
EasyChair Preprint
№ 4327

Fuzzy Genetic Algorithm Approach for
Verification of Reachability and Detection of
Deadlock in Graph Transformation Systems

Nahid Salimi, Vahid Rafe, Hamed Tabrizchi and Amir Mosavi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 8, 2020

Fuzzy Genetic Algorithm Approach for Verification

of Reachability and Detection of Deadlock in Graph

Transformation Systems

Nahid Salimi

Department of Computer Engineering,

Faculty of Engineering, Arak

University, Arak, Iran

n-salimi@phd.araku.ac.ir

Amir Mosavi

Kalman Kando Faculty of Electrical

Engineering, Obuda University

Budapest, Hungary

amir.mosavi@kvk.uni-obuda.hu

Vahid Rafe

Department of Computer Engineering,

Faculty of Engineering, Arak

University, Arak, Iran

 v-rafe@araku.ac.ir

Hamed Tabrizchi

Department of Computer Science,

Shahid Bahonar University

Kerman, Iran

0000-0001-9250-2232

Abstract— model checking techniques are often used for the

verification of software systems. Such techniques are

accompanied with several advantages. However, state space

explosion is one of the drawbacks to model checking. During

recent years, several methods have been proposed based on

evolutionary and meta-heuristic algorithms to solve this

problem. In this paper, a hybrid approach is presented to cope

with the SSE problem in model checking of systems modeled by

GTS with an ample state space. Most of existence proposed

methods that aim to verify systems are applied to detect

deadlocks by graph transformations. The proposed approach is

based on the fuzzy genetic algorithm and is designed to decline

the safety property by verifying the reachability property and

detecting deadlocks. In this solution, the state space of the

system is searched by a fuzzy genetic algorithm to find the state

in which the specified property is refuted/verified. To implement

and evaluate the suggested approach, GROOVE is used as a

powerful designing and model checking toolset in GTS. The

experimental results indicate that the presented hybrid fuzzy

method improves speed and performance by comparing other

techniques.

Keywords— fuzzy genetic algorithm, reachability property,

deadlock, model checking

I. INTRODUCTION

Today, as computer use increases, software systems have
found an important place in human life by implementing
complex operations that are impossible to do. The increment
of the using software systems leads to increase complexity.
The security concern is an essential point in the development
of software systems, especially in critical-safety systems,
where errors would cause irrecoverable disasters. In critical-
safety systems, even small mistakes can have irrecoverable

consequences. Lots of financial and human damages have
occurred due to programming errors in such systems,
including the Ariane5 shuttle explosion, the loss of the Mars
Climate Orbiter, and the overdosing patients during radiation
due to errors in the radiation control section of the device.
Model-checking techniques are applied as one of the most
accurate automatic verification methodologies that are used to
validate systems even before implementation and at the design
phase [1]. The use of this technique requires a description for
the system through a formal language [2]. One of the standard
tools applied to design and model checking the methods
specified via GTS is the GROOVE toolset, which performs
model checking by generating the entire state space of the
model. State space explosion occurs when the size of the
model increases, the memory consumption increases
exponentially.

In recent years, several approaches have been proposed to
resolve the problem of state-space explosion in the model
checking of complex systems modeled by GTS. Some of these
methods are a GA based solution [3], an approach using PSO
algorithm, and also, an algorithm based on a hybrid of PSO
and GSA [4], a method by using the combination of PSO and
BAT optimization algorithm [5], an approach based on data
mining methods named EMCDM [6], and an efficient solution
through Bayesian optimization algorithm [7]. All of these
solutions are presented to refute the safety property by finding
the deadlock state in the systems specified through GTS.

Notwithstanding the great efforts by various researchers to
verify safety property in systems specified through graph
transformations using detecting deadlocks, many aspects
related to system verification are still unsolved. One of the
properties which can be checked is the reachability property.
In this study, a new approach based on the Fuzzy Genetic
algorithm is proposed that includes two different fitness

functions. The first one is applied to refute safety property by
finding a deadlock state and the second one is presented to
verify reachability property. The previous methods, proposed
in this context, tried to detect deadlocks for ascertaining the
safety property. In this paper, the suggested approach is used
to refute safety property by verifying reachability property in
the systems modeled via GTS, as well. The proposed method
has been implemented using GROOVE, as a powerful
designing and model checking toolset, and the Java
programming language. The results of executing the proposed
approach on several great case studies are presented and
discussed. Comparing the reported results and those of other
existing methods reveals the acceptable performance of the
proposed solutions.

This paper is organized as follows: Section 2 introduces
the required backgrounds of the presented methods, such as
the structure and concepts of fuzzy systems, the details of the
fuzzy genetic algorithms, the graph transformation systems
and the model checking concepts. The proposed approach to
cope with the problem of the state space explosion is
investigated in Section 3. Section 4 describes how to design
and implement the proposed approaches. In section 5, the
suggested solutions are evaluated and, the results are
compared and discussed. Section 6 includes the performance
evaluation, and eventually, Section 7 presents the conclusion
of the paper and suggests some future researches.

