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Abstract In this paper a comprehensive approach to enable resilient robotic auton-
omy in subterranean environments is presented. Emphasizing on the use of aerial
robots to explore underground settings such as mines and tunnels, the presented
methods address critical challenges related to extreme sensor degradation, path plan-
ning in large-scale, multi-branched and geometrically-constrained environments,
and reliable operation subject to lack of communications. To facilitate resilience
in such conditions, novel methods in multi-modal localization and mapping, as well
as graph-based exploration path planning are proposed and combined with custom
system design. Through a set of field evaluation activities in real-life subterranean
environments we present a “field–hardened” solution that demonstrably enables re-
liable robotic operation in the hard to access but often crucial underground settings.
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1 Introduction

Robotic systems are paving their way to be utilized in an ever–increasing set of ap-
plications in both civilian and military domains alike. Aerial robots, for example, are
currently utilized in a multitude of surveillance [1], industrial inspection [2], search
and rescue [3, 4], and commercial applications [5]. Nevertheless, not every environ-
ment is currently rendered possible for robotic entry and autonomous navigation.
In this work, we focus on the problem of autonomous exploration and mapping
in subterranean settings. Subterranean environments are dull, dirty and dangerous
and are characterized by a set of properties that so far have rendered them hard for
autonomous flying robots. These relate especially to the fact that underground ar-
eas are often a) dark, textureless, obscurants-filled and broadly sensing-degraded,
b) extremely long, large-scale, narrow and multi-branched, and c) communications-
deprived. Despite these major challenges, the benefits of robotic autonomy under-
ground can be very important across application domains. Robots for mine res-
cue in emergency conditions inside underground mines, inspection of subterranean
metropolitan infrastructure (e.g., subways, sewers), exploratory missions within
caves and lava tubes in both terrestrial and extraterrestrial environments, are in-
dicative domains of relevant application. Currently, flying drones are used in under-
ground environments with success but their operation is manual thus prohibiting the
scalability and versatility of their utilization.

Fig. 1 Instances of autonomous graph-based exploration path planning in subterranean environ-
ments. The presented results are based on field tests inside both active and inactive metal mines.

In response to these needs and challenges, this paper presents a holistic work to
facilitate resilient robotic autonomy for subterranean exploration. First it outlines a
set of contributions on multi-modal sensor fusion for robust localization and map-
ping with a special focus on thermal vision fusion to penetrate through obscurants
such as dust and smoke. Second, it describes a novel approach on exploration path
planning in multi-branched and tunnel-like underground environments which is mo-
tivated by the observed limitations of previous methods. In addition to the above, it
outlines the overall system design. Figure 1 presents an instance of the operation of
the presented autonomous aerial robotic scouts for underground settings. This paper
presents a comprehensive overview of the aforementioned contributions.

The remainder of this paper is structured as follows. Section 2 overviews the
related work. Section 3 outlines the robot design, followed by Section 4 outlining the
developed sensing-degraded localization and mapping approach. Section 5 presents
the exploration path planner for subterranean environments, while Section 6 details
field evaluation studies. Finally, conclusions are drawn in Section 7.
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2 Related Work

A niche community has been developed that investigates solutions to the problem of
subterranean exploration. The worksin [6, 7] present methods for topological explo-
ration of subterranean environments based on edge exploration and the detection of
intersections. It has been verified on ground platforms with the Groundhog system
presenting pioneering levels of exploration capacity. The works in [8–13] present
contributions in autonomous localization in underground environments. From a sys-
tems perspective, the works in [14–19] overview technological innovations in aerial,
ground and submersible subterranean robotics. With the domain getting advanced
traction largely due to the ongoing DARPA Subterranean Challenge, in this paper
we present a holistic contribution on the methods and systems for subterranean au-
tonomy capable of a) sensing-degraded localization and mapping, b) exploration
path planning in multi-branched and large-scale tunnel-like settings, and c) robust
and resilient operation with absolutely no human teleoperation. Our work is tailored
to the subterranean domain but at the same time broadly focused on the two core
problems of GPS-denied localization subject to visually-degraded environments and
efficient path planning in very narrow and confined long spaces.

