below:

absMemb(x) = {h ∈ HBS | Membh(x) == 1}: Collection of hyperboxes which
have full membership for the object x.

pure(absMemb(x)) = {∀h1, h2 ∈ absMemb(x) | class(h1) == class(h2)}: Col-
lection of all hyperboxes that containing x correspond to same decision class.

Members(h): Collecting the objects belonging to hyperbox h.
LocalSet(absMemb(x)) =

⋃
h∈absMemb(x)(Members(h)).

knnlocal(LocalSet(absMemb(x)), x): applying kNN methods on selected ob-
jects.

Algorithm 2: Testing of kNN-FMNN Algorithm

Input : DS: Testing Samples, Learning Model FM, k
1 for every x in DS do
2 Compute fuzzy membership of x with all hyperboxes of FM model;
3 if |absMemb(x)| > 1 then
4 if pure(absMemb(x)) == True then
5 Classify x as absMemb(x).class ;
6 else
7 HO = LocalSet(absMemb(x)) ;
8 Classify x using knnlocal(HO, x).class

9 end

10 else
11 Classify x to highest membership hyperbox class
12 end

13 end
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4 Experiments

4.1 Performance comparison with MLF [3] approach.

For evaluating the performance of kNN-FMNN, we have adopted the experi-
mentaion model given in [3] for MLF algorithm. In [3], MLF algorithm’s per-
formance was compared with popular variants of FMNN such as FMNN [15],
GFMNN [7], EFC [2], FMCN [8] and DCFMN [17] in the aspects of average
mis-classification, average number of hyperboxes produced and computational
time given in milliseconds. The experiments were conducted on a synthesized
and standard datasets. Furthermore, The stratified 3-fold cross-validation tech-
nique was performed on the original dataset to comprehend the model’s ability.
The original dataset was partitioned into three subsets. In each iteration, one
group was retained for the testing part and, the remaining two groups were used
for training the model. This validation continues for three times (in each fold).

Table 1: Benchmark Datasets
Dataset Attributes Objects Decision Classes

Iris 3 150 3
Breast Cancer 30 569 2
Glass 9 214 6
Ionosphere 32 351 2
Thyroid 21 7200 3
Wine 13 178 3
Parkinson 22 195 2
Ozone Layer 72 1848 2
Spambase 57 4597 2

In this paper, we have conducted experiments on kNN-FMNN following the
same procedure given in [3]. The system configuration used for our experiments is
CPU: Intel i5 7500, Clock Speed: 3.40GHz × 4, RAM: 8 GB DDR4, OS: Ubuntu
16.04 LTS 64 bit and Software: Rstudio Version 1.1.456. The configuration for
experimentation in [3] for MLF and associated algorithms is CPU:core 2 dual,
Clock Speed: 1.3 MHz and Ram: 4GB.

The experiments are conducted on nine benchmarks numeric dataset, col-
lected from the UCI machine learning repository [5] which were used in MLF [3]
experimentation. The description of numeric datasets used is shown in Table [1].
The synthesized datasets used in [3] were not experimented because of unavail-
ability of datasets. Here, we employed different expansion criterion (theta = 0.2
and 0.3) on kNN-FMNN with γ as 0.4 and ‘k’ in kNN is set to 3.

All experiment results of the kNN-FMNN with other FMNN methods are
listed in Table [2]. The results given for MLF and associated algorithms are
reproduced from [3] for comparison. The best result under each category for
each dataset is shown in boldface.
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Table 2: Comparative Experiment Results

Dataset Method
Classification (%) No. of Time

Max Min Average Hyperbox (ms)

GFMNN 81.33 96.67 86.33 37.5 175
EFC 88.67 96.67 91.31 42.0 54
FMCN 90.00 97.33 92.76 63.6 44

Iris DCFMN 92.11 97.33 94.66 37.7 50
MLF 95.33 97.33 96.33 56.3 60
kNN-FMNN(θ = 0.2) 94.0 96.0 94.66 22.3 20
kNN-FMNN(θ = 0.3) 94.0 98.0 96.0 13 15

GFMNN 55.51 95.74 78.35 154 1586
EFC 58.44 94.27 79.34 183 629
FMCN 68.58 95.30 83.16 244 472

Breast Cancer DCFMN 84.15 95.74 90.54 190 416
MLF 93.69 96.48 95.59 227 1451
kNN-FMNN(θ = 0.2) 94.66 96.82 96.13 164 700
kNN-FMNN(θ = 0.3) 94.70 96.85 95.6 79.6 347

GFMNN 43.48 66.67 49.79 56 583
EFC 35.27 66.63 42.53 89 115
FMCN 29.47 66.63 41.26 394 96

Glass DCFMN 29.47 66.67 39.97 77 114
MLF 56.04 68.12 60.32 227 225
kNN-FMNN(θ = 0.2) 60.56 76.05 65.91 49 41
kNN-FMNN(θ = 0.3) 56.33 69.01 63.54 35.6 33

GFMNN 42.74 89.46 68.93 120 2163
EFC 33.33 87.46 62.12 150 424
FMCN 46.15 89.46 78.43 271 329

Ionosphere DCFMN 79.54 93.45 87.77 132 448
MLF 83.76 93.45 89.30 184 909
kNN-FMNN(θ = 0.2) 88.03 91.45 90.02 146.6 399
kNN-FMNN(θ = 0.3) 87.17 90.59 88.88 121.3 308