II. BACKGROUND

A. Model Checking

Model Checking is a formal method for verifying the
correctness of the software systems even at design time. To
use the model checking, it is required to describe the system’s
features using a formal language [4]. The model checker
automatically explores all the state space of the system and
determines whether the given ownership of the system is
satisfied or not. Some essential properties of a system that
could be verified are the safety property, the reachability
property, the liveness property, and the fairness property.
Despite many benefits of the model checking, this technique
also has some drawbacks, for which the state space explosion
is the most important.

B. Graph Transformation System

GTS is a technique to model a system graphically based
on a mathematical and formal method [2]. An attributed graph
transformation system is specified through a triple: GTS =
(TG, HG, R), Where TG is the type graph, HG is the host
graph, and R stands for the rules.

The type graph is the meta-model of the system
represented by TG = (TGN, TGE, src, trg), in which TGN is a
set of nodes, TGE is a set of edges and src, and trg are two
functions that, respectively, assign a source and a destination
to each edge: src, trg: TGE → TGN

The host graph is a graph representing the initial state of
the system. In other words, the host graph must be a graph
morphism type graph [8]. A graph transformation rule is
defined by a triple (LHS, RHS, NAC), where the LHS, which
is a graph morphism TG, describes the pre-conditions of the
rules, the RHS, which is a graph morphism TG, describes the
post-conditions of the rules, and NAC is a special

configuration which is used to verify the non-existence of a
subgraph in the rule. The rule can be applied if NAC does not
exist in the host graph [8].

C. Fuzzy Inference System

Fuzzy logic is a mathematical-based representation of

human knowledge and experiences that was introduced by

Zadeh in 1968 [9]. A FLC consists of a Knowledge Base that

encodes the expert knowledge using a set of IF-THEN rules.

An IF-THEN rule is a conditional statement with the form:

If a set of conditions is satisfied, then a set of consequences

can be inferred [10].

A fuzzy system is composed of three basic parts: the

fuzzification process, fuzzy inference system (FIS), and

defuzzification process.

• The fuzzification part includes the definition of the

linguistic variables regarding inputs and outputs.

• The inference system includes the definition of rules that

aim to describe the system and also a mapping from input to

output using defined rules. In fact, types of fuzzy inference

systems [11] divided into two types called Mamdani’s fuzzy

systems inference method and Sugeno-type fuzzy systems

inference method [12]. The vivid difference between these

methods is their final output. The output of Sugeno ought to

be constant or linear, while the Mamdani type expects the

output membership functions to be fuzzy sets.

In fuzzy logic, imprecise values are represented by a

fuzzy set that is described through a membership function. In

fact, this function determines a degree ∈ [0, 1] to every

number x ∈ X. The membership functions for the state

variables can be triangular, Gaussian, trapezoidal or bell-

shaped.

D. The Genetic Algorithm

The genetic algorithm was first introduced by John Haled

in 1975 and then generalized by John Koza in 1992. The main

idea of the genetic algorithm is Darwin's theory of evolution.

The genetic algorithm has four main elements: Initial

population, fitness function, selection, and genetic operators.

Crossover and mutation are two genetic operators that are

used to produce a new generation.

The genetic algorithm is an iteration-based algorithm, which

creates several random solutions (chromosomes) in the first

step and generates new chromosomes from the previous

population in the next steps. In each generation, some of the

most appropriate solutions are selected to remain. Then, the

next generation will be produced by crossover and mutation

operations on selected chromosomes. This process repeats

until one of the chromosomes is the desired solution, or the

algorithm iteration is equal to the predefined maximum

generation, or the best fitness value of the population does not

improve over several successive generations [13].

E. Fuzzy Genetic Algorith

In the standard genetic algorithm, there are three

parameters necessary to be assigned with the appropriate

value at the beginning of the algorithm to find an optimum

solution. These parameters are as follows:

Crossover Rate: percentage of the chromosomes which are

chosen in each iteration for crossover operation and generate

new chromosomes.

Mutation Rate: percentage of the chromosomes which are

mutated in each iteration.

Population Size: the number of chromosomes in each

generation.

For example, when Population Size is small, the

algorithm covers a small part of the problem space, and no

good result will be achieved. While this parameter is

significant, the genetic algorithm goes slowly, and it takes a

long time to solve and optimize the problem [14].

Selecting an appropriate value for algorithm parameters is

one of the challenges of applying the genetic algorithm. In a

fuzzy genetic algorithm, these parameters are evaluated in

each iteration of a genetic algorithm through a fuzzy

inference system. However, so many types of fuzzy systems

are presented to determine the genetic algorithm parameters.

In most of these FS, parameters such as age of chromosomes,

fitness function ratio of generation, the difference between

fitness of two recent generations, the difference between

fitness of each chromosome and average fitness of the total

population, the average fitness of the previous generation and

present generation, the difference between fitness of two

generations for each chromosome, the difference between

maximum fitness and average fitness of a generation, etc. are

considered as the input of the fuzzy system. Also, in most of

the recommended fuzzy systems (more than 99%), crossover

rate and mutation rate are the outputs of the fuzzy system.

