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Abstract— model checking techniques are often used for the 

verification of software systems. Such techniques are 

accompanied with several advantages. However, state space 

explosion is one of the drawbacks to model checking. During 

recent years, several methods have been proposed based on 

evolutionary and meta-heuristic algorithms to solve this 

problem. In this paper, a hybrid approach is presented to cope 

with the SSE problem in model checking of systems modeled by 

GTS with an ample state space. Most of existence proposed 

methods that aim to verify systems are applied to detect 

deadlocks by graph transformations. The proposed approach is 

based on the fuzzy genetic algorithm and is designed to decline 

the safety property by verifying the reachability property and 

detecting deadlocks. In this solution, the state space of the 

system is searched by a fuzzy genetic algorithm to find the state 

in which the specified property is refuted/verified. To implement 

and evaluate the suggested approach, GROOVE is used as a 

powerful designing and model checking toolset in GTS.  The 

experimental results indicate that the presented hybrid fuzzy 

method improves speed and performance by comparing other 

techniques. 

Keywords— fuzzy genetic algorithm, reachability property, 

deadlock, model checking 

I. INTRODUCTION  

Today, as computer use increases, software systems have 
found an important place in human life by implementing 
complex operations that are impossible to do. The increment 
of the using software systems leads to increase complexity. 
The security concern is an essential point in the development 
of software systems, especially in critical-safety systems, 
where errors would cause irrecoverable disasters. In critical-
safety systems, even small mistakes can have irrecoverable 

consequences. Lots of financial and human damages have 
occurred due to programming errors in such systems, 
including the Ariane5 shuttle explosion, the loss of the Mars 
Climate Orbiter, and the overdosing patients during radiation 
due to errors in the radiation control section of the device. 
Model-checking techniques are applied as one of the most 
accurate automatic verification methodologies that are used to 
validate systems even before implementation and at the design 
phase [1]. The use of this technique requires a description for 
the system through a formal language [2]. One of the standard 
tools applied to design and model checking the methods 
specified via GTS is the GROOVE toolset, which performs 
model checking by generating the entire state space of the 
model. State space explosion occurs when the size of the 
model increases, the memory consumption increases 
exponentially.  

In recent years, several approaches have been proposed to 
resolve the problem of state-space explosion in the model 
checking of complex systems modeled by GTS. Some of these 
methods are a GA based solution [3], an approach using PSO 
algorithm, and also, an algorithm based on a hybrid of PSO 
and GSA [4], a method by using the combination of PSO and 
BAT optimization algorithm [5], an approach based on data 
mining methods named EMCDM [6], and an efficient solution 
through Bayesian optimization algorithm [7]. All of these 
solutions are presented to refute the safety property by finding 
the deadlock state in the systems specified through GTS. 

Notwithstanding the great efforts by various researchers to 
verify safety property in systems specified through graph 
transformations using detecting deadlocks, many aspects 
related to system verification are still unsolved. One of the 
properties which can be checked is the reachability property. 
In this study, a new approach based on the Fuzzy Genetic 
algorithm is proposed that includes two different fitness 



 

 

functions. The first one is applied to refute safety property by 
finding a deadlock state and the second one is presented to 
verify reachability property. The previous methods, proposed 
in this context, tried to detect deadlocks for ascertaining the 
safety property. In this paper, the suggested approach is used 
to refute safety property by verifying reachability property in 
the systems modeled via GTS, as well. The proposed method 
has been implemented using GROOVE, as a powerful 
designing and model checking toolset, and the Java 
programming language. The results of executing the proposed 
approach on several great case studies are presented and 
discussed. Comparing the reported results and those of other 
existing methods reveals the acceptable performance of the 
proposed solutions. 

This paper is organized as follows: Section 2 introduces 
the required backgrounds of the presented methods, such as 
the structure and concepts of fuzzy systems, the details of the 
fuzzy genetic algorithms, the graph transformation systems 
and the model checking concepts. The proposed approach to 
cope with the problem of the state space explosion is 
investigated in Section 3. Section 4 describes how to design 
and implement the proposed approaches. In section 5, the 
suggested solutions are evaluated and, the results are 
compared and discussed. Section 6 includes the performance 
evaluation, and eventually, Section 7 presents the conclusion 
of the paper and suggests some future researches. 