3 Subterranean Aerial Scouts

The presented work is based on the development of the subterranean “Aerial
Scouts”. The intended mission profile of the scouts relates to two types of activ-
ities, namely a) autonomous exploration, rapid response and mine-rescue, as well
as b) comprehensive inspection, precise mapping and characterization. The robots
are designed to be operational in both portal underground mines and mines with
hoist-based sub-level access despite the presence of relatively narrow drifts (e.g.
< 2m in width). A DJI Matrice 100 quadrotor was used as the platform basis. An
Intel NUC Core-i7 computer (NUC7i7BNH) was carried on-board the robot. The
integrated sensing solutions were of two different types. The first consists of a) a
LiDAR (Velodyne PuckLITE), b) a visible-light camera (FLIR Blackfly), and c) a
temperature-calibrated Inertial Measurement Unit (VectorNav VN-100). The sec-
ond solution replaces the visible-light camera with a 640× 512 resolution LWIR
thermal vision system running at 60FPS (FLIR Boson). The camera-to-IMU extrin-
sics were identified based on the work in [20]. The intrinsic calibration parameters
of the thermal camera were calculated using our custom designed thermal checker-
board pattern [21]. The camera-to-LiDAR calibration was derived based on an im-
plementation of the work in [22]. For the purposes of control, the robot utilizes the
low–level attitude control of the DJI system and implements a Linear Model Predic-
tive Control (MPC) as in [23]. Finally, the aerial scouts further ferry a Dual Band
WiFi communication system onboard which is combined with a ground station that
integrates a high-gain (19 dBi) Dual Polarized Flat Panel Antenna. However, de-
spite the amplified signal, a reliable high–bandwidth connection is not possible,
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especially after turns, thus rendering resilient communications-denied autonomy a
necessity. A block-diagram of the basic functionalities of the Aerial Scouts is shown
in Figure 2.

Fig. 2 Block-diagram view of the core functional modules of the aerial scouts. A state machine is
responsible to enable the correct mode of robot operation, namely a) auto take-off, b) autonomous
exploration, c) return-to-home, and d) auto landing.

4 Sensing-degraded Localization And Mapping

Subterranean settings pose major challenges for robotic perception. Environments
such as underground mines, subway tunnels, cave networks or lava tubes are often
sensing-degraded including the fact that they are often a) dark, b) textureless, c)
obscurants-filled (e.g. dust, smoke), d) particularly narrow, and e) occasionally self-
similar. These challenges push the limits of GPS-denied robotic localization and
mapping and call for solutions that overcome such difficulties. Traditional vision-
based or visual-inertial odometry approaches are bound to fail in conditions of ex-
treme visual degradation which can be the case in a dust–filled underground mine
or a subway network filled with smoke in case of an accident. Similarly, methodolo-
gies that rely only on LiDAR can face extreme difficulties in self-similar environ-
ments [24]. In response to these facts it is identified that methods relying on a single
exteroceptive modality are likely to present failure, and thus a multi-modal method-
ology is proposed. Simultaneously, the case of thermal vision-inertial sensing fusion
is explicitly addressed as it provides a solution for most cases of obscurants-filled
environments. Using LongWave InfraRed (LWIR) vision, common obscurants such
as dust or fog are seamlessly penetrated.

4.1 Multi-Modal Localization And Mapping

Towards resilient and resourceful localization in sensing-degraded underground en-
vironments, the fusion of LiDAR, vision, thermal camera and inertial sensing is



Field-hardened Robotic Autonomy for Subterranean Exploration 5

proposed. As a first solution, a loosely-coupled approach is considered with a robot
implementing odometry solutions based on the above sensing modalities or a subset
of them. More specifically, in the framework of our work we specifically consider
the case of LiDAR-vision-IMU fusion or LiDAR-thermal-IMU fusion. LiDAR and
IMU data are fused based on the LiDAR Odometry And Mapping (LOAM) algo-
rithm proposed in [25] thus leading to a generally reliable odometry estimation and
accurate map that can, however, be ill–conditioned in cases of self-similar geome-
tries or the presence of very dense obscurants. Visual-inertial or thermal-inertial
fusion is achieved either through the use of the RObust Visual Inertial Odome-
try (ROVIO) framework [26] or through our recently proposed Keyframe-based
Thermal-Inertial Odometry (KTIO) method [27] (specifically for thermal vision).
The individual odometry estimates are then fused on a cascade Extended Kalman
Filter based on the Multi Sensor Fusion (MSF) framework [28] with the LiDAR
odometry considered to have a fixed- and rather small-valued covariance update
matrix, unless when ill–conditioning is detected as per the work in [24], thus al-
lowing the camera-based solution to dominate. This loosely-coupled approach is
outlined in Figure 3 and although relatively straightforward it allows resourceful-
ness that would otherwise be impossible. A new approach on tight fusion is briefly
outlined in Section 7.