III. RELATED WORKS

There are various solutions having been proposed in order
to improve model checking techniques verifying complex
systems and dealing with a specific problem called the state
space explosion problem. There are two well-known meta-
heuristic approaches that have been intended to discover
deadlocks in the methods and refute the security property are
a framework based on reinforcement learning [15] and an ant
colony algorithm [16-18]. A new approach has been proposed
using the genetic algorithm for checking the correctness of
communication protocols in [19]. This genetic validation has
been tried on the Transmission Control Protocol and on a
hand-made contract. In [20] two different learning algorithms
have been proposed to verify safety, reachability, and liveness
properties of systems whose state space can be expressed
using regular expressions. In the other paper, an ACO-based
approach aiming to decrease the state explosion problem for
discovering deadlocks in complex networks is presented. In
fact, this approach describes a way that uses the Calculus of
Communicating Systems [21]. Two other papers [22, 23]
proposed using a type of ACO model to disprove safety and
liveness attributes in concurrent systems [3]. This approach
applies the GA algorithm on several random paths with a
particular length that starts from the initial state and finds the
first path, which leads to a deadlock state. GROOVE toolset
is used to implement this solution in order to evaluate its
performance. The other proposed approach for this problem
uses the PSO algorithm to detect deadlocks in graph
transformation systems [4]. The authors have also suggested a
hybrid algorithm based on PSO, and GSA named PSO-GSA
to avoid the local optima problem. Authors of [5] suggested a
hybrid solution based on particle swarm optimization
algorithm and a Bat algorithm called BAPSO to solve the state
space explosion problem for detecting deadlocks in systems
modeled via graph transformation. In this approach, the Bat

algorithm is used to avoid the local optima problem in PSO.
Another solution using a simple greedy algorithm called BFA
is also proposed in this paper in which a state with the
minimum outgoing transitions must be selected in each step
of exploration. These two approaches are implemented in the
GROOVE. In [6] a method is presented based on data mining
approaches called EMCDM. This method aims to fulfill the
process of model checking in complex software systems that
are designed according to a specific architectural style
(specified via GTS). The EMCDM approach aims to decline
the safety property by verifying the reachability property. In
the other research [7], three BOA-based methods (nBOA,
tpBOA, and cBOA) are presented deadlocks detecting way in
systems that are modeled by graph transformations. The
results of this algorithm indicate a noticeable improvement in
speed and accuracy.

IV. THE PROPOSED APPROACH

A. Chromosome Encoding

In the presented approach, the model checking system,
instead of examining all of the state space in order to find the
desired state, drives the search using the fuzzy genetic
algorithm toward an optimal solution. The state space is a
collection of states and transitions between them, which is
depicted as a tree called a state space tree. The main goal is to
discover the desired state in which the specified property is
verified or refuted. Each solution is a sequence of states in the
state space that starts from an initial state and traverses a set
of states and transitions to reach this final state. In this
approach, a fuzzy genetic algorithm has been used to find the
optimal path that is ended with the desired state.

Each possible solution is a path that starts from the initial
node of the graph and specifies a chromosome. Each
chromosome consists of a number of genes. In the proposed
algorithm, named FGA, each gene is a random number that is
generated between zero and the maximum number of output
transmissions in the specified problem. Figure. 1 illustrates
one example of an encoding scheme which represents a path
in a graph by a vector. In this case, the chromosome is 1, 0, 2,
1.

The sufficient length of the chromosomes is the depth of
the search in the model checking, and since the solution of
different case studies can be found at different depths, the
length of chromosomes is considered as a variable.

B. The Fitness Functions

1) Fitness Function for detecting deadlocks
What needs to be checked to confirm the safety property

is whether a desired property is satisfied on all paths and in all
states of those paths or not. There is not any particular method
to verify the safety property, but there are some solutions to
refute this property. One of these events which can refute the
safety property is occurring deadlock in the model.

Figure 1. A promising solution corresponding with chromosome 1021

Deadlock is a state with no output edges, so we can use the
strategy presented in [3] to calculate the fitness function of a
genetic algorithm. Consequently, the evaluation function,
which used to detect a deadlock, is equal to the sum of the
number of outputs having traveled through a path. The reason
for choosing this method is that as the number of outputs of a
path is lower, the probabilities of reaching the deadlock
increase. Equation (1) shows this fitness function.

𝐹(𝑥) = ∑ 𝑛𝑖

𝐿

𝑖=1

 (1)

Where L is the length of the path x, and ni is the total
number of outputs in-depth i. A path with less value of fitness
function has more likely to reach the deadlock.

2) Fitness Function to Verify the Reachability Property
To examine the reachability property, it is vivid that a

particular event happens at least once in the system. One state
might be reachable if there is at least one path from the initial
state to it. Consequently, there must be a path from the initial
state that leads to the desired state. Furthermore, a path whose
last state is quite similar to the specified reachability property
can be a promising path, which may quickly reach the
solution. For this reason, to verify this property, we use a
similarity function that calculates the similarity between the
given property and the last state of the path is represented by
the individual solution (chromosome). A path whose final
state has more similarity to the specified property will be a
promising path, and tracing it will increase the probabilities of
reaching the desired state.

The proposed fitness function presented in Algorithm 1.

