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1. INTRODUCTION 

Multifractal models (Millán, 2013) of network traffic use a 
unique mathematical construction called multifractal measure. 
These models, if properly constructed, can be useful when 
dealing with self-similar processes of network traffic intensity. 
The correct construction includes two fundamental elements: 
the model identification, and the model parameter estimation. 
This article proposes numerical methods to obtain an accurate 
multifractal traffic model. The first part an idea of multifractal 
models will be presented. In the second part are described two 
simple identification methods for multifractal models. In the 
third section, the method of model parameter estimation is 
presented. Using this model, a comparison of results is also 
obtained, including results for various Markov Modulated 
Poisson Process (MMPP) models. 

2. BASIC IDEA OF MULTIFRACTAL MODELS 

A general idea is derived from a construction of a multifractal 
measure special case: binomial measure (Millán and Lefranc, 
2013). 

The model consists of N independent discrete time stochastic 
process pi, j where i denotes a process index and j denotes a 
process sample index. The model sample value with index k 
can be obtained from 
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This means that a single process p2 sample is used twice, a 
process p3 sample is used 4 times, etc. The variance of a pi 
process determines the variance of a model at 2i time scale. 

3. IDENTIFICATION 

The simplicity of the multifractal model structure implies a 
straightforward criterion for its identification. Since the ith 
process determines the self-similarity of the model at the 2i 
time scale, the highest time scale T, at which the fractality is 

required, establish a minimum number of process equal to 
log2 T. However, in some cases this criterion fails, namely 
if characterized traffic trace is shorter than T. In this case, 
certainly, the trace is non-ergodic, and the mean value and 
variance of the traffic intensity cannot be estimated correctly. 
Multifractal properties of traffic flows make it possible to 
detect such a situation, so a non-ergodic trace can be detected 
and disqualified assuming it is fractal. 

A right tool for this job is a multifractal analysis. In the real 
cases, the value of traffic intensity has its upper and lower 
bounds. Thus, assuming, that the model will need a finite 
number of processes (a model with an infinite number is non-
realistic and could not be used for a simulation), each process 
will also have upper and lower bounds on its values. This 
conclusion limits a choice of process distribution to 
distributions defined in the interval. Among them, the Beta 
distribution appears to be the best choice, because it allows a 
continuous and widest range selection of the mean value and 
the coefficient of variance. The probability density function 
of Beta distribution is given by 
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where  (a, b) denotes the Beta function given by 

 
1

1 1

0

( , ) (1 ) ,   , .a ba b x x dx a b        (3) 

In extreme cases this distribution reduces to either two-point 
distribution (a maximum of the coefficient of the variance) or 
a deterministic distribution (a minimum of the coefficient of 
the variance). 

The simplest case is that all process pi are described by the 
same distribution (in this case Hurst exponent of the model 
process is equal to 1). When process pi is described by Beta 
distribution, its parameters should be positive. The analysis 
of this case leads to the conclusion that number of processes 
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where E(x) and  2(x) denote a computed mean value and the 
variance of analysed trace;  

min and  
max denote minimum 

and maximum value of Hölder exponent observed in the trace 
respectively. If a value 2N is greater or close to trace length, 
the trace should be treated a non-ergodic one. 

The values  
min and  

max are obtained with use multifractal 
analysis of traffic pattern. The value of Hölder exponent  (x) 
in point x for a given multifractal measure  (x) is given by 
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where the sum is computed over all values of measure define 
in the neighbourhood of x with radius . To transform a given 
pattern in a multifractal measure a pattern as defined in the 
interval [0, 1] has to be considered and normalized its values. 

The sole purpose of the use of the described above Beta 
distribution is to obtain the identification criteria. Thus Beta 
distribution should not be considered as a requirement 
element of simulation model. However, the distribution of 
process pi in simulation model should be defined only for 
positive numbers since the model value is the multiplication 
of process values and the probability of a negative process 
value. A good choice is a logarithmic-normal distribution 
since there are accurate and efficient methods to generate 
pseudo-random numbers with this distribution. 