 

II. BACKGROUND 

A. Model Checking 

Model Checking is a formal method for verifying the 
correctness of the software systems even at design time. To 
use the model checking, it is required to describe the system’s 
features using a formal language [4]. The model checker 
automatically explores all the state space of the system and 
determines whether the given ownership of the system is 
satisfied or not. Some essential properties of a system that 
could be verified are the safety property, the reachability 
property, the liveness property, and the fairness property. 
Despite many benefits of the model checking, this technique 
also has some drawbacks, for which the state space explosion 
is the most important. 

 

B. Graph Transformation System 

GTS is a technique to model a system graphically based 
on a mathematical and formal method  [2]. An attributed graph 
transformation system is specified through a triple: GTS = 
(TG, HG, R), Where TG is the type graph, HG is the host 
graph, and R stands for the rules. 

The type graph is the meta-model of the system 
represented by TG = (TGN, TGE, src, trg), in which TGN is a 
set of nodes, TGE is a set of edges and src, and trg are two 
functions that, respectively, assign a source and a destination 
to each edge:    src, trg: TGE → TGN 

The host graph is a graph representing the initial state of 
the system. In other words, the host graph must be a graph 
morphism type graph  [8]. A graph transformation rule is 
defined by a triple (LHS, RHS, NAC), where the LHS, which 
is a graph morphism TG, describes the pre-conditions of the 
rules, the RHS, which is a graph morphism TG, describes the 
post-conditions of the rules, and NAC is a special 

configuration which is used to verify the non-existence of a 
subgraph in the rule. The rule can be applied if NAC does not 
exist in the host graph [8]. 

C. Fuzzy Inference System 

Fuzzy logic is a mathematical-based representation of 

human knowledge and experiences that was introduced by 

Zadeh in 1968 [9]. A FLC consists of a Knowledge Base that 

encodes the expert knowledge using a set of IF-THEN rules. 

An IF-THEN rule is a conditional statement with the form: 

If a set of conditions is satisfied, then a set of consequences 

can be inferred [10]. 

A fuzzy system is composed of three basic parts:  the 

fuzzification process, fuzzy inference system (FIS), and 

defuzzification process. 

• The fuzzification part includes the definition of the 

linguistic variables regarding inputs and outputs. 

• The inference system includes the definition of rules that 

aim to describe the system and also a mapping from input to 

output using defined rules. In fact, types of fuzzy inference 

systems [11] divided into two types called Mamdani’s fuzzy 

systems inference method and Sugeno-type fuzzy systems 

inference method [12]. The vivid difference between these 

methods is their final output. The output of Sugeno ought to 

be constant or linear, while the Mamdani type expects the 

output membership functions to be fuzzy sets. 

In fuzzy logic, imprecise values are represented by a 

fuzzy set that is described through a membership function. In 

fact, this function determines a degree ∈ [0, 1] to every 

number x ∈  X. The membership functions for the state 

variables can be triangular, Gaussian, trapezoidal or bell-

shaped. 

D. The Genetic Algorithm 

The genetic algorithm was first introduced by John Haled 

in 1975 and then generalized by John Koza in 1992. The main 

idea of the genetic algorithm is Darwin's theory of evolution. 

The genetic algorithm has four main elements: Initial 

population, fitness function, selection, and genetic operators. 

Crossover and mutation are two genetic operators that are 

used to produce a new generation. 

The genetic algorithm is an iteration-based algorithm, which 

creates several random solutions (chromosomes) in the first 

step and generates new chromosomes from the previous 

population in the next steps. In each generation, some of the 

most appropriate solutions are selected to remain. Then, the 

next generation will be produced by crossover and mutation 

operations on selected chromosomes. This process repeats 

until one of the chromosomes is the desired solution, or the 

algorithm iteration is equal to the predefined maximum 

generation, or the best fitness value of the population does not 

improve over several successive generations [13]. 