Fig. 3 Loosely-coupled multi-modal fusion for odometry estimation. LiDAR is used for full odom-
etry and mapping and associated with fixed covariance which is only inflated when ill-conditioning
is detected due to geometric self-similarity. Camera-IMU odometry estimation takes place simul-
taneously while the two classes of updates are merged in an Extended Kalman Filter (MSF).

4.2 Thermal-inertial Odometry

Longwave infrared thermal vision (e.g., 7.5 - 13.5µm) allows to penetrate a vari-
ety of solutions such as dust or fog, thus offering a viable alternative to traditional
camera-based localization in degraded obscurants-filled settings. Thermal camera
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systems typically provide a radiometric image with more than 8–bit resolution (e.g.
14-bit in the case of the FLIR Tau2 Core). However, most work on the utilization of
thermal vision for odometry estimation have rescaled the image such that traditional
vision-based odometry schemes (made for grayscale 8-bit frames) can be directly
applied. This approach however has major limitations as it a) leads to information
loss and does not allow the detection of thermal gradients on the full-resolution
image, and b) relies on histogram-equalization techniques, most commonly imple-
mented as Automatic Gain Control (AGC) schemes, to rescale the image in a local
thermal region which, however, leads to extreme changes in intensity when the scene
suddenly involves much colder or much warmer bodies. Simultaneously, heuristic
efforts to fix the rescaling region also leads to major information loss and assumes
a priori knowledge of the temperature and emmissivity aspects of the scene.

In response to these limitations, we recently proposed the Keyframe-based direct
Thermal-Inertial Odometry (KTIO) which a) works directly on 16–bit radiomet-
ric data, b) operates without relying on traditional feature detection and descrip-
tion methods made for 8–bit images and thus remains generalizable across envi-
ronments, and c) employs a joint-optimization architecture in which IMU feeds are
incorporated as constraints. Relying on a keyframe–based approach also offers ro-
bustness against periods of data loss which in fact happen during the Flat Field Cor-
rection (FFC) operation of thermal cameras that commonly last for 500ms. More
specifically, KTIO relies on a 2–stage architecture that can be divided into a front–
end component and a back–end component. This bifurcation allows us to run our
odometry estimation framework in a multi–threaded manner on modern processors.
The key responsibility of the front–end component is to perform an alignment be-
tween an incoming image to previous images in the camera coordinate frame (C)
based on the minimization of radiometric error and to initialize 3D landmarks in
the world coordinate frame (W). Given a set of 3D landmarks, the key responsibil-
ity of the back–end component is to estimate odometry by jointly minimizing the
re–projection errors in landmark positions and the intra–frame inertial measurement
errors over a sliding window. An overview of the approach is shown in Figure 4. As
shown, the front-end component performs four major operations, namely a) image
alignment, b) point initialization, c) point refinement, and d) landmark initialization
and pruning. Thus, it replaces all tasks usually associated with feature detection,
matching and pruning in traditional feature-based approaches while the full oper-
ation takes place in full 16-bit resolution. Given a set of 3D landmarks and iner-
tial measurements between image frames, the back-end is then responsible for full
pose estimation by solving a non-linear optimization problem that minimizes the
re-projection errors of the observed landmarks, while respecting inertial constraints.
Thus, pose estimation is cast as a joint thermal-inertial problem. Full formulation
details of KTIO can be found at [27]. Effectively, this method allows robust esti-
mation of the robot state, IMU bias and landmark locations, despite the presence of
obscurants. Its output is then fused into the cascade Extended Kalman Filter (MSF).
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Fig. 4 Overview of KTIO. The front–end component is responsible for aligning the incoming im-
age to the last two received images and to the last two key–frames. If alignment of the current
image with a past images or key–frames is successful, location of points in the current image are
refined to determine their localization quality. Points with good localization quality are then trian-
gulated to either add observations to previously observed landmarks or initialize new landmarks.
Using the initialized landmarks the back–end jointly optimizes the landmark re–projection and
intra–frame inertial measurement errors in a sliding window approach to estimate the robot pose.

