
EasyChair Preprint
№ 13986

Towards Automated Algorithm Selection for Link
Prediction

Lienke Brown and Stephan Nel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 15, 2024



Towards automated algorithm selection for link
prediction

L.M. Brown1[0000−0001−5361−4688] and G.S. Nel2[0000−0002−0293−1234]

1 Stellenbosch Unit for Operations Research in Engineering, Department of
Industrial Engineering, Stellenbosch University, South Africa

22941096@sun.ac.za
2 Stellenbosch Unit for Operations Research in Engineering, Department of

Industrial Engineering, Stellenbosch University, South Africa
gsnel@sun.ac.za

Abstract. Link prediction represents an important field within net-
work science which involves the systematic (i.e. algorithmic) prediction
of missing edges within a graph-based representation. In this study, the
seminal algorithm selection problem is formally proposed and formulated
for the domain of link prediction so as to facilitate the automated selec-
tion of algorithms. More specifically, a regression-based meta-learning
approach is proffered, the aim of which is to approximate the relation-
ship between algorithmic performance and graph-based features, thereby
facilitating data-driven algorithm selection. The study’s contributions in-
clude an appropriate formalisation of the algorithm selection problem for
link prediction, together with the extraction of informative graph-based
features as well as the generation of algorithmic performance in respect of
various prominent link prediction approaches. A suitable meta-learner is
trained with respect to the aforementioned meta-data in order to induce
automated algorithm selection. Feature importance is also carried out so
as to identify pertinent graph-based features in respect of the predictive
task at hand. It may be inferred from the results that the meta-learner
showcases admirable predictive capabilities in respect of diverse network
data sets. Decision support in respect of link prediction algorithm se-
lection may be induced — a novel and significant contribution to the
domain of link prediction.

Keywords: Link prediction · Algorithm selection · Meta-learning.

1 Introduction

A network represents an effective approach towards abstracting the conceptual
interconnectedness of objects that constitute a system. Networks are therefore
foundational when attempting to model problems within various domains such
as biology, sociology, and information technology [7, 23, 62]. Modelling (and sub-
sequently analysing) networks by means of appropriate representational and
computational techniques can result in important insight at different levels of
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abstraction, ranging from the low-level dynamics of the system’s individual ele-
ments to the high-level disposition of the system (as a whole) [62].

A graph represents the mathematical approach towards abstracting (i.e. mod-
elling) networks which subsequently enables the computational representation
and analysis thereof. A graph-based representation typically comprises a set of
so-called vertices, together with a set of distinct edges [30]. These vertices and
edges correspond to the objects and connections (i.e. relationships) within a
network, respectively.

One of the most prevalent tasks within the multi-disciplinary field of network
science is the systematic (i.e. algorithmic) prediction of links3 within a network.
This established task (or problem) is formally referred to as link prediction [39].
Links that are to be predicted may be regarded as missing links (due to erro-
neous representation) or latent links (which are yet to manifest temporally). Link
prediction has been successfully applied to various domains, for example social
networks, drug interaction networks, transportation systems, and recommender
systems, to name but a few [3, 4, 37].

A key challenge associated with the task of predicting links accurately and
in an automated (data-driven) manner relates to the importance of constructing
a predictive model that incorporates various contextual features or properties.
These network features ought to be informative in respect of different levels of
abstraction, i.e. properties pertaining to individual nodes and their local neigh-
bours, or properties describing the arrangement of multiple nodes in a more
global context.

The diversity and complexity of networks have necessitated a broad range
of link prediction algorithms which can be generally classified into similarity-
based, classifier-based, and network embedding approaches [65]. The character-
istic structure of three real-world networks, i.e. citation networks, infrastructure
networks, and social networks, is visualised in Figure 1. The evident diversity of
network structural characteristics may be observed.

No universal algorithm excels across all networks, as posited by the No Free
Lunch (NFL) theorem [42, 64]. Consequently, link prediction algorithms ought
to be carefully selected based on the structural characteristics of a network as it
can significantly influence their algorithmic performance [15, 20, 65].

The prevailing diversity of link prediction algorithms and the distinct struc-
tural properties of different networks collectively induces the well-established
algorithm selection problem (ASP) which was first proposed by John Rice in
1976 [49]. Rather than adopting some haphazard approach towards algorithm
selection (which typically relies on rudimentary heuristics or some arbitrary in-
tuition), a more structured, standardised, and systematic approach towards ASP
is warranted so as to facilitate high-quality link prediction analyses in respect of
different algorithmic approaches and diverse network problems [57].

3 The term “link” refers to a network connection (or graph edge) and is ubiquitous
within the domain of link prediction — this terminology is henceforth adopted in
this paper.
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(a) Citation network (b) Infrastructure network (c) Social network

Fig. 1: Network visualisations showcasing differences in network structural char-
acteristics of (a) a citation network, (b) an infrastructure network, and (c) a so-
cial network [19].