E. Fuzzy Genetic Algorith 

In the standard genetic algorithm, there are three 

parameters necessary to be assigned with the appropriate 

value at the beginning of the algorithm to find an optimum 

solution. These parameters are as follows: 

 

Crossover Rate: percentage of the chromosomes which are 

chosen in each iteration for crossover operation and generate 

new chromosomes. 



 

 

Mutation Rate: percentage of the chromosomes which are 

mutated in each iteration. 

Population Size: the number of chromosomes in each 

generation. 

For example, when Population Size is small, the 

algorithm covers a small part of the problem space, and no 

good result will be achieved. While this parameter is 

significant, the genetic algorithm goes slowly, and it takes a 

long time to solve and optimize the problem [14].  

Selecting an appropriate value for algorithm parameters is 

one of the challenges of applying the genetic algorithm. In a 

fuzzy genetic algorithm, these parameters are evaluated in 

each iteration of a genetic algorithm through a fuzzy 

inference system. However, so many types of fuzzy systems 

are presented to determine the genetic algorithm parameters. 

In most of these FS, parameters such as age of chromosomes, 

fitness function ratio of generation, the difference between 

fitness of two recent generations, the difference between 

fitness of each chromosome and average fitness of the total 

population, the average fitness of the previous generation and 

present generation, the difference between fitness of two 

generations for each chromosome, the difference between 

maximum fitness and average fitness of a generation, etc. are 

considered as the input of the fuzzy system. Also, in most of 

the recommended fuzzy systems (more than 99%), crossover 

rate and mutation rate are the outputs of the fuzzy system. 

 

III. RELATED WORKS 

There are various solutions having been proposed in order 
to improve model checking techniques verifying complex 
systems and dealing with a specific problem called the state 
space explosion problem. There are two well-known meta-
heuristic approaches that have been intended to discover 
deadlocks in the methods and refute the security property are 
a framework based on reinforcement learning [15] and an ant 
colony algorithm [16-18]. A new approach has been proposed 
using the genetic algorithm for checking the correctness of 
communication protocols in [19]. This genetic validation has 
been tried on the Transmission Control Protocol and on a 
hand-made contract. In [20] two different learning algorithms 
have been proposed to verify safety, reachability, and liveness 
properties of systems whose state space can be expressed 
using regular expressions. In the other paper, an ACO-based 
approach aiming to decrease the state explosion problem for 
discovering deadlocks in complex networks is presented. In 
fact, this approach describes a way that uses the Calculus of 
Communicating Systems [21]. Two other papers [22, 23] 
proposed using a type of ACO model to disprove safety and 
liveness attributes in concurrent systems [3]. This approach 
applies the GA algorithm on several random paths with a 
particular length that starts from the initial state and finds the 
first path, which leads to a deadlock state. GROOVE toolset 
is used to implement this solution in order to evaluate its 
performance. The other proposed approach for this problem 
uses the PSO algorithm to detect deadlocks in graph 
transformation systems [4]. The authors have also suggested a 
hybrid algorithm based on PSO, and GSA named PSO-GSA 
to avoid the local optima problem. Authors of [5] suggested a 
hybrid solution based on particle swarm optimization 
algorithm and a Bat algorithm called BAPSO to solve the state 
space explosion problem for detecting deadlocks in systems 
modeled via graph transformation. In this approach, the Bat 

algorithm is used to avoid the local optima problem in PSO. 
Another solution using a simple greedy algorithm called BFA 
is also proposed in this paper in which a state with the 
minimum outgoing transitions must be selected in each step 
of exploration. These two approaches are implemented in the 
GROOVE. In [6] a method is presented based on data mining 
approaches called EMCDM. This method aims to fulfill the 
process of model checking in complex software systems that 
are designed according to a specific architectural style 
(specified via GTS). The EMCDM approach aims to decline 
the safety property by verifying the reachability property. In 
the other research [7], three BOA-based methods (nBOA, 
tpBOA, and cBOA) are presented deadlocks detecting way in 
systems that are modeled by graph transformations. The 
results of this algorithm indicate a noticeable improvement in 
speed and accuracy. 

