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Abstract—Because many factors related to the bearing
capacity of composite foundation of vibrating gravel piles
interact with each other, it is difficult to accurately calculate
the bearing capacity of foundation. At present, the accurate
load test method for bearing capacity of composite foundation
requires a lot of manpower and resources and takes a long time,
so it may not meet the demand of the real-time detection of on-
site construction quality and the progress of project. In this
paper, a prediction model of bearing capacity of composite
foundation based on RBF neural network is established, and it
is compared with the same model based on BP neural network.
The prediction results of two models show that the method of
predicting the bearing capacity of the composite foundation of
the vibrating gravel pile based on RBF neural network is more
accurate than that based on BP neural network, and it takes
less time to compute, which provides a new artificial
intelligence solution for the rapid design of verification for
bearing capacity of composite foundation of vibrating gravel
pile.
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I. INTRODUCTION
The soft soil foundation treatment reinforcement

technology developed rapidly in recent years, vibrating
gravel pile has been widely used in soft soil foundation
treatment of major projects at home and abroad. The bearing
capacity of the foundation refers to the load that can be
withstood by the unit area of the foundation soil. The
maximum load that can be withstood by the unit area of the
foundation soil is usually called the ultimate load or ultimate
bearing capacity [1]. At present, the static load test can be
used to calculate the bearing capacity of the foundation by
establishing a Gaussian-based prediction model or
establishing a prediction model based on wavelet neural
network [2][3][4].

The Gaussian process is a newly developed machine
learning method, and it has a good adaptability to deal with
complex nonlinear problems. By learning a small number of
training samples, this process can establish complex
nonlinear mapping relations between bearing capacity of
CFG pile composite foundation and its influencing factors.
Applying this process to engineering examples, the results
show that the Gaussian process model is scientifically
feasible. This model has high prediction accuracy, strong
applicability, adaptive algorithm parameters and easy
implementation, so it has a good engineering application
prospect.

However, because many factors related to the bearing
capacity of composite foundation of vibrating gravel piles

interact with each other, it is difficult to find an accurate
calculation formula of the bearing capacity. The current
design of the calculation of the foundation bearing capacity
results in a big error between the design value and the
measured value. At present, the accurate load test method
for bearing capacity of composite foundation requires a lot
of manpower and resources and takes a long time, so it may
not meet the demand of the real-time detection of on-site
construction quality and of the progress of project.

It is a good method to build a prediction model based on
BP network, but the parameters in it cannot be determined
easily when creating a network, and the model has a low
accuracy of results. Therefore, based on the literature [5], the
RBF neural network theory is applied to the model
construction of the bearing capacity of composite foundation
of vibrating gravel pile, and the neural network is used to
predict its bearing capacity. It can be seen that the RBF
neural network can provide a more accurate and faster
solution of artificial intelligence for the design and detection
of bearing capacity of composite foundation, which can meet
the requirements of real-time detection of on-site
construction quality and of engineering progress.

II. PRINCIPE OVERVIEW OF RBF NEURAL NETWORK

RBF network is a 3-layer forward network with a
single hidden layer: 1) Input layer X: It is composed of
signal source nodes, which only plays the role of
transmitting data information and does not make any
changes on the input information. 2) Hidden layer H: The
number of nodes depends on the specific needs. The kernel
function (action function) of neurons in the hidden layer is a
Gaussian function that performs spatial mapping
transformation of input information. 3) Output layer Y: It
responds to the input mode. The action function of neurons
in the output layer is a linear function, and the information
outputted by neurons in the hidden layer is linearly
weighted and output as the output result of the whole neural
network [6]. In essence, the RBF network can convert the
input data from the nonlinear state to linear state, making
the data linearly separable [7].

The Gaussian function is usually chosen as the radial
basis function,which is
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If there is only one output layer unit, and wn is the



weight of the output layer,the mapping relationship is
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In RBF neural network, the weight from the input layer
to the hidden layer is always 1, without learning, and the
weight from the hidden layer to the output layer is
adjustable. Usually, the supervised learning method is used
for training. The training can use the least square method [8],
or the error correction weight algorithm, that is, δ— rule
training.If η is a constant and d is the ideal output, the
formula for modifying the weight is
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The RBF neural network has a simple structure, simple
training and fast learning convergence, and can approximate
any nonlinear function. Therefore, the RBF network has a
wide range of applications such as time series analysis,
pattern recognition, nonlinear control and image processing.
A typical RBF neural network model is shown in Fig. 1.