Problem characterisation is a manifestly important facet of the ASP, as it
involves the identification and extraction of correlative problem features from
which inferential relationships are to be approximated in respect of algorith-
mic performance prediction. Successful ASP approaches should comprehensively
address these aspects by incorporating diverse problem instances, computable
features, algorithm suites, and performance metrics [57].

It is proffered that the domain of link prediction — accompanied by the di-
versity of algorithms and distinct network structural properties — is well-suited
for the application of a generic and systematic algorithm selection approach.
Inherent network characteristics (such as community structure, degree distribu-
tion, and assortativity, to name a few) represent informative features in respect
of problem characterisation. Analysing and synthesising these network features
together with, more importantly, their impact on algorithmic performance can be
instrumental towards designing an automated (data-driven) algorithm selection
approach.

Numerous studies in the literature have explored automated feature extrac-
tion techniques towards improving the effectiveness of predictive learning al-
gorithms by means of algorithm selection — a general categorisation of this
domain is meta-learning [8, 22, 32]. In the context of meta-learning, knowledge
is gleaned from a collection of meta-examples (problem instances), each of which
comprises their respective meta-features (problem characteristics) and the corre-
sponding performance achieved by one or more algorithms, called base-learners.
Conceptually, a so-called meta-learner is tasked with approximating the func-
tional mapping from meta-features to algorithmic performance in a supervised
learning manner — a predictive model may therefore be constructed that can
aid in the selection of an appropriate algorithm for a new problem instance.

One prevalent meta-learning strategy involves the application of a regression-
based learning model which aims to predict some numerical performance metric
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(e.g. prediction error) of a base-learner in respect of a problem instance based on
its meta-features. Various regression techniques, including linear regression [58]
and decision trees [54], can be employed towards this end.

In this paper, a regression-based meta-learning approach is proposed for au-
tomated link prediction algorithm selection. The meta-learner is trained in re-
spect of a diverse suite of network data sets, characterised by various network
features, to which a broad range of base-learners are applied. The aim of the
proposed methodology is to enhance link prediction quality by systematically
selecting algorithms based on network characteristics and historical algorithmic
performance data. The primary contributions can be summarised as follows:

– The ASP is formalised within the domain of link prediction which represents
a structured basis on which various numerical experimentation is carried out.

– A comprehensive suite of benchmark network data sets is curated which
represents a robust evaluatory foundation in respect of the considered link
prediction algorithms.

– A diverse set of network structure features is proposed which effectively
characterise various network data sets so as to facilitate informed algorithm
selection.

– The construction and computerised implementation of a regression-based
meta-learner is detailed from which key insight is inferred.

– An analysis of feature importance in respect of the meta-learning predictive
task.

The remainder of this paper is organised as follows. A brief review of lit-
erature related to link prediction and algorithm selection is first presented in
Section 2. Section 3 contains the formalisation of the link prediction algorithm
selection problem. The computerised implementation — encompassing the meta-
learning model, link prediction base-learners, meta-features, and benchmark data
sets — is then outlined in Section 4. The experimental results are discussed in
Section 5. The paper concludes in Section 6 with a summary of its contents and
recommendations for future work.

2 Literature review

This section contains literature related to link prediction algorithm selection. In
particular, the following topics are discussed: A formal description of the link
prediction problem, a taxonomy of link prediction algorithms, and an elucidation
of algorithm selection.

2.1 Link prediction

In network science, link prediction refers to the task of predicting missing (or
latent) connections between nodes within a network [39]. Mathematically, let
G = (V, E) denote a graph comprising n vertices and m edges, with vertex set
V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. The set of non-existing
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edges (i.e. non-adjacent vertex pairs) is denoted by Ê = {ê1, ê2, . . . , êm̂}, where
m̂ = n(n−1)

2 −m. Let U denote the set of all possible edges (often referred to as the
universal set) which may be expressed as U = E ∪ Ê = {e1, . . . , em, ê1, . . . , êm̂}.
For simplicity, let ui denote a possible edge in U , where ui corresponds to ei
for i ∈ {1, . . . ,m}, while um+j corresponds to êj for j ∈ {1, . . . , m̂}. Therefore
U = {u1, u2, . . . , um+m̂}.

A labelled data set D is defined according to which instances are assigned
binary labels yi for each edge ui, where yi = 1 if ui ∈ E , and yi = 0 if ui ∈ Ê .
Feature vectors xi, capturing both local and/or global structural information of
the graph, are associated with the end-vertices of ui. Each feature vector com-
prises h network features. The data set D therefore comprises data instance pairs
(xi, yi), from which a binary classification problem may be induced. The task
of a link prediction algorithm therefore involves approximating the functional
mapping f : Rh → {0, 1} according to which a feature vector xi is mapped to a
label yi, i.e. yi = f(xi) for all (xi, yi) ∈ D. The manner according to which the
function f is approximated depends on the algorithmic approach adopted (dis-
cussed later). Conventionally, a fraction p of the data set D is randomly sampled
in order to construct the training set Dtrain, comprising p(m + m̂) instances,
while the remaining 1− p fraction constitutes the test set Dtest.