IV. THE PROPOSED APPROACH 

A. Chromosome Encoding 

In the presented approach, the model checking system, 
instead of examining all of the state space in order to find the 
desired state, drives the search using the fuzzy genetic 
algorithm toward an optimal solution. The state space is a 
collection of states and transitions between them, which is 
depicted as a tree called a state space tree. The main goal is to 
discover the desired state in which the specified property is 
verified or refuted. Each solution is a sequence of states in the 
state space that starts from an initial state and traverses a set 
of states and transitions to reach this final state. In this 
approach, a fuzzy genetic algorithm has been used to find the 
optimal path that is ended with the desired state. 

Each possible solution is a path that starts from the initial 
node of the graph and specifies a chromosome. Each 
chromosome consists of a number of genes. In the proposed 
algorithm, named FGA, each gene is a random number that is 
generated between zero and the maximum number of output 
transmissions in the specified problem. Figure. 1 illustrates 
one example of an encoding scheme which represents a path 
in a graph by a vector. In this case, the chromosome is 1, 0, 2, 
1. 

The sufficient length of the chromosomes is the depth of 
the search in the model checking, and since the solution of 
different case studies can be found at different depths, the 
length of chromosomes is considered as a variable. 

B. The Fitness Functions 

1) Fitness Function for detecting deadlocks 
What needs to be checked to confirm the safety property 

is whether a desired property is satisfied on all paths and in all 
states of those paths or not. There is not any particular method 
to verify the safety property, but there are some solutions to 
refute this property. One of these events which can refute the 
safety property is occurring deadlock in the model. 



 

 

 

Figure 1. A promising solution corresponding with chromosome 1021 

 

Deadlock is a state with no output edges, so we can use the 
strategy presented in [3] to calculate the fitness function of a 
genetic algorithm. Consequently, the evaluation function, 
which used to detect a deadlock, is equal to the sum of the 
number of outputs having traveled through a path. The reason 
for choosing this method is that as the number of outputs of a 
path is lower, the probabilities of reaching the deadlock 
increase. Equation (1) shows this fitness function. 

𝐹(𝑥) = ∑ 𝑛𝑖

𝐿

𝑖=1

       (1) 

Where L is the length of the path x, and ni is the total 
number of outputs in-depth i. A path with less value of fitness 
function has more likely to reach the deadlock. 

2) Fitness Function to Verify the Reachability Property 
To examine the reachability property, it is vivid that a 

particular event happens at least once in the system. One state 
might be reachable if there is at least one path from the initial 
state to it. Consequently, there must be a path from the initial 
state that leads to the desired state. Furthermore, a path whose 
last state is quite similar to the specified reachability property 
can be a promising path, which may quickly reach the 
solution. For this reason, to verify this property, we use a 
similarity function that calculates the similarity between the 
given property and the last state of the path is represented by 
the individual solution (chromosome). A path whose final 
state has more similarity to the specified property will be a 
promising path, and tracing it will increase the probabilities of 
reaching the desired state.  

The proposed fitness function presented in Algorithm 1. 

Algorithm 1. Fitness function to verify the reachability 

property 

1. Input & Output:  

a. Input: h: a particle and p: a given reachability 

property to be checked; 

b. Output: the fitness value of h; 

2. Initialization: 

a. Initialize NodeList member Npi with node ith of 

Gp;  

b. Initialize EdgeList member Epi with node ith of 

Gp;  

c. Initialize NodeList member Nhi with node ith of 

Gh;  

d. Initialize EdgeList member Ehi with node ith of 

Gh;                

e. Initialize BooleanList member hVisitedij with 

false; 

f. Initialize BooleanList member pVisitedij with 

false; 

g. Initialize BooleanList member Visitedij with 

false; 

(For part e, f and g: i: 0 to Number of nodes Gh, j: 0 

to Number of nodes Gp) 

3. for each Nhi 

           for each Npj 

             EdgeList ENP = all edges of Ep whose source 

node is Npj; 

   EdgeList ENH = all edges of Eh whose source node is 

Nhi; 

                 E-Countij = The number of pairs (p,h) 

which (p) is from ENP and (h) is from ENH as p’s label is 

equal to h’s label; 