Fig. 1. Typical RBF neural network model

III. CONSTRUCION OF RBF NEURAL NETWORKMODEL

A. Network Structure
Applying the RBF network model to predict the

bearing capacity of composite foundation of vibrating gravel
pile requires a network training process. The essence of
training is to converge the free parameters of the network to
a desired level, that is, the specific implementation of the
RBF network algorithm. In this paper, the neural network
toolbox module function of Matlab software is used to
realize this algorithm, and a prediction model of network
training based on the main influencing factors of the bearing
capacity of composite foundation of vibrating gravel pile
and of the measured bearing capacity of foundation is
established [9-11].

The main influencing factors are the same as those
mentioned in the literature [5], namely the diameter of the
pile, the effective length of the pile, the time of the vibration
retention, the dense current, the filling factor, the moisture
content, the natural density, the pore ratio, the replacement
rate, and the thickness of the cushion [12]. In this paper, the 10
main influencing factors of the bearing capacity of composite
foundation of vibrating gravel pile are taken as input, and the
characteristic value of the measured bearing capacity of
composite foundation is taken as the output to construct the
RBF network model.

B. Learning Training Samples
In this paper, the data in [5] will be used, in which the

first 20 sets of data are used as learning samples and the last
5 sets of data are used as promotional prediction samples.
The unnormalized data in learning training sample in the
training model is shown in Table Ⅰ.

TABLE I. TRAINING SAMPLE DATA (UNNORMALIZED)

(M:Measured characteristic value of bearing capacity of composite foundation /kPa)