4. MODEL PARAMETER ESTIMATION 

The model structure makes it quite simple to determine 
parameters of the model. Each process pi viewed separately 
as in Fig. 1, for all time scales T < 2i is described by a 
constant value of variance. 

Assume that a self-similar logarithmic-normal model process 
si is a multiplication of several logarithmic-normal processes 
pk, j. The process pk is defined in (1). 

The self-similar process has various properties (Cox, 1984), 
which allow to identify and construct them in several ways. 
One of these properties is that a process variance decays 
according to the expression 

 2
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where si(T ) denotes a process si observed at a time scale T, c is 
a constant scaling factor, and the shape parameter, , can be 
expressed as follows 

 2( 1),H    (7) 
where H is a Hurst exponent. The Process si(T ) is defined as 
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The mentioned property allows obtain formulae determining 
parameters of process pk, j. Compute a variance of process si 
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Since a mean value of process si and process si(T ) are the same 
it is easier to perform the following computations with the 
use of the coefficients of variance instead of variances. Thus, 
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Let i denote the coefficient of variance decay for time scale 
2i, i = 22i(1H ). 

Combining (1)-(7) and (8), and assuming that 
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for all k we obtain the following system of N equations 
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Fig. 1. Construction of multifractal model. 



 
 

     

 

The system of equations (12) is illustrated with a graph in 
Fig. 2. The graph explains how the variance of model is 
constructed from the variances of processes pk, j. The iterative 
solution of this system for values of C 2( pk, j) obtained whit 
Gaussian elimination method can be written as follows 
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5. SIMULATIONS AND RESULTS 

The purpose of performed simulations is check the behaviour 
of the presented model in application to network performance 
evaluation and compare a possible error of results obtained 
with the use of this model and other classic models. There 
exists a wide variety of networks interfaces which could be 
used in the reality to regulate a transmission of MPEG traffic. 
In this paper a simple model of Gigabit Ethernet IEEE 802.3ab 
is used. The model consist of an input network queue of 
Ethernet packets with length limited to 10000 places, a simple 
queuing model of Ethernet non-blocking switch; both input 
and output queues are limited to 5000 Ethernet packets per 
queue and sources of an additional traffic (Dong et al., 2010). 

The compared results consisted of mean queue lengths at the 
network input switch, loss probabilities at shaper and switches 
and a variance of an inter-arrival time measured between the 
ends of subsequent MPEG frames on the output network. 

The MPEG traffic model presented in this research has been 
compared with other MPEG traffic models: histogram based 
30-states MMPP model and scene-oriented 300 states MMPP 
model (Ghandali and Safavi, 2011). Results obtained with the 
use of the original Star Wars sequence are assumed as a main 
reference point (Millán, 2018). Most simulation results 
(included mean queue lengths, loss probabilities) indicated no 
significant difference between multifractal, scene-oriented 
MMPP model and modelled trace. The results obtained with 
the use of histogram based MMPP were completely inaccurate. 
Larger differences between these models are visible in Fig. 3 
which presents a variance of an inter-arrival time between 
subsequent MPEG frames measured on the network output. 
In this case none of compared models can be considered as a 
good approximation although the presented multifractal model 
turns up to be the best of them. 

6. CONCLUSIONS 

Presented method is an efficient way to simulate self-similar 
processes suitable especially for network traffic modelling 
since a model processes have positive values and can be 
constrained also a limited range without the loss of self-
similarity and the change of generated process mean value 
and variance. 

 

Fig. 2. Illustration of system equation given by (12). 

 

Fig. 3. A dependence of the MPEG frame inter-arrival time 
variance measured on the output of the network on the link 
load coefficient; X-axis: the link load coefficient, Y-axis: the 
inter-arrival time variance (square seconds). 
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