Algorithm 1. Fitness function to verify the reachability

property

1. Input & Output:

a. Input: h: a particle and p: a given reachability

property to be checked;

b. Output: the fitness value of h;

2. Initialization:

a. Initialize NodeList member Npi with node ith of

Gp;

b. Initialize EdgeList member Epi with node ith of

Gp;

c. Initialize NodeList member Nhi with node ith of

Gh;

d. Initialize EdgeList member Ehi with node ith of

Gh;

e. Initialize BooleanList member hVisitedij with

false;

f. Initialize BooleanList member pVisitedij with

false;

g. Initialize BooleanList member Visitedij with

false;

(For part e, f and g: i: 0 to Number of nodes Gh, j: 0

to Number of nodes Gp)

3. for each Nhi

 for each Npj

 EdgeList ENP = all edges of Ep whose source

node is Npj;

 EdgeList ENH = all edges of Eh whose source node is

Nhi;

 E-Countij = The number of pairs (p,h)

which (p) is from ENP and (h) is from ENH as p’s label is

equal to h’s label;

 PE-Countij = size of ENP;

 DE-Countij = E-Countij – PE-Countij;

 en d for

 end for

4. EQ-Count = 0;

 while all Visitedij is not true do

 Find the smallest DE-Countij that Visitedij =

false;

 Visitedij = true;

 if !pVisitedij && !hVisitedij then

 EQ-Count += E-Countij;

 pVisitedij = true;

 hVisitedij = true;

 end if

 end while

5. Find all NACs of Gp and store in ArrayList of NACs

allNAC

 NEQ-Count = 0;

 for each NACi in allNAC do

 NEQ-Count += The number of nodes and

edges of NACi occurring in Gh;

 end for

 return EQ-Count – NEQ-Count;

3) The Fuzzy Systems Proposed to Estimate Crossover

and Mutation Rates
Assigning the appropriate initial parameters is one of the

challenges to use the standard genetic algorithm that can affect
the efficiency of the algorithm. If the parameters like the
crossover and mutation rates are initialized by inappropriate
values, it would be difficult to find the best solution.

The fuzzy system presented in the FGA-based method is a
Mamdani fuzzy system derived from [24] that determines the
variation which is required for the two parameters of the
crossover and mutation rate in each iteration of the algorithm.
The input variables of this fuzzy system are the degree of
difference between chromosome fitness for two successive
generations (Δf) and the diversity degree of the population in
the previous generation (d (t-1)) that are obtained from
Equations (2) and (3), respectively.

Figure 2 The membership function of Δf

Figure 4 illustrates the membership function of the input
variable d. The fuzzy set used for the membership functions
of d is {VS, S, SS, LM, M, UM, SL, L, VL}, standing for
minimal, small, slightly small, lower medium, medium,
upper-medium, slightly large, large, and very large,
respectively.

Figure 3 The membership function of the input variable d(t-1)

After the fuzzy values for each input are specified, the
fuzzy values of the output variables ΔPc and ΔPm, which are
respectively the changes of the crossover rate and mutation
rate in the new generation, are calculated using a set of fuzzy
rules.

In the defuzzification phase, the fuzzy values of the output
variables are converted to numerical values according to
membership functions, suggested for ΔPc and ΔPm variables.
These two membership functions are depicted in Figure 4 and
Figure 5.

Figure 5 The membership function of output variable ΔPc

Figure 6 The membership function of ΔPm.

The numerical values of ΔPc and ΔPm, which are

returned to the program as outputs of the fuzzy system, are

the required changes in the crossover rate and mutation rate

to increase the convergence speed of the genetic algorithm

to find the optimal solution, as fast as possible. As the

Equations 4 and 5 explain, it should be noted that, in the

new generation, the calculated ΔPc and ΔPm must be added

to the crossover rate and mutation rate from the previous

generation, respectively.

Pc (t) = Pc (t-1) + ΔPc (2)

Pm (t) = Pm (t-1) + ΔPm (3)

That way, the new values of the crossover rate and
mutation rate are applied in the crossover and mutation
functions to produce the new generation.

4) The FGA Algorithm
The algorithm starts with an initial population that is

generated randomly. Each individual solution represents a
path in the state space. After that, the fitness of each solution
is calculated using the fitness functions described in Section
4.2. If there is a chromosome with optimum fitness in the first
generation, the algorithm ends. This optimal chromosome is a
path that ends up with the desired state of the problem. (This
desired state can be a deadlock state or just a state in which a
specified reachability property is fulfilled). Otherwise, the
values of the variables d (t-1) and Δf are calculated according

to Equations 2 and 3 and are transmitted as inputs to the fuzzy
system. In the fuzzy system, the optimal values of the
crossover rate and mutation rate, calculated using the
membership functions and the fuzzy rule base, which
presented in 4.3, are sent to the genetic algorithm. The
algorithm continues with creating a new generation of
chromosomes by applying the crossover and mutation
operations. Several chromosomes, which are selected by
Elitism selection, are transferred to the new generation
without any changes. In Elitism selection, the best
chromosomes, according to their fitness function values, are
selected. Depending on the crossover rate, a pair of
chromosomes is selected to participate in the crossover
operation. A truncation selection method is used to select the
pair of chromosomes. This selection method is similar to the
roulette wheel method, with the difference that the rate of
selection is fixed during the execution. The applied crossover
operation is a single-point. Through the mutation operation,
some chromosomes are selected, according to mutation rate,
calculated by the fuzzy system. The genes of the selected
chromosome are randomly picked out and replaced by newly
generated random values. After calculating the fitness value
of the new generation chromosomes, if the chromosome,
which indicates the path leading to the desired state of the
problem, is found or the number of generations is equal to the
specified maximum generation, the algorithm is finished;
otherwise, the algorithm continues by calculating the input
parameters of the fuzzy system. Fig. Seven illustrates how a
fuzzy genetic algorithm works.