                  PE-Countij = size of ENP; 

                  DE-Countij = E-Countij – PE-Countij; 

           en d for 

       end for 

4. EQ-Count = 0; 

        while all Visitedij is not true do  

            Find the smallest DE-Countij that Visitedij = 

false; 

            Visitedij = true; 

            if  !pVisitedij && !hVisitedij  then 

    EQ-Count += E-Countij; 

                   pVisitedij = true; 

                   hVisitedij = true; 

           end if 

       end while 

5. Find all NACs of Gp and store in ArrayList of NACs 

allNAC  

        NEQ-Count = 0; 

       for each NACi in allNAC do 

              NEQ-Count += The number of nodes and 

edges of NACi occurring in Gh; 

       end for 

       return EQ-Count – NEQ-Count; 

 

 

3) The Fuzzy Systems Proposed to Estimate Crossover 

and Mutation Rates 
Assigning the appropriate initial parameters is one of the 

challenges to use the standard genetic algorithm that can affect 
the efficiency of the algorithm. If the parameters like the 
crossover and mutation rates are initialized by inappropriate 
values, it would be difficult to find the best solution. 



 

 

The fuzzy system presented in the FGA-based method is a 
Mamdani fuzzy system derived from [24] that determines the 
variation which is required for the two parameters of the 
crossover and mutation rate in each iteration of the algorithm. 
The input variables of this fuzzy system are the degree of 
difference between chromosome fitness for two successive 
generations (Δf) and the diversity degree of the population in 
the previous generation (d (t-1)) that are obtained from 
Equations (2) and (3), respectively. 

 

Figure 2 The membership function of Δf 

Figure 4 illustrates the membership function of the input 
variable d. The fuzzy set used for the membership functions 
of d is {VS, S, SS, LM, M, UM, SL, L, VL}, standing for 
minimal, small, slightly small, lower medium, medium, 
upper-medium, slightly large, large, and very large, 
respectively. 

 

Figure 3 The membership function of the input variable d(t-1) 

After the fuzzy values for each input are specified, the 
fuzzy values of the output variables ΔPc and ΔPm, which are 
respectively the changes of the crossover rate and mutation 
rate in the new generation, are calculated using a set of fuzzy 
rules.  

In the defuzzification phase, the fuzzy values of the output 
variables are converted to numerical values according to 
membership functions, suggested for ΔPc and ΔPm variables. 
These two membership functions are depicted in Figure 4 and 
Figure 5. 

 

Figure 5 The membership function of output variable ΔPc 

 

Figure 6 The membership function of ΔPm. 

The numerical values of ΔPc and ΔPm, which are 

returned to the program as outputs of the fuzzy system, are 

the required changes in the crossover rate and mutation rate 

to increase the convergence speed of the genetic algorithm 

to find the optimal solution, as fast as possible. As the 

Equations 4 and 5 explain, it should be noted that, in the 

new generation, the calculated ΔPc and ΔPm must be added 

to the crossover rate and mutation rate from the previous 

generation, respectively. 

Pc (t) = Pc (t-1) + ΔPc (2) 

Pm (t) = Pm (t-1) + ΔPm (3) 

That way, the new values of the crossover rate and 
mutation rate are applied in the crossover and mutation 
functions to produce the new generation. 

4) The FGA Algorithm 
The algorithm starts with an initial population that is 

generated randomly. Each individual solution represents a 
path in the state space. After that, the fitness of each solution 
is calculated using the fitness functions described in Section 
4.2. If there is a chromosome with optimum fitness in the first 
generation, the algorithm ends. This optimal chromosome is a 
path that ends up with the desired state of the problem. (This 
desired state can be a deadlock state or just a state in which a 
specified reachability property is fulfilled). Otherwise, the 
values of the variables d (t-1) and Δf are calculated according 



 