A large number of link prediction algorithms (i.e. the base-learners) have
been reported in the literature, each of which may be characterised by distinct
strengths and weaknesses in respect of diverse network characterisitcs and ap-
plication domains [21]. These algorithms can be broadly classified according to
three paradigms: Similarity-based, classifier-based, and embedding-based meth-
ods [65]. Discussions regarding each of these categories are presented hereafter.

Similarity-based The working of similarity-based link prediction algorithms
is based on the calculation and assignment of a so-called similarity score be-
tween a pair of vertices, denoted by S(vi,vj) for vertices vi and vj [39]. This
score is employed towards approximating the likelihood of a potential edge be-
tween the vertex-pair — a large score is indicative of link existence (and vice
versa). These scores utilise network topology in order to estimate the similarity
between vertices, such as the number of common neighbours shared by a pair of
vertices [39]. After scores are computed in respect of each vertex-pair under con-
sideration, they are ranked, after which some classification threshold is typically
applied in order to establish a suitable heuristic for link prediction. Similarity-
based algorithms are typically categorised as follows: Neighbour-, path-, and
random walk-based measures [65].

Classifier-based Link prediction may be contextualised by means of a ma-
chine (or statistical) learning formulation, according to which different features
of the network may be utilised towards predicting link formation. This approach
was first pioneered by Al-Hasan et al. [28] who formulated the link prediction
problem as a supervised classification task, according to which the considered
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data set comprises independent input variables (i.e. descriptive network fea-
tures) together with the target dependent variable (i.e. binary-valued class in-
stances) [35]. This binary classification task is amenable to various supervised
learning approaches [28]. Typical classifiers implemented for link prediction in-
clude: Decision trees [54], random forests [11], logistic regression [31], gradient
boost [18], and multi-layered perceptrons [50], to name a few.

Embedding-based The construction of a so-called embedding involves the
abstraction of the essential structural and/or feature information of a vertex,
edge, or even an entire subgraph into a fixed-size, real-valued vector [27]. More
formally, given a graph G = (V, E), the task of generating network embeddings is
akin to learning the functional mapping f : vi 7→ ri ∈ Rw, where ri denotes the
real-valued vector representation of vertex vi for i ∈ {1, . . . , n}, and w denotes
the dimensionality of the embedding space [66]. Two popular embedding-based
categories include random walks and graph neural networks (GNNs) [65], each
of which necessitates distinct modelling approaches.

Random walks generate embeddings based on the notion that vertices that
tend to appear together in random walks4 tend to share similar properties and
should therefore have similar5 embeddings [24, 44]. The effectiveness of these al-
gorithms are predicated on the notion that node neighbourhoods are sufficiently
informative in respect of link formation [62]. GNNs, on the other hand, involve
the construction of embeddings by learning layered abstractions from feature
information of a vertex’s local and global neighbourhood, thereby leveraging the
graph’s structure in order to generate informative representations [67].

Embedding-based approaches vary in respect of their algorithmic working.
Certain approaches involve the calculation of link probabilities directly [66],
whilst other approaches generate vertex embeddings (during training) from which
probabilities may be derived. Common techniques include the application of sim-
ilarity measures between vertex embeddings, e.g. dot products, so as to estimate
link probabilities. Another popular approach involves concatenating embeddings
of vertex pairs, i.e. (rj , rk), so as to form an edge feature vector [24, 59].

2.2 Algorithm selection

The ASP, first introduced by Rice in 1976 [49], is based on the selection of
the most suitable algorithm (from a set of available algorithms) in respect of
some problem class [10, 57]. The so-called per-instance ASP represents a special
case of the ASP, according to which the most suitable algorithm is selected in
respect of a specific problem instance (rather than selecting an algorithm based
4 A random walk may be defined as a type of walk in which successive vertices (or

edges) are selected randomly according to some probability distribution — it is
important to note that vertices (or edges) can be revisited (or retraced) unless some
condition is imposed [44].

5 Similarity corresponds to closeness based on some distance metric, e.g. Euclidean
distance.
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on expected performance aggregated across all instances of a problem class). A
fundamental assumption is that features (or characteristics) can be extracted
from each problem instance and subsequently employed towards governing the
selection process. A formal elucidation of the per-instance ASP follows.

Let P denote the set of problem instances, i.e. the problem space, where
an individual problem instance is denoted by p ∈ P. Let A denote the set of
available algorithms, i.e. the algorithm space, where an individual algorithm
that can be applied to solve instances within P is denoted by a ∈ A. Let ϕ(p)
denote the feature extraction function, i.e. ϕ : P 7→ Rh, according to which each
problem instance p ∈ P is mapped to a feature vector ϕ(p) in h-dimensional real
space. Furthermore, let fa(p) denote an algorithmic performance measure (e.g.
accuracy or compute time) of algorithm a with respect to problem instance p.
The performance measure represents the objective function to be maximised or
minimised, depending on the task at hand. The per-instance ASP may therefore
be formulated as the task of approximating the mapping function s : Rh 7→ A.
An optimal selector function, denoted by s∗, should therefore select an algorithm
a = s∗(ϕ(p)) that maximises the performance measure for any problem instance
p, denoted by fs(ϕ(p)), which may be described mathematically as

argmax
s

fs(ϕ(p))(p), (1)

or, in a minimisation context,

argmin
s

fs(ϕ(p))(p). (2)