5 Exploration Path Planning Underground

Subterranean settings are often comprised of very large-scale narrow tunnel net-
works with multiple branching points and long geometrically-constrained drifts.
Examples include those of underground mines, metropolitan subway infrastructure,
and cave networks. In response to these facts, the proposed Graph-Based explo-
ration path Planner (GBPlanner) provides fast and efficient solutions for volumetric
exploration despite the large-scale and geometrically-constrained character of such
environments, while simultaneously offering a) safe return-to-home functionality,
and b) solution resourcefulness when the exploration process reaches a dead-end
(e.g. a mine heading). The exploration planning problem is defined as follows:

Problem 1 (Exploration Problem). Given an occupancy map M, find a collision-
free path σ∗ = {ξi} (ξi = [xi,yi,zi,ψi]

T being the flat rigid body configuration) to
guide the robot towards unmapped areas and ensure the exploration of the perceiv-
able volume VE within the total and initially unknown volume V . Under the as-
sumption of a depth sensor S with maximum effective range dmax and perception
that stops at surfaces, the perceivable volume is defined as VE =V \Vres, where Vres
is the residual volume for which no robot configuration exists to map it.

The general operation of the GBPlanner is depicted in Figure 5. As shown, the
planner is organized in a local- and a global-planning stage architecture.
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Fig. 5 Key steps of the proposed planner. The local planner operates within a window around
the current robot location, samples a graph and identifies the path that maximizes the exploration
gain. The global planner offers two functionalities, namely a) re-position to the frontier of the
exploration space when a “dead-end” is reached, and b) return-to-home. For both tasks, the global
planner utilizes a graph incrementally built during the robot operation thus saving the time that it
would take to sample a new graph from scratch.

5.1 Local Planner

Most commonly, the GBPlanner operates with the local planner engaged. The lo-
cal planner operates within a local map subset ML ⊂M centered around the current
robot configuration ξ0. Operating in a local window allows to perform a comprehen-
sive search while remaining computationally lightweight. The local planner operates
by first sampling an undirected graph GL based on the Rapidly-exploring Random
Graph (RRG) algorithm [29] starting from ξ0 as the root. Subsequently, Dijkstra’s
algorithm is used to find all shortest paths {σi} from ξ0 to all sampled vertices.
Then, every such path σi, i = 1...n is evaluated with respect to the exploration gain
primarily based on calculating the new volume to be explored:

ExplorationGain(σi) = e−γSS(σi,σexp)
mi

∑
j=1

VolumetricGain(ν i
j)e
−γDD(ν i

1,ν
i
j) (1)

where mi is the number of vertices in σi, S(σi,σexp), D(ν i
1,ν

i
j) are weight func-

tions with tunable factors γS ,γD > 0, and D(ν i
1,ν

i
j) is the cumulative Euclidean

distance from a vertex ν i
j to the root ν i

1 along the path σi. This aims to penalize
longer paths in order to favor a higher exploration rate. Moreover, S(σi,σexp) is
a similarity distance metric between the planned path as compared to a pseudo–
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straight path σexp with the same length along the current exploration direction. This
decay factor is essential to prevent the robot from a sudden change in its “explo-
ration direction” which might happen when the robot enters an intersection area
with multiple branches or muckbays and the planner proposes small back-and-forth
paths between them to chase higher rewards based on the local volumetric calcula-
tion. If the branch is large and thus gain is significant, then this term is tuned to play
an insignificant role. The exploration direction is simply estimated using a low-pass
filter over a time window of robot positions. Given this exploring direction vector,
denoted as φexp, we then generate a pseudo–straight path σexp using the same length
with σi. Subsequently, the Dynamic Time Warping method (DTW) [30] is utilized to
compute the similarity distance metric. Given the weighted calculation of the gain,
and the derivation of Dijkstra solutions, the Dijkstra path σL,best that maximizes for
exploration gain is selected and conducted by the robot, while the whole procedure
is then iteratively repeated. It is noted that when the local planner cannot report a
path that exceeds an exploration gain above a small threshold gε > 0, then the global
planner is engaged.