Figure 7 The Flowchart of Fuzzy Genetic Algorithm

V. THE PROPOSED APPROACH IMPLEMENTATION

The suggested approach is implemented in GROOVE
toolset using Java programing language. To implement the
proposed method, some new classes have been added to the
packages, and some classes have been modified. The proposed
algorithm leads the model checker to find the specified state
optimally. In this work, the search space, which should be
explored, is the state space of a system. This state-space starts
from an initial state. In implementing the algorithm and in all
the experiments, the number of algorithm iteration is 100 and
the crossover location is considered in the middle of the
chromosome. Two other parameters, which are used to
implement these two solutions, are the number of the initial
population and the length of the chromosomes or the search
depth. These parameters have been changed according to the
variation of the case study dimension, and the optimum values
for these tow parameters are applied to generate the results.

The suggested methods are tested on several well-known
case studies in which the model checking is faced with the
problem called space state explosion. In addition, during the

process of evaluation, the size of the model witness increases.
The experiments are performed by using a 3GB memory and
an Intel CORE i5 (2.2GHz) processor.

A. Dinning philosopher’s problem

The dining philosophers’ problem is the problem of some
philosophers that sitting on every side of a table. In fact, there
is one fork between every two adjoining philosophers.
Furthermore, a philosopher is thinking and then gets hungry,
picks up the left fork, and next to the right one. When a
philosopher who has two forks starts eating, each hungry
philosopher can only eat when philosopher who starts eating
has both left and right forks. He then stop eating and the
process is repeated infinitely until the deadlock state happens
in which all philosophers take the left fork and wait for the
right one [25].

B. Pac-Man game problem

The Pac-Man game includes three objects: ghosts, Pac-

Man, and marbles [8]. In each stage the Pac-Man and the

Ghost proceed to an adjacent box. In a new box he eats the

marble. The ghost may kill Pac-Man if find it in an adjacent

box. The game will finish when all marbles are eaten or Pac-

Man is killed by a ghost.

C. Car Platoon problem

Car Platoon system [27] includes multiple cars that

moving in a highway with a constant speed and invariant

distance of each other. Among these cars, there is one leader

car called a follower. A property that ought to be checked in

this system is that a channel should not be created between

two followers. In other words, if one free car (a car that is not

a member of the platoon system) sends a demand for creating

a channel to a follower, never should it receive the

acceptance. Also, a follower should not request to create a

channel to another follower, and the request should not be

from the leader. If one of these states happens, the deadlock

will happen.

D. Process Life Cycle problem

The problem called Process Life Cycle describes the

stages of the life cycle, which traverses in the operating

system. In the first stage, a new process is created. The life

cycle continues with loading the new process into memory.

If there is enough free memory. Then, after loading the

process in the memory, it should wait to use CPU or I/O

devices. When the process is executed entirely, all resources

allocated to the process are released, and the process stops.

E. Shopping problem

This problem explains the shopping process in a shop by

customers presented in [28]. In this problem, some customers

who are in a store start their shopping by taking a shopping

cart, pick up items from shelves, and put them in a cart. They

pay the price of the selected items and empty the cart. So,

their shopping process will be finished. In this problem, the

deadlock state will happen when all customers finish their

shopping successfully.

F. 8-Puzzle Problem

8-puzzle problem is a problem that can be solved by

configuration and arrangement. In fact, there is a board with

nine boxes filled with eight numbered tiles from 1 to 8 and

one empty box [29]. Each tile can move to an empty box if

the empty cell is adjacent to it. The goal of the game

beginning with an arbitrary configuration of tiles and arrange

the numbers in the ascending order.

VI. PERFORMANCE EVALUATION

A. FGA Approach to detect deadlock

The results of applying the suggested approach to refute

safety property through deadlock detection are compared

with those of DFS and BFS, which are primary strategies of

model checking by GROOVE toolset. The results also are

compared with other proposed approaches based on BS,

IDA*, Genetic Algorithm, PSO, PSO-GSA, BAPSO, BFA,

ECDM, and BOA.

The presented results in these comparisons show the average

deadlock detection time for 20 runs.

 The FGA algorithm performance comparison with

other presented algorithms is illustrated in Tables 3 to 8 for

deadlock detecting in dining philosophers, Pac-Man game,

car platoon, 8-puzzle, process life cycle, and shopping

problems, respectively.

According to the results, the average running time of the

proposed algorithm in dining philosophers is better in

comparison with those of GA, PSO, PSO-GSA, and BAPSO

algorithms.

The FGA algorithm performance comparison with

other algorithms for the dining philosophers’ problem is

illustrated in Table 1. In this problem, the deadlock situation

is the state in which philosophers have taken the left fork and

are waiting for the right one.