The task of approximating a high-quality mapping function, denoted by ŝ,
may be contextualised as a supervised learning problem, i.e. the functional rela-
tionship between problem features and algorithmic performance is to be learnt
algorithmically based on historical (algorithmic performance) data [1, 60]. When
presented with a new (unseen) problem instance p′ /∈ P, the learnt mapping
function ŝ “predicts” the best performing algorithm, denoted by â, based on the
extracted features, i.e. â = ŝ(ϕ(p′)), which is expected to maximise (or minimise)
fâ(p

′).
The following terminology is adopted in this paper: An algorithm a ∈ A is

called a base-learner; problem features ϕ(p) are called meta-features; the task of
approximating an appropriate mapping function s is called meta-learning; and,
finally, the approximated mapping function ŝ is called a meta-learner. Further-
more, it is assumed that the set of problem instances P (i.e. problem space)
represents the entire training set, while p′ denotes a new (unseen problem in-
stance, therefore p′ /∈ P). The algorithms to be selected (i.e. a ∈ A) may also
include some machine (or statistical) learning models, therefore the aforemen-
tioned learning task is referred to as meta-learning, i.e. learning to learn [8].
The evidential utility of machine learning algorithms in respect of many use
cases certainly warrant their application to meta-learning [33, 41].



8 L.M. Brown and G.S. Nel

3 Problem formulation

Algorithm selection for link prediction may be contextualised within the confines
of the ASP. In the context of link prediction, the problem instances p ∈ P
correspond to link prediction problems (i.e. network data sets). The available
algorithms a ∈ A (i.e. base-learners) correspond to the various link prediction
algorithms (as discussed in Section 2.1). The network meta-features obtained
from ϕ(p) relate to network structure features, such as the number of vertices and
edges, density, average clustering coefficient, modularity, average path length,
average degree, and measures related to node centrality. These features ought
to be informative in respect of the inherent structure of the network in order to
facilitate the task of learning inferential relationships between these features and
algorithmic performance. Metrics for performance evaluation fa(p) correspond
to popular classification metrics, such as area under the receiver operating curve
(AUROC), area under the precision-recall curve (AUPRC), and other pertinent
evaluatory metrics, such as computational expenditure (i.e. compute time).

The different steps that constitute a per-instance link prediction ASP are
proffered as follows:

1. Meta-feature extraction: Extract relevant network structure meta-features
from each problem instance p ∈ P by means of ϕ(p).

2. Base-learner performance evaluation: For each network p ∈ P, imple-
ment the selection of link prediction algorithms a ∈ A, and measure the
algorithmic performance achieved, i.e. fa(p).

3. Meta-learning data set construction: Aggregate the computed features
ϕ(p) and the link prediction algorithm performance metrics fa(p) into a
tabular meta-data set.

4. Formulate meta-learning problem: Specify the nature of the predic-
tive task to be performed. Various formulations may be considered, such
as univariate and multivariate regression as well as binary and multiclass
classification.

5. Meta-learner training: Train the regression (or classification, depending
on the adopted meta-learning formulation) meta-learning algorithm(s) on
the meta-data set, during which the aim is to construct a predictive meta-
learner ŝ that can accurately predict the dependent variable(s), i.e. fa(p),
based on the independent variables, i.e. ϕ(p), for all p ∈ P.

6. Base-learner algorithm selection: For an unseen problem instance p′,
derive its meta-features by means of ϕ(p′) and employ â = ŝ(ϕ(p′)) so as to
determine the most suitable link prediction algorithm a (based on expected
performance).

7. Meta-learner performance evaluation: Apply the selected link predic-
tion algorithm â to p′ and evaluate its performance fâ(p

′).

4 Methodology

In this section, the methodology employed towards demonstrating link prediction
algorithm selection, which is predicated on the problem formulation proposed in
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Section 3, is elucidated. First, the meta-learning modelling approach is presented
which is followed by a discussion on the selection criteria adopted for link predic-
tion base-learners. The meta-features included in this study are then presented,
followed by a discussion on the considered network problem instances.

4.1 Meta-learning model

In this paper, the meta-learning implementation for link prediction algorithm
selection, as formulated in Section 3, employs regression-based meta-learners.
The meta-learners are therefore tasked with predicting some numerical algo-
rithmic performance measure achieved by the link prediction base-learners. The
predicted performance metrics can then be subsequently ranked and the base-
learner corresponding to the top-ranked predicted performance is deemed the
most suitable algorithm. The focus in this paper, however, involves showcasing
the computational feasibility of predicting link prediction algorithmic perfor-
mance. Three popular regression models are employed towards this end, namely:
Linear regression [17], random forest [11], and a gradient boosting algorithm [18].