 

to Equations 2 and 3 and are transmitted as inputs to the fuzzy 
system. In the fuzzy system, the optimal values of the 
crossover rate and mutation rate, calculated using the 
membership functions and the fuzzy rule base, which 
presented in 4.3, are sent to the genetic algorithm. The 
algorithm continues with creating a new generation of 
chromosomes by applying the crossover and mutation 
operations. Several chromosomes, which are selected by 
Elitism selection, are transferred to the new generation 
without any changes. In Elitism selection, the best 
chromosomes, according to their fitness function values, are 
selected. Depending on the crossover rate, a pair of 
chromosomes is selected to participate in the crossover 
operation. A truncation selection method is used to select the 
pair of chromosomes. This selection method is similar to the 
roulette wheel method, with the difference that the rate of 
selection is fixed during the execution. The applied crossover 
operation is a single-point. Through the mutation operation, 
some chromosomes are selected, according to mutation rate, 
calculated by the fuzzy system. The genes of the selected 
chromosome are randomly picked out and replaced by newly 
generated random values. After calculating the fitness value 
of the new generation chromosomes, if the chromosome, 
which indicates the path leading to the desired state of the 
problem, is found or the number of generations is equal to the 
specified maximum generation, the algorithm is finished; 
otherwise, the algorithm continues by calculating the input 
parameters of the fuzzy system. Fig. Seven illustrates how a 
fuzzy genetic algorithm works. 

 

Figure 7 The Flowchart of Fuzzy Genetic Algorithm 

V. THE PROPOSED APPROACH IMPLEMENTATION 

The suggested approach is implemented in GROOVE 
toolset using Java programing language. To implement the 
proposed method, some new classes have been added to the 
packages, and some classes have been modified. The proposed 
algorithm leads the model checker to find the specified state 
optimally. In this work, the search space, which should be 
explored, is the state space of a system. This state-space starts 
from an initial state. In implementing the algorithm and in all 
the experiments, the number of algorithm iteration is 100 and 
the crossover location is considered in the middle of the 
chromosome. Two other parameters, which are used to 
implement these two solutions, are the number of the initial 
population and the length of the chromosomes or the search 
depth. These parameters have been changed according to the 
variation of the case study dimension, and the optimum values 
for these tow parameters are applied to generate the results. 

The suggested methods are tested on several well-known 
case studies in which the model checking is faced with the 
problem called space state explosion. In addition, during the 

process of evaluation, the size of the model witness increases. 
The experiments are performed by using a 3GB memory and 
an Intel CORE i5 (2.2GHz) processor. 

A. Dinning philosopher’s problem 

The dining philosophers’ problem is the problem of some 
philosophers that sitting on every side of a table. In fact, there 
is one fork between every two adjoining philosophers. 
Furthermore, a philosopher is thinking and then gets hungry, 
picks up the left fork, and next to the right one. When a 
philosopher who has two forks starts eating, each hungry 
philosopher can only eat when philosopher who starts eating 
has both left and right forks. He then stop eating and the 
process is repeated infinitely until the deadlock state happens 
in which all philosophers take the left fork and wait for the 
right one [25]. 

B. Pac-Man game problem 

The Pac-Man game includes three objects: ghosts, Pac-

Man, and marbles [8]. In each stage the Pac-Man and the 

Ghost proceed to an adjacent box. In a new box he eats the 

marble. The ghost may kill Pac-Man if find it in an adjacent 

box. The game will finish when all marbles are eaten or Pac-

Man is killed by a ghost. 

C. Car Platoon problem 

Car Platoon system [27] includes multiple cars that 

moving in a highway with a constant speed and invariant 

distance of each other. Among these cars, there is one leader 

car called a follower. A property that ought to be checked in 

this system is that a channel should not be created between 

two followers. In other words, if one free car (a car that is not 

a member of the platoon system) sends a demand for creating 

a channel to a follower, never should it receive the 

acceptance. Also, a follower should not request to create a 

channel to another follower, and the request should not be 

from the leader. If one of these states happens, the deadlock 

will happen. 

D. Process Life Cycle problem 

The problem called Process Life Cycle describes the 

stages of the life cycle, which traverses in the operating 

system. In the first stage, a new process is created. The life 

cycle continues with loading the new process into memory. 

If there is enough free memory. Then, after loading the 

process in the memory, it should wait to use CPU or I/O 

devices. When the process is executed entirely, all resources 

allocated to the process are released, and the process stops. 