GFMNN 30.59 85.39 61.37 57 345
EFC 74.89 90.87 85.30 66 116
FMCN 74.89 90.87 85.78 116 94

Thyroid DCFMN 74.89 93.17 89.76 66 103
MLF 75.34 94.52 90.88 72 152
kNN-FMNN(θ = 0.2) 94.72 95.29 94.86 327 16542
kNN-FMNN(θ = 0.3) 94.12 94.37 94.26 255 13811

GFMNN 85.00 96.67 92.91 129 817
EFC 92.22 96.67 94.47 133 234
FMCN 92.22 97.33 94.47 183 160

Wine DCFMN 92.22 97.33 94.53 124 127
MLF 92.22 97.33 94.61 133 274
kNN-FMNN(θ = 0.2) 93.33 100 96.08 91 95
kNN-FMNN(θ = 0.3) 93.33 100 96.64 55.6 63

GFMNN 76.41 82.97 80.83 98 786
EFC 40.77 78.97 74.66 111 256
FMCN 40.77 82.56 75.54 207 216

Parkinson DCFMN 67.70 83.08 78.97 99 265
MLF 77.95 84.10 83.49 111 302
kNN-FMNN(θ = 0.2) 87.69 96.92 92.30 81.6 163
kNN-FMNN(θ = 0.3) 86.15 96.92 91.79 53.3 109

GFMNN 41.66 92.16 79.84 929 61481
EFC 77.13 92.95 87.38 1031 27221
FMCN 90.05 92.87 91.89 2759 30850

Ozone Layer DCFMN 73.79 92.60 87.51 988 24694
MLF 89.92 92.78 91.12 1314 49699
kNN-FMNN(θ = 0.2) 96.80 96.42 97.41 1034.6 28436
kNN-FMNN(θ = 0.3) 96.94 96.75 96.32 531 14208

GFMNN 39.90 83.39 54.15 293 86696
EFC 43.21 81.04 56.78 700 12988
FMCN 67.67 86.91 75.42 4982 6310

SpamBase DCFMN 71.95 86.91 80.70 693 98644
MLF 82.89 89.39 88.41 7614 76929
kNN-FMNN(θ = 0.2) 89.29 88.31 88.68 550 12686
kNN-FMNN(θ = 0.3) 87.40 90.14 89.21 254.3 4974
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4.2 Analysis of results

The computational complexity of FMNN training algorithm is proportional to
the cardinality of hyperboxes created. In addition to the cardinality of hyper-
boxes, the cost of complex structures such as a compensatory neuron, exclusion
hyperboxes and hierarchical layers in algorithms like FMCN, DCFMN and MLF
increases the complexity. The computational time reported in table [2] validates
the same as kNN-FMNN achieved training much lesser time compared to MLF
and other approaches. The computational efficiently of kNN-FMNN is due to
adapting FMNN with only the expansion step and also achieving much lesser
cardinality of hyperboxes compared to other approaches.

From Fig. [3], it is observed that the average number of hyperbox creation is
less than other FMNN methods except for thyroid dataset because of sparsity in
the dataset. As the number of hyperboxes created thyroid dataset is more, the
computation training time is higher only for this dataset.

Fig. [2] depicts the experimental result of classification accuracy. It is ob-
served that in all the datasets, kNN-FMNN with theta (0.2 or 0.3) achieved
similar or better classification accuracy compared to MLF and other approaches.

kNN-FMNN has achieved significantly better classification accuracies in Par-
kinson, Ozone layer, Glass and Thyroid datasets. For example for Parkinson
dataset, by using the kNN-FMNN algorithm with user-defined parameter (θ =
0.2), obtained 92.3% of average classification accuracy with 81 average number
of hyperboxes creation respectively, whereas MLF gave 83.49% accuracy along
with 111 hyperboxes.

We have experimented kNN-FMNN with several theta (θ) values, and all
the results were not reported due to space contraint. It is observed that for
less theta values such as 0.02, the cardinality of hyperboxes is huge and for
high theta values such as 0.9, the cardinality of hyperboxes is less in the cost of
misclassification. The best result (minimization of the cardinality of hyperboxes,
maximation of classification accuracy) are obtained for theta values between 0.2
to 0.3, and the same is recommended.

5 Conclusion

Several improvements were proposed for the Fuzzy Min-Max Neural Network
to overcome limitations arise due to contraction step. These extensions have re-
sulted in adding additional complexity to FMNN thus increasing the training
time. This work proposed kNN-FMNN as hybridization of FMNN with kNN for
overcoming the contraction step in FMNN. The proposed approach resulted in
building the classification model with a fewer number of hyperboxes and achiev-
ing good classification accuracy by utilizing kNN locally for disambiguating clas-
sification decision in the overlapping region. The experimental results have es-
tablished that kNN-FMNN achieved better classification accuracy than existing
approaches such as MLF, FMCN, DCFMN, EFC, GFMNN in less computation
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Fig. 2: Comparison of Average Classification Accuracy

Fig. 3: Comparison of Average Hyperbox Size

time. In future, attempts will be done for proposing parallel and distributing
kNN-FMNN for achieving scalability in large-scale decision systems.
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