Linear regression involves abstracting the relationship between a dependent
variable and one or more independent variables by means of a linear function [17].
Random forests represent an ensemble learning method that involves construct-
ing a ‘forest’ of decision trees from which the mean prediction of the individual
trees is employed as the final prediction [11]. Random forests have demonstrated
admirable performance in respect of abstracting non-linear relationships em-
bedded within data. Finally, gradient boosting represents an advanced ensemble
technique for constructing a predictive model in a systematic (i.e. iterative) man-
ner, from which a gradient-based approach may be employed towards minimising
an appropriate loss function [18].

Hyperparameter tuning is performed in respect of the gradient boosting and
random forest models which is performed by means of a grid search approach.
The hyperparameters considered for random forest are the number of estimators
(NoE) and the maximum tree depth (MTD), while the hyperparameters consid-
ered for gradient boosting also include the NoE and the learning rate (LR). The
corresponding hyperparameter ranges for each model is presented in Table 1.
A train-test split of 80/20 is employed. Towards evaluating the performance of
regression-based meta-learners, two key metrics are employed, namely: Mean
squared error (MSE) and the R2 error.

Table 1: Hyperparameters values for the gradient boosting and random forest
regression meta-learners.
Model Hyperparameter Values
Random forest NoE [100, 200, 300]

MTD [None, 10, 20, 30]
Gradient boosting NoE [100, 200, 300]

LR [0.01, 0.1, 0.2]

In addition to the primary analysis, this study also incorporates the appli-
cation of SHapley Additive exPlanations (SHAP) [56] so as to determine the
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(meta-)feature importance with respect to the meta-learners. SHAP is a game
theory-based approach towards effectively interpreting predictive models accord-
ing to which feature contributions (in respect of final predictions) are deter-
mined. The application of SHAP results in additional insight with respect to
the meta-features (i.e. network structural characteristics) that are deemed most
informative towards predicting the performance of link prediction algorithms —
such insight may form the basis for improved feature engineering and subsequent
algorithm development.

4.2 Base-learners

The selection of link prediction algorithms is guided by means of consensus
within the literature and empirical observations in respect of the most widely
recognised categories of algorithms, as discussed in Section 2.1, thereby ensuring
a comprehensive representation of the prevailing approaches in the field. The fol-
lowing similarity-based algorithms are considered: The common neighbours index
(CNI) [39] and the Adamic-Adar index (AAI) [2]. In the case of classifier-based
methods, the following supervised learning algorithms are considered: Random
forests [12], decision trees [54], and logistic regression [12]. Embedding-based
methods include DeepWalk [46], Node2Vec [24], GCN [34], GraphSAGE [26],
and GAT [61].

In Table 2, the implemented hyperparameter values and associated Python
packages for each of the selected base-learners are detailed. The NetworKit [6]
package was utilised for the heuristic-based link prediction methods. The nu-
merical experiments were conducted on a MacBook Pro equipped with an Apple
M1 chip and 8GB of random access memory.

Table 2: Hyperparameters and corresponding values for the classifier- and
embedding-based methods. The relevant packages employed are also stated.
Method Hyperparameters Package
Logistic Regression Maximum iterations = 1000 Scikit-learn [45]

Decision Tree Criterion = ‘gini’, Splitter = ‘best’,
Minimum samples split = 2

Scikit-learn [45]

Random Forest Criterion = ‘gini’, NoE = 25,
Maximum features = 0.2

Scikit-learn [45]

DeepWalk Number of walks = 10, Walk length = 80,
Window size = 10, Workers = 1

Gensim [48]

Node2Vec Number of walks = 10, Walk length = 80,
Window size = 10, Workers = 1, p = 1, q = 1

node2vec [24]

GCN Input channels = Output channels = 128,
Number of layers = 2, LR = 0.001

PyTorch
Geometric [16]

GraphSAGE Input channels = Output channels = 128,
Number of layers = 2, LR = 0.001

PyTorch
Geometric [16]

GAT Input channels = Output channels = 128,
Number of layers = 2, LR = 0.001

PyTorch
Geometric [16]
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The aforementioned selection of algorithms is guided by both diversity (in
respect of their fundamental working) and their differing empirical performance
dynamics, as reported in various studies [21, 29, 39, 65]. Furthermore, the (link)
prediction task carried out by the base-learners is contextualised as a binary
classification problem — a node-pair is classified based on link presence (i.e.
positive class) or link absence (i.e. negative class). A train-test ratio of 90/10 is
employed.

Classification threshold curves are deemed suitably robust for evaluating al-
gorithmic performance [40]. The receiver operating characteristic curve (ROC) is
a popular threshold curve which plots the true positive rate (i.e. recall) against
the false positive rate at different threshold values — the AUROC quantifies a
predictive model’s performance in a unary manner and is employed in this paper
to measure the algorithmic performance of the base-learners.