5.2 Global Planner

The global planner contributes two key roles in the GBPlanner exploratory behavior,
namely that of a) deriving a safe return-to-home functionality, and b) identification
of paths that re-position the robot at the edge of the exploration space when the local
planner has followed a high–gain route that, however, has eventually led to a dead-
end. To implement its functionality, the global planner utilizes the incrementally
sampled local graphs {GL} alongside the actual robot odometry to build the global
graph GG. At every iteration, GG is utilized to identify a return-to-home path σRH
after a re-sampling step has taken place to introduce more edges and thus improve
the ability to find shorter paths especially when the robot has passed more than once
from the same region. This homing path is engaged when the robot endurance is
such that continuation of the exploration mission and return to home is not possible.
Simultaneously, GG is also utilized when the local planner reports inability to derive
a path of significant exploration gain and while sufficient battery time is available. In
such a case, the exploration gain associated with all vertices of GG is calculated thus
allowing to identify the parts visited before that are at the edge of the exploration
space. A route σRE is then calculated that repositions the robot to the best vertex at
the edge of the known space. Subsequently, the local planner is re-engaged.
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6 Field Evaluation for Resilient Autonomy

In order to systematically evaluate the proposed subterranean exploration autonomy
solution, a set of activities in real underground mines took place. In this work we
present three results from underground metal mines in the U.S. and in Switzerland.

As a first result, we present the autonomous exploration of a subset of the pro-
duction level of an active and modern underground gold mine in Nevada. The pro-
duction level is characterized by a) long yet reasonably wide drifts and frequent
presence of headings or muckbays for equipment storage, b) intense sensor degra-
dation due to dense dust amplified by the flying robot-generated turbulence, and
c) dark and not always texture-rich environments. The autonomous mission is or-
ganized in three phases, namely: a) automatic take-off, b) engaging the GBPlanner
and performing autonomous exploration up to the point that the local planner reports
completion (inability to find a further path to explore), c) automated landing. The
emphasis in this mission is on the behavior of the local step of the planner. Figure 6
presents instances and the full result of the execution of this mission.

Fig. 6 Autonomous exploration of the production level of an underground gold mine. The first
row presents both the local graph and the selected path, while instances of the overall map re-
construction are shown in the second row. Finally, images from the onboard camera, including a
case of dust-based degradation, are shown in the last row. A video of this mission can be found at
https://youtu.be/_96vVchOsvk

The second result relates to a deployment of the presented robotic systems at the
“Lucerne” underground mine at Northern Nevada. This is a portal mine which al-
lowed the robot deployment to take place from above ground and the systems were
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tasked to autonomously access and explore the mine. In this deployment, first a
robot equipped with LiDAR, visible-light camera and IMU conducted two sequen-
tial missions to autonomously explore and map the mine. With the support of three
AprilTags and the method in [31] it became possible to reference robot data from
multiple missions against a common reference frame. Figure 7 depicts the recon-
structed point clouds from two missions of the robot. As shown, based on the exter-
nal frame alignment achieved with the support of the AprilTags, it became possible
to have aligned point clouds from two different missions. This also facilitates the
ability to report coordinates against an external frame, a fact particularly important
when it comes to providing intelligence to teams that need to plan certain actions
(e.g. in the case of mine or cave rescue). In addition, this result is also an indirect
verification of the quality of the localization and mapping solution as two different
runs led to close-to-identical maps. Finally, in these experiments a robot that also in-
tegrates thermal sensing, alongside LiDAR and IMU, was also utilized. Therefore,
it became possible to evaluate the performance of our proposed Keyframe-based
Thermal-Inertial Odometry (KTIO). Figure 8 presents relevant odometry compari-
son. As shown the error between the two solutions is small.

Fig. 7 Simultaneous representation of two reconstructions of the “Lucerne” underground mine
achieved through two sequential autonomous exploration missions and the use of AprilTags posi-
tioned at the mine portal in order to facilitate a common reference frame between the robots. This
also facilitates the ability to report coordinates against an external frame (e.g. georeferencing) as it
would be required for example to schedule rescue activities in the case of a mine accident.