TABLE I COMPARING THE AVERAGE TIMES OF DEADLOCK

DETECTION IN DINING PHILOSOPHERS’ PROBLEM USING

DIFFERENT PROPOSED METHODS

N
u

m
b

er
 o

f

p
h

il
o
so

p
h

er
s

M
a

x
im

u
m

D
e
p

th

P
o

p
u

la
ti

o
n

 nB

OA

cB

OA

tpB

OA

GA PS

O

BAP

SO

PS

O-

GS

A

8 20 10 0.61 0.85 0.72 3.1

6

3.5

7

2.31 4.1

3

10 25 15 0.71 1.29 0.93 10.

12

13.

45

8.34 38.

92

20 100 20 1.04 3.25 3.53 23 157 64.6 170

Results indicate that the FGA Approach produces

better results than other approaches except for BOA-based

solutions and BFA to detect deadlocks in dining

philosophers’. Table 4 displays the average time of detecting

deadlocks in the Pac-Man Game problem for some proposed

approaches. In this problem, a deadlock state occurs when

Pac-Man eats all the marbles, or the ghost kills Pac-Man. The

results of the Pac-Man problem indicate that the FGA

algorithm reduces the average time of detecting deadlocks in

comparison with GA, PSO, BAPSO, PSO-GSA, IDA*, and

BS methods.

TABLE II COMPARING THE AVERAGE TIMES OF DEADLOCK

DETECTION IN PAC-MAN GAME PROBLEM USING

DIFFERENT PROPOSED METHODS

D
im

e
n

si
o

n
 o

f
P

a
c
-

m
a

n
 G

a
m

e
M

a
x
im

u
m

D
e
p

th

P
o

p
u

la
ti

o
n

nB

OA

cB

OA

tpB

OA

G

A

PS

O

BAP

SO

PS

O-

GS

A

4×

4

100 40 1.03 1.6 1.8 1.

03

2.6 1.3 1.9

4×

5

100 60 0.72 0.7 0.73 1.

12

4.9 2.8 4.7

5×

6

100 80 0.77 0.83 0.92 1.

32

11.

7

7.9 14.

5

The experimental results of applying the FGA method for

deadlock detection in the Car Platoon problem are depicted

in Table 3.

TABLE III COMPARING THE AVERAGE TIMES OF

DEADLOCK DETECTION IN CAR PLATOON PROBLEM

USING DIFFERENT PROPOSED METHODS
N

u
m

b
er

 o
f

C
a

r
s

M
a

x
im

u
m

D
e
p

th

P
o

p
u

la
ti

o
n

nB

OA

cB

OA

tpB

OA

G

A

PS

O

BAP

SO

PS

O-

GS

A

10 100 20 0.38 0.37 0.36 0.

36

2.6

5

5.43 2.6

5

20 100 40 0.42 0.44 0.42 0.

43

7.0

3

9.45 5.7

8

30 100 60 0.45 0.47 0.47 0.

56

14.

56

18.45 12.

63

40 100 80 0.54 0.55 0.58 0.

78

20.

54

22.46 21.

45

50 100 10

0

0.69 0.7 0.69 1.

18

30.

9

31.65 32.

51

According to the results of the Car Platoon problem,

it is vivid that the time of finding deadlock is deficient in all

methods except the BS approach because different paths end

with a deadlock state. Based on table 3, the average time to

detect deadlock of the FGA method in the Car Platoon

problem is less than the results of other approaches except for

BOA-based methods.

Table 4 depicts the average time of deadlock

detection in Shopping problems for different existing

methods. In this problem, the deadlock state happens when

all customers finish their shopping successfully.

In the Shopping problem, it can be realized that the response

time of all methods increases according to the increment of

customers. Unlike the cBOA, tpBOA, BFA, BS, and IDA*

methods, the FGA method does not face with the state space

explosion even in models with an ample state space.

TABLE IV COMPARING THE AVERAGE TIMES OF DEADLOCK
DETECTION IN SHOPPING PROBLEM USING DIFFERENT

PROPOSED METHODS

D
im

e
n

si
o

n
 o

f

S
h

o
p

p
in

g
 P

ro
b

le
m

M
a

x
im

u
m

D
e
p

th

P
o

p
u

la
ti

o
n

nBOA cBOA tpBOA GA PSO BAPSO PSO-

GSA

IDA*

15

Customers

30 good

160 20 16.19 51.08 54.3 60 6.53 6.32 5.67 8.45

20

Customers

30 good

165 40 44.14 Not Found 95 19.82 54.34 1.33

25

Customers

30 good

170 60 127.8 765 435 150 223

The running times of some existing methods for

finding deadlocks in the Process Life Cycle problem are

illustrated in Table 5. In this problem, the situation where the

execution of all processes is finished is a deadlock state.

TABLE V COMPARING THE AVERAGE TIMES OF DEADLOCK

DETECTION IN THE PROCESS LIFE CYCLE PROBLEM USING

DIFFERENT PROPOSED METHODS

D
im

e
n

si
o

n
 o

f

S
h

o
p

p
in

g
 P

ro
b

le
m

M
a

x
im

u
m

D
e
p

th

P
o

p
u

la
ti

o
n

nB

OA

cB

OA

tpB

OA

G

A

PS

O

BAP

SO

PS

O-

GS

A

20

Proce

sses 8

Mem

ories

180 20 0.7

9

0.7

9

0.82 9 54.