4.3 Meta-features

Different computational measures have been reported in the literature towards
quantifying topological features of a network (i.e. the meta-features) which pro-
vide insight into its structural properties, upon which further analyses can be
based. An abundance of network structural measures have been reported, each of
which can abstract various facets of a network’s structure. The network structure
measures that are considered in this paper can be categorised according to gen-
eral statistics, centrality, community, clustering, connectivity and degree-based
measures6.

General statistics General statistics of a network include its size and order
which are informative indicators of its scale and complexity. The network size is
determined by the total number of vertices, while the network order corresponds
to the total number of existing edges. Additionally, the network’s density which
is the ratio between the existing edges and the maximum possible edges, offers
insight into the extent to which a network is interconnected [30].

Centrality Centrality measures involve the identification of ‘important’ vertices
within a network. Betweenness centrality quantifies a vertex’s importance based
on the number of shortest paths7 passing through it, and closeness centrality
is based on the proximity of a vertex to all other vertices within the network,
which employs the shortest path as a measure [44, 53].

6 It is important to note that some of these measures provide (based on their original
formulation) contextual insight into individual nodes, whilst other measures synthe-
sise information in respect of the overall network. Node-specific measures can be
aggregated in respect of the entire network in order to characterise the network as
a whole.

7 A path is a sequence of vertices connected by edges, where each edge is included
once and no vertex is repeated [44].
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Community Modularity quantifies the degree to which a network can be parti-
tioned into communities by analysing the proportion of edges within and between
these communities [43]. A community refers to a subset of vertices within a graph
that are more densely connected to each other when compared with other subset
of vertices. These communities often represent groups of vertices sharing similar
properties within the overall structure of the graph [44]. The number of com-
munities in a network refers to the count of denser, more connected subgraphs
within the larger graph [47].

Clustering The global clustering coefficient is a key metric in network analysis
quantifying the presence of triangles8 in a graph [44]. Additionally, transitivity
measures the extent of clustering by calculating the ratio of possible triangles to
the number of triads9 in the network [25, 55].

Connectivity Connectivity metrics include average path length which indicates
the average shortest distance between vertex pairs, and a network’s diameter,
representing the maximum shortest path between any two vertices. These met-
rics are essential towards understanding the extent to which nodes may be tra-
versed within the network. Global efficiency is another connectivity-based mea-
sure which indicates the network’s overall efficiency in information exchange and
is based on the average inverse distance between vertex pairs [30, 52].

Degree Important metrics include the average degree10 of vertices within the
network and the variance of the degree distribution which indicates the diversity
of vertex connectivity. Degree assortativity measures the tendency of vertices to
connect with other vertices that have similar degrees [9, 44].

4.4 Problem instances

Publicly available network data sets are considered in this study from which
undirected and unweighted graphs are induced. This delimitation may be as-
cribed to the ubiquity of such network problems and due to the accessibility of
such data sets. The reader is referred to [36, 38, 51] for a comprehensive collec-
tion of network data sets. A total of 220 problem instances are considered. These
network data sets are expressed by means of so-called edge lists. Additionally,
the data sets stem from a broad range of domains (such as social, biological, in-
frastructure, and citation networks) of which there are eighteen in total — this
facilitates a comprehensive analysis. Towards further enhancing the diversity of
the data sets, synthetic data sets are generated by means of various established

8 A triangle is a set of three vertices that are mutually connected by edges, i.e. each
vertex is connected to the remaining two vertices [44].

9 A triad refers to two edges with a shared vertex [25].
10 The degree of a vertex is the number of edges that are incident to the vertex [30].
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approaches, namely: Erdős-Rényi [14], Barabási-Albert [5], Watts-Strogatz [63],
and the forest-fire model [13].

Aggregation statistics relating to the network meta-features of the problem
instances are presented in Table 3.

Table 3: Aggregation statistics of network meta-features in respect of the suite
of network problem instances.

Meta-feature Mean Variance Standard
deviation Minimum Maximum

Network size 18 804.059 9.138× 108 30 229.456 39 180 000
Network order 2 959.100 1.767× 107 4 203.062 21 26 588
Density 0.059 0.015 0.121 0.000141 0.718
Clustering coefficient 0.254 0.052 0.229 0 0.808
Average path length 4.942 18.336 4.282 1.282 35.349
Average degree 19.439 1 040.995 32.264 1.734 178.880
Variance of degree
distribution 934.399 4.921× 106 2 218.489 0.350 12 722.375

Degree assortativity −0.086 0.044 0.209 −0.761 0.650
Global efficiency 0.323 0.027 0.163 0.040 0.859
Diameter 12.886 148.753 12.196 2 99
Transitivity 0.213 0.044 0.210 0 0.792
Modularity 0.577 0.059 0.243 0.0641 0.961
Number of communi-
ties 27.941 1 724.029 41.521 2 291

Average betweenness
centrality 0.011 0.001 0.026 0.000109 0.178

Average closeness
centrality 0.289 0.023 0.153 0.0138 0.789

5 Results

In this section, the findings stemming from the computational analyses carried
out are presented. First, a discussion is presented on the algorithmic performance
achieved by the base-learners, which is followed by a discussion on the results
achieved by the meta-learners. Finally, a discussion is presented on the feature
importance results from which insight is gleaned into the relationships between
network characteristics and link prediction algorithms.