Lastly, a result in which the robot is tasked to explore an unknown area, while
eventually returning to the home location is presented. In this mission, the GBPlan-
ner tracks the remaining battery life of the system in order to engage the global
planning stage such that it can derive a path to safely come back to its initial take-
off location. This field test took place at the Gonzen Mine, an abandoned iron mine
in Sargans, Switzerland. As opposed to the previous mine environments, Gonzen
presents the challenge of very narrow drifts and corridors, often less than 2m wide,
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Fig. 8 Right: Odometry comparison between the Keyframe-based Thermal-Inertial Odome-
try (KTIO) and LiDAR Odometry And Mapping (LOAM). The [x, y, z] RMSE values are
[0.52, 0.06, 0.09]m respectively. Left: Indicative, rescaled, thermal camera frames from the mine.

alongside sharp turns. Figure 9 presents a short exploratory mission followed by an
autonomously triggered return-to-home path.

Fig. 9 Exploration inside the Gonzen iron mine in Switzerland and safe autonomously triggered
return-to-home mission. The first row presents the initial and final robot pose in the exploratory
phase, while the second row presents the return-to-home path followed by the instance of the robot
arriving at its initial take–off location. Finally, the last row presents best paths of the local planner,
alongside indicative camera frames from the onboard color vision sensor. A video of this mission
can be found at https://youtu.be/982iwe8qZGk

7 Conclusions

This paper detailed a comprehensive solution for autonomous subterranean explo-
ration using aerial robots. To achieve this challenging task, contributions across the
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domains of sensing-degraded localization, as well as informative path planning took
place combined with system development and optimization. Extensive field testing
in actual subterranean environments, specifically inside underground mines, allowed
to evaluate the system and optimize its functional loops. Future research will em-
phasize on two prioritized directions, namely a) a common multi-modal localization
and mapping based on factor graph optimization, and b) extension of the planning
framework for ground systems by accounting for example for traversability analysis
over rough terrain.

Acknowledgement

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Agreement No. HR00111820045. The presented
content and ideas are solely those of the authors.

References

1. B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air and ground surveillance,”
IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 16–25, 2006.

2. A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel and R. Siegwart, “Struc-
tural inspection path planning via iterative viewpoint resampling with application to aerial
robotics,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 6423–
6430, May 2015.

3. H. Balta, J. Bedkowski, S. Govindaraj, K. Majek, P. Musialik, D. Serrano, K. Alexis, R. Sieg-
wart, and G. De Cubber, “Integrated data management for a fleet of search-and-rescue robots,”
Journal of Field Robotics, vol. 34, no. 3, pp. 539–582, 2017.

4. T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa, F. Ruess,
M. Suppa, and D. Burschka, “Toward a fully autonomous uav: Research platform for indoor
and outdoor urban search and rescue,” IEEE robotics & automation magazine, 2012.

5. B. Rao, A. G. Gopi, and R. Maione, “The societal impact of commercial drones,” Technology
in Society, vol. 45, pp. 83–90, 2016.

6. D. Silver, D. Ferguson, A. Morris, and S. Thayer, “Topological exploration of subterranean
environments,” Journal of Field Robotics, vol. 23, no. 6-7, pp. 395–415, 2006.

7. C. Baker, A. Morris, D. Ferguson, S. Thayer, C. Whittaker, Z. Omohundro, C. Reverte,
W. Whittaker, D. Hahnel, and S. Thrun, “A campaign in autonomous mine mapping,” in IEEE
International Conference on Robotics and Automation, 2004. Proceedings (ICRA), 2004.

8. P. Debanne, J.-V. Herve, and P. Cohen, “Global self-localization of a robot in underground
mines,” in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Compu-
tational Cybernetics and Simulation, vol. 5, pp. 4400–4405, IEEE, 1997.

9. C. Kanellakis and G. Nikolakopoulos, “Evaluation of visual localization systems in under-
ground mining,” in 2016 24th Mediterranean Conference on Control and Automation (MED),
pp. 539–544, June 2016.

10. J. M. Roberts, E. S. Duff, and P. I. Corke, “Reactive navigation and opportunistic localization
for autonomous underground mining vehicles,” Information Sciences, 2002.