34

179 11

0

30

Proce

sses 8

Mem

ories

280 40 0.3

7

1.3

4

1.46 3

5

39.

42

62 10

1

40

Proce

sses 8

Mem

ories

350 60 1.4

4

2.1

2

1.72 Not

Found

854 93

9

50

Proce

sses 8

Mem

ories

450 10

0

1.8

1

1.7 1.93 Not Found

The results indicate that the proposed FGA method takes less

time to find a deadlock state and prevent the state space

explosion in comparison with GA, PSO, BAPSO, PSO-GSA,

BS, and BFA approaches.

Table 6 represents the average time of deadlock detection in

the 8-Puzzle problem using different proposed approaches. In

this problem, the initial state is the arbitrary configuration of

tiles, shown in the first column of the table, and the deadlock

situation occurs when the numbered tiles are arranged in the

ascending order.

TABLE IVI COMPARING THE AVERAGE TIMES FOR

DEADLOCK DETECTION IN 8-PUZZLE PROBLEM USING

DIFFERENT PROPOSED METHODS

In
it

ia
l

A
rr

a
n

g
e
m

e
n

t

M
a

x
im

u
m

D
e
p

th

P
o

p
u

la
ti

o
n

F

G

A

nB

O

A

cB

O

A

tpB

OA

G

A

PS

O

BA

PS

O

PS

O-

G

S

A

100 4

0

1.

56

0.7

5

0.7

8

0.7

7

4 7.

03

9.63 13

100 5

0

13

.6

1.1

5

1.6

2

1.9

6

3

5.

8

94

.7

2

45.5

3

16

.7

100 6

0

59

.1

2

No

t

Fo

un

d

7.1

2

8.2

6

1

6

5

16

5.

4

70.9

3

14

7.

7

In the 8-puzzle problem, where the host graph is a

complex arrangement and the number of displacements

which need to be sorted, is high, the state space will be vast

and complex. So, the average time of deadlock detection will

be increased, and even the nBOA algorithm is not able to

respond. The results indicate that the FGA approach has a

higher performance than GA, PSO, PSO-GSA, and BAPSO

methods.

Table 7 illustrates the length of the counterexamples

produced by some of the existing methods for deadlock

detection in a sample of the presented case studies.

TABLE VII COMPARING THE LENGTH OF THE

COUNTEREXAMPLES OF SOME PROPOSED METHODS TO

DETECT DEADLOCK

Problems

Approach FGA GA PSO PSO-

GSA

Dinning

philosophers’

(30

philosophers)

78 93 111 96

Game Pac-Man

(6 ×5)

61 78 74 79

Process Life

Cycle

(20 Process, 8

Memory)

162 177 179 178

 Shopping

(20 Customer,

30 Good)

159 170 175 175

8-Puzzle

(Second

Arrangement)

8 13 11 10

It is totally vivid that the proposed FGA method decreases

the length of counterexamples provide to refute safety

property in all case studies.

VII. CONCLUSIONS

 In this research, a hybrid approach is presented to

manage the state explosion problem in model checking of

systems specified by GTS for reachability verification and

safety refutation by detecting deadlock as well. The

suggested approach searches the state space intelligently,

using a fuzzy genetic algorithm to find the state in which the

specified property is verified or refuted. Moreover, this work

evaluates the suggested solution by checking toolset of

GROOVE, and some modification is done in the source code

by Java language. In this work, the methods based on GA,

PSO, and PSO-GSA algorithms that presented for deadlock

detection, used for verifying the reachability property by

changing their fitness function. These new-implemented

methods are applied to evaluate the efficiency of the proposed

approach for reachability verification. The results of applying

the proposed algorithm on several well-known case studies

reveal that the FGA approach could generally improve the

speed of the deadlock detection and reachability verification

in comparison with previous methods. Also, the length of the

counterexamples indicates a more significant decrease than

the algorithms based on GA, PSO, and PSO-GSA. However,

it should be noted that the suggested method, like other

proposed meta-heuristic approaches, is not a correct solution.

If these solutions could not detect the deadlock or find a

specified reachability property, they could not claim that the

given model does not contain the deadlock or reachable

specified state.

 In future research, the efficiency of the suggested

algorithm can be improved by using an enhanced fuzzy

system. The meta-heuristic approaches, proposed to detect

deadlocks, could be updated to verify the reachability, using

the suggested fitness function in this paper. Applying a new

fitness function for the proposed approach can improve the

experimental results.

 ACRONYMS

Fuzzy Logic Controllers FLC

Fuzzy systems FS

Genetic algorithm GA

Graph transformations system GTS

Gravitational search algorithm GSA

Negative application condition NAC

Particle swarm optimization PSO

State space explosion SSE

ACKNOWLEDGMENT

We acknowledge the financial support of this work by the

Hungarian-Mexican bilateral Scientific and Technological

(2019-2.1.11-TÉT-2019-00007) project. The research

presented in this paper was carried out as part of the EFOP-

3.6.2-16-2017-00016 project in the framework of the New

Szechenyi Plan. The completion of this project is funded by

the European Union and co-financed by the European Social

Fund.