E. Shopping problem 

This problem explains the shopping process in a shop by 

customers presented in [28]. In this problem, some customers 

who are in a store start their shopping by taking a shopping 

cart, pick up items from shelves, and put them in a cart. They 

pay the price of the selected items and empty the cart. So, 

their shopping process will be finished. In this problem, the 

deadlock state will happen when all customers finish their 

shopping successfully.  

F. 8-Puzzle Problem 

8-puzzle problem is a problem that can be solved by 

configuration and arrangement. In fact, there is a board with 

nine boxes filled with eight numbered tiles from 1 to 8 and 

one empty box [29]. Each tile can move to an empty box if 



 

 

the empty cell is adjacent to it. The goal of the game 

beginning with an arbitrary configuration of tiles and arrange 

the numbers in the ascending order. 

VI. PERFORMANCE EVALUATION 

A. FGA Approach to detect deadlock 

 

The results of applying the suggested approach to refute 

safety property through deadlock detection are compared 

with those of DFS and BFS, which are primary strategies of 

model checking by GROOVE toolset. The results also are 

compared with other proposed approaches based on BS, 

IDA*, Genetic Algorithm, PSO, PSO-GSA, BAPSO, BFA, 

ECDM, and BOA.   

The presented results in these comparisons show the average 

deadlock detection time for 20 runs.  

  The FGA algorithm performance comparison with 

other presented algorithms is illustrated in Tables 3 to 8 for 

deadlock detecting in dining philosophers, Pac-Man game, 

car platoon, 8-puzzle, process life cycle, and shopping 

problems, respectively. 

According to the results, the average running time of the 

proposed algorithm in dining philosophers is better in 

comparison with those of GA, PSO, PSO-GSA, and BAPSO 

algorithms.  

The FGA algorithm performance comparison with 

other algorithms for the dining philosophers’ problem is 

illustrated in Table 1. In this problem, the deadlock situation 

is the state in which philosophers have taken the left fork and 

are waiting for the right one. 

 
TABLE I COMPARING THE AVERAGE TIMES OF DEADLOCK 

DETECTION IN DINING PHILOSOPHERS’ PROBLEM USING 

DIFFERENT PROPOSED METHODS 
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12 
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45 
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92 
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Results indicate that the FGA Approach produces 

better results than other approaches except for BOA-based 

solutions and BFA to detect deadlocks in dining 

philosophers’. Table 4 displays the average time of detecting 

deadlocks in the Pac-Man Game problem for some proposed 

approaches. In this problem, a deadlock state occurs when 

Pac-Man eats all the marbles, or the ghost kills Pac-Man. The 

results of the Pac-Man problem indicate that the FGA 

algorithm reduces the average time of detecting deadlocks in 

comparison with GA, PSO, BAPSO, PSO-GSA, IDA*, and 

BS methods. 
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The experimental results of applying the FGA method for 

deadlock detection in the Car Platoon problem are depicted 

in Table 3. 

 
TABLE III COMPARING THE AVERAGE TIMES OF 
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0.69 0.7 0.69 1.

18 
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According to the results of the Car Platoon problem, 

it is vivid that the time of finding deadlock is deficient in all 

methods except the BS approach because different paths end 

with a deadlock state. Based on table 3, the average time to 

detect deadlock of the FGA method in the Car Platoon 

problem is less than the results of other approaches except for 

BOA-based methods. 

Table 4 depicts the average time of deadlock 

detection in Shopping problems for different existing 

methods. In this problem, the deadlock state happens when 

all customers finish their shopping successfully. 

In the Shopping problem, it can be realized that the response 

time of all methods increases according to the increment of 

customers. Unlike the cBOA, tpBOA, BFA, BS, and IDA* 

methods, the FGA method does not face with the state space 

explosion even in models with an ample state space. 

 

 



 

 

TABLE IV COMPARING THE AVERAGE TIMES OF DEADLOCK 
DETECTION IN SHOPPING PROBLEM USING DIFFERENT 

PROPOSED METHODS 
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The running times of some existing methods for 

finding deadlocks in the Process Life Cycle problem are 

illustrated in Table 5. In this problem, the situation where the 

execution of all processes is finished is a deadlock state. 