5.1 Base-learners

A comparative analysis of the considered base-learners, as depicted in Figure 2,
reveals distinct performance variations across multiple data sets. The logistic
regression and random forest classifiers showcase superior performance achieving
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the largest mean AUROC scores, while GraphSAGE achieves the smallest mean
AUROC scores. Notably, similarity-based methods such as the CNI and AAI
demonstrate moderate performance indicative of their conditional effectiveness.
Furthermore, the variance showcased by the different algorithmic approaches
differs rather markedly indicative of underlying complexities.

Random forest

Logistic regression

Decision tree

CNI

AAI

GCN

GAT

GraphSAGE

Node2Vec

0.0 0.2 0.4 0.6 0.8 1.0
AUROC

DeepWalk

Fig. 2: Distribution of AUROC scores in respect of the different link prediction
base-learners. The ridge line plot illustrates the variability in AUROC scores
aggregated with respect to the 220 data sets.

These results empirically exemplify the NFL theorem in the context of link
prediction, underscoring the necessity for a systematic, data-driven approach to-
wards informed algorithm selection. The varying performance achieved by the
base-learners across network data sets emphasises the importance of assimilat-
ing network-specific characteristics and their relationship with algorithmic per-
formance. This aligns with the proposition of a regression-based meta-learning
approach towards informed link prediction algorithm selection.

5.2 Meta-learning

Hyperparameter tuning is conducted in respect of the meta-learning models by
means of a grid search approach. The resulting hyperparameter values identified
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are presented in Table 4. It should be noted that meta-learner performance
demonstrated general insensitivity to hyperparameter values.

Table 4: High-quality hyperparameters identified by means of grid search in
respect of the meta-learning models.
Link prediction algorithm Gradient boosting Random forest

LR NoE MTD NoE
CNI 0.1 300 30 100
AAI 0.1 300 20 200
Logistic regression 0.1 100 20 200
Decision tree 0.1 300 20 300
Random forest 0.1 300 20 300
DeepWalk 0.2 300 30 200
Node2Vec 0.1 200 10 200
GCN 0.01 300 None 100
GraphSAGE 0.01 300 30 100
GAT 0.01 300 None 200

After adopting the high-quality hyperparameter values, the three meta-
learners were evaluated in respect of the various base-learners and problem in-
stances. The MSE achieved by each meta-learner is presented in Figure 3. It
may be observed that the gradient boosting model consistently achieves supe-
rior performance, showcasing robustness in respect of algorithm selection across
various base-learners. Linear regression, on the other hand, performs markedly
inferior suggesting computational inadequacy when attempting to approximate
the possibly non-linear relationship between network characteristics and the per-
formance of link prediction algorithms. The random forest algorithm performs
admirably when compared with its gradient boosting counterpart. In some cases,
it performs best overall. The R2 scores, presented in Figure 4, showcase a similar
pattern with respect to the efficacy of different meta-learning models.

Variability in respect of both MSE and R2 scores across the different base-
learners is indicative of the disparate nature of the relationships between network
features and algorithmic performance. The underlying relationship is evidently
less complex to abstract, as demonstrated in the case of the two similarity-based
heuristics (i.e. CNI and AAI) and the more simplistic embedding-based methods
(i.e. DeepWalk and Node2Vec). Conversely, more complex approaches, such as
the machine learning based classifiers and the graph neural networks, present
a slightly more pronounced challenge when attempting to predict algorithmic
performance.

In summary, the meta-learner performance analysis, encompassing MSE and
R2 metrics, reveals a stratified landscape in respect of predictive accuracy. Gra-
dient boosting, achieving consistently smaller error scores and larger R2 scores,
emerge as the preferred choice due to its overall robustness. Linear regression,
which achieved larger error scores, is deemed markedly less effective in capturing
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Fig. 3: MSE achieved by the regression-based meta-learning models in respect of
the different base-learners.
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Fig. 4: R2 achieved by the regression-based meta-learning models in respect of
the different base-learners.

the relationship between link prediction algorithmic performance and network
characteristics, attributable to potentially non-linear relationships. Furthermore,
the random forest model may be deemed a high-quality counterpart to gradient
boosting, as it achieves superior performance in respect of some instances. These
results indicate the computational utility of employing ensembling-based predic-
tive models. Finally, it may be concluded that algorithmic performance may
be systematically and reliably predicted by means of appropriate meta-learners.
Such findings are, to the best of our knowledge, novel.
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5.3 Feature importance

Findings stemming from a SHAP analysis carried out are now discussed. The re-
sults are presented in Table 5. Notable variability may be observed in respect of
feature importance across different link prediction algorithms which underscores
the nuanced impact of network characteristics on algorithmic performance. No-
tably, features such as the variance of the degree, clustering coefficient, and
transivity consistently rank as top features with respect to a majority of the al-
gorithms indicative of their informative nature towards abstracting their impact
on algorithmic performance. This aligns with the intuitive understanding that
closely knit communities often play a critical role in link formation [15].