REFERENCES

[1] C. Baier, J.P. Katoen, and K.G. Larsen, Principles of Model Checking,

Vol. 2620264, Cambridge: MIT press, 2008.

[2] L. Baresi and R. Heckel, Tutorial introduction to graph transformation:
A software engineering perspective, Graph Transformation (ICGT)
2002.

[3] R. Yousefian and V. Rafe, and M. Rahmani, A heuristic solution for
model checking graph transformation systems, Appl. Soft. Comput. 24
(2014) 169-180.

[4] M. Moradi, V. Rafe, R. Yousefian, and A. Nikanjam, A Meta-Heuristic
Solution for Automated Refutation of Complex Software Systems
Specified through Graph Transformations, Appl. Soft. Comput. 33
(2015) 136-149.

[5] R. Yousefian, S. Aboutorabi, and V. Rafe, A greedy algorithm versus
metaheuristic solutions to deadlock detection in Graph Transformation
Systems, J. Intell. Fuzzy Syst. 31(1) (2016) 137–149.

[6] E. Pira, V. Rafe, and A. Nikanjam, EMCDM: Efficient model checking
by data mining for verification of complex software systems specified
through architectural styles, Appl. Soft. Comput. 49 (2016) 1185-1201.

[7] E. Pira, V. Rafe, and A. Nikanjam, Deadlock detection in complex
software systems specified through graph transformation using
Bayesian optimization algorithm, J. Syst. Software 131 (2017) 181-
200.

[8] R. Heckel, Graph Transformation in a Nutshell, Electronic Notes in
Theoretical Computer Science (ENTCS) 148(1) (2006) 187-198.

[9] L.A. Zadeh, Fuzzy algorithms, Inf. and Control 12(2) (1968) 94-102.

[10] F. Herrera, m. Lozano, Fuzzy adaptive genetic algorithms: design,
taxonomy, and future directions, Soft Comput. 7(8) (2003) 545-562.

[11] I. Nedeljkovic, Image classifcation based on fuzzy logic, The
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 34(30) (2004) 3–7.

[12] S.M. Odeh, A.M. Mora, M.N. Moreno, and J.J. Merelo, A Hybrid
Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System,
Advances in Fuzzy Syst. 2015.

[13] S.N. Sivanandam and S.N. Deepa, Introduction to Genetic Algorithms,
Springer, 2008.

[14] Q. Li, Y. Yin, Z. Wang, and G. Liu, Comparative Studies of Fuzzy
Genetic Algorithms, Advances in Neural Netw. 4499 (2007) 251-256.

[15] V. Rafe, A.T. Rahmani, L. Baresi and P. Spoletini, Towards automated
verification of layered graph transformation specifications, IET Softw.
3 (2009) 276–291.

[16] G.Francesca, A.Santone, G.Vaglini, M.L.Villani, Ant Colony
Optimization for Deadlock Detection in Concurrent Systems, 35th
IEEE Annual Computer Softw. and Applications Conference (2011)
108-117.

[17] E. Alba and F. Chicano, Ant ColonyOptimization in Model Checking,
11th international conference on Computer Aided Syst. Theory, Spain
(2007) 523-530.

[18] L.M. Duarte, L. Foss, R. Wagner, and T. Heimfarth, Model Checking
the Ant Colony Optimisation, Distributed, Parallel and Biologically
Inspired Systems, IFIP Advances in Information and Communication
Technology 329 (2010) 221-232.

[19] E. Alba and J.M. Troya, Genetic Algorithms for Protocol Validation,
International Conference on Parallel Problem Solving from Nature
PPSN IV, Springer, Berlin, Heidelberg (1996) 869-879.

[20] A. Vardhan, Learning to Verify Systems, University of Illinois at
Urbana-Champaign, 2006.

[21] G.Francesca, A.Santone, G.Vaglini, M.L.Villani, Ant Colony
Optimization for Deadlock Detection in Concurrent Systems, 35th

IEEE Annual Computer Software and Applications Conference (2011)
108-117.

[22] E. Alba and F. Chicano, ACOhg: Dealing with Huge Graphs,
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, ACM (2007) 10-17.

[23] E. Alba and F. Chicano, Searching for Liveness Property Violations in
Concurrent Systems with ACO, 10th Annual Conference on Genetic
and Evolutionary Computation, USA: ACM, Atlanta, Georgia, 2008.

[24] H.C.W. Lau, D. Nakandala, and L. Zhao, Development of a Hybrid
Fuzzy Genetic Algorithm Model for Solving Transportation
Scheduling Problem, J. of Inf. Syst. and Technology Management
12(3) (2015) 505-524.

[25] A. Schmidt, Model Checking of Visual Modeling Languages, M.S.D.
Thesis, Budapest University of Technology, Hungary, 2004.

[26] D. Swaroop, String stability of interconnected systems: An application
to platooning in automated highway systems, California Partners for
Advanced Transit and Highways (PATH), 1997.

[27] J.H. Hausmann, Dynamic Meta Modeling: A Semantics Description
Technique for Visual Modeling Techniques, Ph.D. Thesis, Universität
Paderborn, Germany, 2005.

[28] J. Gaschnig, Performance measurement and analysis of certain search
algorithms, Ph.D. Thesis, Carnegie Mellon University Pittsburgh, PA,
USA, 1979.