Serial
Number

Input value of training sample

MDiameter
/m

Effecti-
ve pile
length
/m

Retenti-
on time

/s

dense
curren
t /A

filling
factor

Moist-
ure

conte-
nt /%

natural
density
/(g/cm3

）

pore
ratio

Replace-
ment rate

cushion
thickne-
ss /m

1 0.50 9.1 20 79 1.35 32.1 1.93 0.827 0.156 0.51 268

2 0.49 9.0 15 77 1.36 30.8 2.02 0.735 0.150 0.48 294

3 0.49 9.0 16 78 1.34 28.7 2.11 0.635 0.162 0.50 276

4 0.51 8.9 15 75 1.32 29.5 1.98 0.753 0.157 0.49 285

5 0.48 8.9 14 76 1.38 33.2 1.99 0.801 0.152 0.50 291

6 0.19 8.8 16 79 1.69 30.4 2.07 0.688 0.154 0.49 270

7 0.52 8.9 17 80 1.34 27.8 2.14 0.600 0.148 0.52 304

8 0.49 9.1 18 73 1.37 35.3 2.05 0.769 0.156 0.51 295

9 0.51 9.1 18 77 1.31 32.6 2.07 0.717 0.153 0.49 289

10 0.53 9.1 19 76 1.30 27.8 2.12 0.616 0.155 0.52 292

11 0.52 9.0 20 72 1.38 29.2 1.97 0.758 0.161 0.55 287

12 0.51 8.9 17 71 1.38 28.6 2.01 0.734 0.147 0.52 278

13 0.50 8.9 16 74 1.36 31.4 2.17 0.623 0.156 0.53 275

14 0.48 8.9 18 76 1.38 27.8 2.12 0.616 0.153 0.52 288

15 0.49 8.9 17 77 1.38 30.7 2.06 0.700 0.168 0.51 311

16 0.50 9.0 15 76 1.37 27.6 2.12 0.613 0.166 0.49 305

17 0.50 9.0 18 76 1.36 25.5 2.07 0.625 0.153 0.49 316

Implicit layer
of N basis
functions

Input layer Output layer



Serial
Number

Input value of training sample

MDiameter
/m

Effecti-
ve pile
length
/m

Retenti-
on time

/s

dense
curren
t /A

filling
factor

Moist-
ure

conte-
nt /%

natural
density
/(g/cm3

）

pore
ratio

Replace-
ment rate

cushion
thickne-
ss /m

18 0.52 9.2 17 78 1.36 29.4 1.99 0.749 0.158 0.52 286

19 0.52 9.1 16 79 1.37 31.3 1.95 0.805 0.162 0.51 283

20 0.51 9.1 14 74 1.39 26.5 1.92 0.766 0.157 0.53 277

21 0.49 9.1 19 73 1.33 29.8 1.98 0.770 0.163 0.48 296

22 0.50 9.0 18 75 1.38 30.6 1.97 0.777 0.169 0.50 285

23 0.51 8.9 17 76 1.37 29.5 2.08 0.762 0.175 0.49 279

24 0.49 9.1 16 77 1.35 28.7 2.14 0.751 0.172 0.51 288

25 0.49 9.0 17 79 1.39 31.5 1.96 0.789 0.166 0.51 290

IV. LEARNING AND ANALYSIS OF RBF NETWORKMODEL

A. Input Data
The neural network toolbox module of Matlab software

writes the program according to the RBF network algorithm
flow, and learns the data of the first 20 training samples in
Table Ⅰ. In order to prevent big difference in the value of
input data of the training samples, thus making convergence
speed of the RBF neural network too slow and the
generalization ability of the network reduced, the training
sample data in Table 1 needs to be normalized. The standard
normalization formula is

minmax

min'
XX
XXX i
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Here iX is the measured value of the input/output
vector in the sample data; axXm is the maximum value of the
input/output vector in the sample data; inXm is the minimum
value of the input/output vector in the sample data.

The program we use to normalize P and T respectively
according to the row is

[pn, minp, maxp, tn, mint, maxt] = prenmx(p, t).

B. Distribution Density (Spread) σ Selection.
We use Matlab R2016a to train the RBF network

model. The first 20 samples were used as training samples
for the RBF network to establish an RBF network model.
The main code used in the program is

net=newrb(pN,tN,0,1.0,20,1).

That is to establish an RBF network with a target error
of 0, a distribution density of 1.0, a maximum number of
hidden layer neurons of 20, and each time adding 1 neuron.

Different distribution densities σ of the radial basis
function will lead to different RBF network models. If the
setting of σ is too large, a large number of neurons in the
hidden layer are needed to satisfy the rapid change of the
hidden layer function; but if the setting of σ is too small, it
requires a lot of neurons in the hidden layer to satisfy the
slow change of the hidden layer function. In this case, the
performance of the network is very bad. So we will set σ
here to 0.4, 0.6, 0.8, 1.0 and 1.2 to see how they affect the
network accuracy. The relative errors between the predictive
values and the true values of the last five sets of samples of
the RBF network model with different values of σ are shown
in Table Ⅱ.

TABLE II. RELATIVE ERROR AT DIFFERENT DISTRIBUTION DENSITIES

Serial number spread=0.4 spread=0.6 spread=0.8 spread=1.0 spread=1.2

1 -0.0337 -0.0449 -0.0171 -0.0179 -0.0246
2 0.0036 -0.0073 0.0141 0.0050 0.0025
3 0.0252 0.0136 0.0455 0.0513 0.0554
4 -0.0069 -0.0184 0.0096 0.0054 -0.0106
5 -0.0137 -0.0252 0.0030 0.0004 -0.0100

Absolute value mean 0.0166 0.0219 0.0179 0.0149 0.0188
By comparing and analyzing Table Ⅱ, it is found that

we can obtain the minimum value of relative error when the
distribution density σ is 1.0. Therefore, we establish an RBF
network with a target error of 0, a distribution density σ of
1.0, a maximum number of neurons in hidden layer of 20,
and each time adding 1 neuron.