11. D. Wu, Y. Meng, K. Zhan, and F. Ma, “A lidar slam based on point-line features for under-
ground mining vehicle,” in 2018 Chinese Automation Congress (CAC), IEEE, 2018.



14 Authors Suppressed Due to Excessive Length

12. F. Zeng, A. Jacobson, D. Smith, N. Boswell, T. Peynot, and M. Milford, “I2-s2: Intra-image-
seqslam for more accurate vision-based localisation in underground mines,” in Australasian
Conference on Robotics and Automation 2018, December 2018.

13. F. Zeng, A. Jacobson, D. Smith, N. Boswell, T. Peynot, and M. Milford, “Lookup: Vision-only
real-time precise underground localisation for autonomous mining vehicles,” arXiv preprint
arXiv:1903.08313, 2019.

14. A. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver, C. Baker, S. Thayer, C. Whit-
taker, and W. Whittaker, “Recent developments in subterranean robotics,” Journal of Field
Robotics, vol. 23, no. 1, pp. 35–57, 2006.

15. P. Novák, J. Babjak, T. Kot, P. Olivka, and W. Moczulski, “Exploration mobile robot for coal
mines,” in International Workshop on Modelling and Simulation for Autonomous Systems,
pp. 209–215, Springer, 2015.

16. A. Martins, J. Almeida, C. Almeida, A. Dias, N. Dias, J. Aaltonen, A. Heininen, K. T. Kosk-
inen, C. Rossi, S. Dominguez, et al., “Ux 1 system design-a robotic system for underwater
mining exploration,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1494–1500, IEEE, 2018.

17. A. H. Reddy, B. Kalyan, and C. S. Murthy, “Mine rescue robot system–a review,” Procedia
Earth and Planetary Science, vol. 11, pp. 457–462, 2015.

18. S. Buerger and J. R. Salton, “Autonomous unmanned systems technologies to support subter-
ranean operations.,” tech. rep., Sandia National Lab, Albuquerque, NM, USA, 2018.

19. F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis, “A multi-modal mapping unit for
autonomous exploration and mapping of underground tunnels,” in 2018 IEEE Aerospace Con-
ference, pp. 1–7, IEEE, 2018.

20. P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for multi-
sensor systems,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 1280–1286, IEEE, 2013.

21. C. Papachristos, F. Mascarich, and K. Alexis, “Thermal-inertial localization for autonomous
navigation of aerial robots through obscurants,” in 2018 International Conference on Un-
manned Aircraft Systems (ICUAS), pp. 394–399, June 2018.

22. L. Zhou, Z. Li, and M. Kaess, “Automatic extrinsic calibration of a camera and a 3d lidar using
line and plane correspondences,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5562–5569, IEEE, 2018.

23. M. Kamel, T. Stastny, K. Alexis, and R. Siegwart, Model Predictive Control for Trajectory
Tracking of Unmanned Aerial Vehicles Using Robot Operating System, pp. 3–39. Cham:
Springer International Publishing, 2017.

24. J. Zhang, M. Kaess, and S. Singh, “On degeneracy of optimization-based state estimation
problems,” in 2016 IEEE International Conference on Robotics and Automation (ICRA),
pp. 809–816, IEEE, 2016.

25. J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.,” in Robotics: Sci-
ence and Systems, vol. 2, p. 9, 2014.

26. M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry using a
direct ekf-based approach,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Inter-
national Conference on, pp. 298–304, IEEE, 2015.

27. S. Khattak, C. Papachristos, and K. Alexis, “Keyframe-based direct thermal–inertial odome-
try,” in IEEE International Conference on Robotics and Automation (ICRA), May 2019.

28. S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A robust and modular multi-
sensor fusion approach applied to mav navigation,” in 2013 IEEE/RSJ international confer-
ence on intelligent robots and systems, pp. 3923–3929, IEEE, 2013.

29. S. Karaman and E. Frazzoli, “Sampling-based motion planning with deterministic µ-calculus
specifications,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, pp. 2222–2229, IEEE, 2009.

30. A. G. Bachrach, Trajectory bundle estimation For perception-driven planning. PhD thesis,
Massachusetts Institute of Technology, 2013.

31. J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, oct 2016.