Table 5: Feature importance rankings derived from a SHAP analysis in respect
of the various base-learners and meta-features. A ranking of 1 indicates highest
importance, whereas 15 indicates the lowest importance.
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Variance of degree distribution 2 2 1 1 1 1 1 3 3 5 2.0
Clustering coefficient 1 1 3 3 2 7 3 1 2 1 2.4
Transitivity 4 5 5 6 7 3 4 4 4 3 4.5
Average degree 3 3 11 12 13 4 10 2 1 2 6.1
Degree assortativity 10 10 6 5 5 2 2 9 7 8 6.4
Modularity 8 8 2 4 3 13 7 5 8 7 6.5
Diameter 13 13 4 8 4 10 6 7 6 4 7.5
Average betweenness centrality 9 9 7 2 6 9 9 11 5 13 8.0
Network order 5 4 9 7 8 5 5 13 13 14 8.3
Network size 7 7 13 13 12 6 8 8 9 12 9.5
Number of communities 12 12 10 9 9 8 13 6 11 15 10.5
Density 6 6 14 10 14 15 15 10 12 9 11.1
Average path length 14 14 12 14 11 12 11 12 10 6 11.6
Global efficiency 11 11 8 11 10 14 12 14 14 11 11.6
Average closeness centrality 15 15 15 15 15 11 14 15 15 10 14.0

Conversely, features such as average closeness centrality, global efficiency, and
average path length exhibit lower importance rankings thereby indicating their
limited influence on algorithmic efficacy. This may be attributed to their global
nature which might not be as informative in respect of certain algorithms relying
on more localised inferential patterns in order to predict missing links (e.g. CNI
and AAI).
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The variance of degree distribution emerges as a dominant feature. This
highlights the significance of node degree variability in predicting link formation
and potentially reflecting the heterogeneity of connections in networks. Inter-
estingly, network order showcases notably varied importance in respect of the
different base-learners. Although this measure is deemed important in some con-
texts (e.g. AAI, DeepWalk, and Node2Vec), it is markedly less important in the
case of other contexts (e.g. GCN, GraphSAGE and GAT). The average degree of
vertices demonstrates the most significant variability in respect of importance —
it is deemed markedly important in respect of certain approaches, while being
inconsequential in others.

These findings further substantiate the assertion that different network man-
ifestations are suited to different algorithmic approaches — the NFL theorem
may certainly be invoked in this context. Furthermore, the utility of a systematic,
data-driven approach towards algorithm selection is demonstrated.

6 Conclusion

In this paper, a novel application of meta-learning algorithm selection was in-
vestigated in the context of link prediction. The utility of a regression-based
meta-learning approach was demonstrated, according to which link prediction
algorithms may be systematically selected based on network characteristics and
historical performance data. An in-depth analysis was carried out in respect of
multiple regression-based meta-learners, namely linear regression, random forest,
and gradient boosting. It was reported that gradient boosting and random forest
generally display predictive performance superiority, as indicated by consistently
smaller MSE scores and larger R2 scores. The main finding from this analysis
relates to the computational feasibility of predicting base-learner performance
(in respect of AUROC). Consequently, appropriately trained meta-learners may
therefore be employed towards predicting algorithmic performance in respect of
newly presented problem instances, thereby streamlining typically cumbersome
or rudimentary approaches towards algorithm selection.

A feature importance analysis based on SHAP values was also carried out,
from which the impact (and extent thereof) of certain network characteristics
on the performance of link prediction algorithms was inferred. Transitivity, clus-
tering coefficient, and variance of degree emerged as informative features. The
varying importance of features such as closeness centrality and network efficiency,
however, suggests that some global network properties may not consistently en-
hance predictive performance across different algorithms. This variation high-
lights the importance of thoughtful feature selection and algorithm application
based on the specific characteristics and structural properties of the network
being analysed.

Future work could expand the scope of this research by exploring other meta-
learning strategies (such as a classification-based approach), incorporating a
broader range of network features, and applying this approach to other net-
work problem instances. Furthermore, the development of an automated (com-
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puterised) tool for link prediction algorithm selection could significantly stream-
line additional analyses and enable other researchers to contribute towards this
promising direction by expanding upon the numerical database constructed thus
far.

In conclusion, various contributions are proffered by work carried out in this
project, the first of which relates to the furtherance of the domain of link pre-
diction by formalising (mathematically) the algorithm selection problem in link
prediction. Another contribution relates to the proposal of a comprehensive suite
of network data sets for evaluation, from which important insights into the rela-
tionships between network features and algorithmic performance may be gleaned.
The proposed meta-learning approach facilitates a structured, standardised, and
systematic approach towards enhancing link prediction. Another important con-
tribution relates to insight gained into the importance of certain meta-features
with respect to different base-learns — a preliminary basis may therefore be
inferred upon which algorithmic design and improvement may be carried out.
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