C. Comparison with BP Network Results
The choice of hidden nodes has not been unified

analytically so far when establishing a BP neural network.
In order to reduce the learning time and system complexity,
and to obtain the number of hidden units with the best result
when the sample set and the convergence criteria are the
same, the number of hidden nodes is often determined by

the experience of predecessors and own experiments. The
following are the common formulas of the predecessors:
assume that there are n input neurons, m output neurons and
n1 neurons of the hidden layer. Then n1 can be calculated by

121  nn , (6)

nn 21 log (7)

or

amnn 1 ， (8)

here a is a constant between 1 and 10.



By putting in enough hidden units first, and then
gradually removing the hidden units that are not working by
learning, until the non-shrinkable, we can also obtain n1.

By using the above common formulas to determine the
number of hidden units in the BP network, the number of
hidden units can be selected as 11, 3, 4, 6, and 8 to observe
their influences on network accuracy. The relative error
between the predictive value and the true value of the last
five sets of samples of the BP network model with different
values of number of hidden units is shown in Table Ⅲ.

TABLE III. RELATIVE ERROR OF DIFFERENT HIDDEN UNITS IN BP
NETWORK

Serial number 3 4 6 8 11

1 -0.0206 -0.0310 -0.0275 -0.0306 0.0453

2 0.0172 0.0591 0.0356 0.0029 -0.0351

3 0.0391 0.0812 0.0578 0.0258 0.1260

4 0.0458 0.0291 0.0248 -0.0511 -0.0302

5 -0.0049 -0.0109 -0.0123 0.0024 -0.0341
Absolute value

mean 0.0255 0.0981 0.0316 0.0226 0.0541

According to the analysis of Table Ⅲ, the relative error
obtains the minimum value with 8 hidden units. The BP
neural network is thus established. The main procedure is

net=newff(minmax(P),[8,1],{'tansig','purelin'},'trainl').

That is to establish a BP neural network with the

number of hidden units of 8, the transfer functions of hidden
layer and output layer of tansig and purein respectively, and
the weight learning function of trainlm.

Therefore, we can compare the prediction results of the
RBF neural network and the BP neural network. The
prediction results are shown in Table Ⅳ.

TABLE IV. COMPARISON OF RBF AND BP NETWORK PREDICTION
RESULTS

Serial
numbers

Measured
value/kPA

Predictive
value/kPA

Relative
error/%

1 296 290.7135 -0.0179

2 285 286.4282 0.0050

3 279 293.3110 0.0513

4 288 289.5465 0.0054

5 290 290.1134 0.0004

It can be seen from the analysis of Table Ⅳ that the
relative error of prediction results using the RBF network is
smaller than that of the BP network, and it takes less time to
calculate. Therefore, the RBF neural network has a better
predictive effect on the bearing capacity of composite
foundation of vibrating gravel piles.

D. Analysis of RBF Neural Network Results
Using the established RBF neural network model, the

last five sets of sample data in Table 1 are input to predict
the bearing capacity of composite foundation of vibrating
gravel pile. The comparison between the predictive values
and the measured values is shown in Table Ⅴ.

TABLE V. COMPARISON OF PREDICTIVE AND MEASURED VALUES OF RBF NETWORK SAMP

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Absolute value
mean time /s

Relative error of
BP network
prediction /%

-0.0306 0.0029 0.0258 -0.0511 0.0024 0.0226 2.9130

Relative error of
RBF network
prediction /%

-0.0197 0.0050 0.0513 0.0054 0.0004 0.0149 1.6710

According to Table Ⅴ, the maximum relative error
between the predicted values obtained by the RBF neural
network and the measured values is 0.0513%. The model has
high precision and can meet the requirements of engineering
design, indicating that using RBF neural network to predict
bearing capacity of composite foundation of vibrating gravel
pile is completely feasible.

V. CONCLUSION
In this paper, a prediction model of bearing capacity of

composite foundation based on RBF neural network is
established. The prediction results of the model show that
this model has higher prediction accuracy than the model
based on BP network and fully meets the engineering
requirements. It is feasible and more suitable to use the RBF
neural network to predict the bearing capacity of composite
foundation of vibrating gravel pile. This provides a new
artificial intelligence solution for the rapid design of
verification for the bearing capacity of composite
foundation of vibrating gravel pile.
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