 
TABLE V COMPARING THE AVERAGE TIMES OF DEADLOCK 

DETECTION IN THE PROCESS LIFE CYCLE PROBLEM USING 
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The results indicate that the proposed FGA method takes less 

time to find a deadlock state and prevent the state space 

explosion in comparison with GA, PSO, BAPSO, PSO-GSA, 

BS, and BFA approaches. 

Table 6 represents the average time of deadlock detection in 

the 8-Puzzle problem using different proposed approaches. In 

this problem, the initial state is the arbitrary configuration of 

tiles, shown in the first column of the table, and the deadlock 

situation occurs when the numbered tiles are arranged in the 

ascending order. 

 
TABLE IVI COMPARING THE AVERAGE TIMES FOR 
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DIFFERENT PROPOSED METHODS 
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In the 8-puzzle problem, where the host graph is a 

complex arrangement and the number of displacements 

which need to be sorted, is high, the state space will be vast 

and complex. So, the average time of deadlock detection will 

be increased, and even the nBOA algorithm is not able to 

respond. The results indicate that the FGA approach has a 

higher performance than GA, PSO, PSO-GSA, and BAPSO 

methods. 

Table 7 illustrates the length of the counterexamples 

produced by some of the existing methods for deadlock 

detection in a sample of the presented case studies. 

 
TABLE VII COMPARING THE LENGTH OF THE 

COUNTEREXAMPLES OF SOME PROPOSED METHODS TO 

DETECT DEADLOCK 

Problems 

Approach FGA GA PSO PSO-

GSA 

Dinning 

philosophers’ 

(30 

philosophers ) 

78 93 111 96 

Game Pac-Man 

(6 ×5) 

61 78 74 79 

Process Life 

Cycle 

(20 Process, 8 

Memory ) 

162 177 179 178 



 

 

 Shopping 

(20 Customer, 

30 Good) 

159 170 175 175 

8-Puzzle 

(Second 

Arrangement ) 

8 13 11 10 

 

It is totally vivid that the proposed FGA method decreases 

the length of counterexamples provide to refute safety 

property in all case studies. 

VII. CONCLUSIONS 

       In this research, a hybrid approach is presented to 

manage the state explosion problem in model checking of 

systems specified by GTS for reachability verification and 

safety refutation by detecting deadlock as well. The 

suggested approach searches the state space intelligently, 

using a fuzzy genetic algorithm to find the state in which the 

specified property is verified or refuted. Moreover, this work 

evaluates the suggested solution by checking toolset of 

GROOVE, and some modification is done in the source code 

by Java language. In this work, the methods based on GA, 

PSO, and PSO-GSA algorithms that presented for deadlock 

detection, used for verifying the reachability property by 

changing their fitness function. These new-implemented 

methods are applied to evaluate the efficiency of the proposed 

approach for reachability verification. The results of applying 

the proposed algorithm on several well-known case studies 

reveal that the FGA approach could generally improve the 

speed of the deadlock detection and reachability verification 

in comparison with previous methods. Also, the length of the 

counterexamples indicates a more significant decrease than 

the algorithms based on GA, PSO, and PSO-GSA. However, 

it should be noted that the suggested method, like other 

proposed meta-heuristic approaches, is not a correct solution. 

If these solutions could not detect the deadlock or find a 

specified reachability property, they could not claim that the 

given model does not contain the deadlock or reachable 

specified state.  

      In future research, the efficiency of the suggested 

algorithm can be improved by using an enhanced fuzzy 

system. The meta-heuristic approaches, proposed to detect 

deadlocks, could be updated to verify the reachability, using 

the suggested fitness function in this paper. Applying a new 

fitness function for the proposed approach can improve the 

experimental results.  

 
            ACRONYMS 

Fuzzy Logic Controllers  FLC 

Fuzzy systems FS 

Genetic algorithm  GA 

Graph transformations system GTS 

Gravitational search algorithm GSA 

Negative application condition NAC 

Particle swarm optimization PSO 

State space explosion SSE 
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