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Abstract

Usually general canonical transformations are applied to a system whose hamiltonien is time
dependent, In our work, these transformations are used to derive the propagator of harmonic
osillator. This is achieved after knowing of free particle propagator.
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1. Introduction
It is well known that an exact and analytical solution of the Shrödinger equation can only
be found for limited number of potentials. If these are, in addition, time- dependent, it
is very rare to be able to find exact solution, as the Shrödinger equation becomes then
a partial-derivative with two variables. For example, for the variable-frequency harmonic
potential oscillator, an analytical solution is found through different methods, among them
the invariant approach [1–3]. The variable-frequency or variable mass oscillator, as well as an
infinite rectangular potential well of variable width, belong to the class of potentials which
can be resolved via the generalized canonical transformations GCT method. These canonical
transformations, followed by time transformation [4], are defined by:

−→
X =

−→
Qρ(t/t0) (1)

−→
P = −→p /ρ(t/t0)

ds

dt
=

1

ρ2(t/t0)
, (2)

where ρ(t/t0) is an arbitrary dimensionless function, and t0 is the time unit which is subse-
quently taken to be 1, Q and p are the new variables.

The subject of this work, in the first stage, is the study of certain time-dependent physical
system [5] which admit, in general, neither invariant nor auxilliary equations. When the
coordinates of such system are submitted to the space-time transformations [1] and [2], the
system becomes equivalent to a variable-frequency harmonic oscillator.

Following the standard procedure by using the Hamiltonian formalism, that is known to
be well adapted to canonical transformation, we establish the general relation which exists
between the propagators when one changes the coordinate system via the GCT. This relation
is valid for all time-dependent potentials.
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In the second stage, we apply the result to find the propagator of harmonic oscillator
with constant frequency. This preliminary and fundamental result can be used in other more
complicated situations where the propagator was not tractable by usually methods [5–7].
2. Propagator for time-dependent potential
In the canonical formulation of the path integrals, the propagator is written formally, in
standard notation, as follows:

K(
−→
X f , tf/

−→
X i, ti) =

∫
D[

−→
X (t)]D[

−→
P (t)] exp

{
i

∫ tf

ti

(
−→
P
−̇→
X −H(

−→
P ,

−→
X, t))dt

}
(3)

where we have posed ℏ = 1 . Via transformations (1) and (2), the Hamiltonian

H(
−→
P ,

−→
X, t) =

−→
P 2

2m
+ V (

−→
X, t) (4)

transforms to

H(−→p ,
−→
X, t) =

−→p 2

2mρ2(t)
−

−→p
−→
Qρ̇(t)

ρ(t)
+ V (

−→
Qρ(t), t), (5)

where the generating function responsible for this transformation is:

F2(
−→p ,

−→
X, t) = −→p X⃗

ρ(t)
.

Moreover, the measure is transformed as:

D[
−→
X (t)]D[

−→
P (t)] = (ρiρf )

−3/2D[
−→
Q(t)]D[−→p (t)]. (6)

The evolution of the physical system is then described in the coordinates (−→p ,
−→
Q, t) by the

propagator

K(
−→
Q f , tf/

−→
Qi, ti) = (ρiρf )

−3/2D[
−→
Q(t)]D[−→p (t)]

exp
{
i

∫ tf

ti

[
−→p
−̇→
Q −

( −→p 2

2mρ2(t)
−

−→p
−→
Qρ̇(t)

ρ(t)
+ V (

−→
Qρ(t), t)

)]
dt

}
(7)

and the use of (2) brings to a constant mass appearing in kinetic term of (7); the propagator
can written as follows:

K(
−→
Q f , tf/

−→
Qi, ti) = (ρiρf )

−3/2D[
−→
Q(s)]D[−→p (s)]

exp
{
i

∫ tf

ti

[
−→p

−̇→
Q −

(−→p 2

2m
−

−→p
−→
Qν̇(s)

ν(s)
+ ν2(s)V (

−→
Qν(s),

∫
s

ν(σ)dσ)
)]

ds

}
(8)

where the derivative is relative to s and:

si =

∫ ti dσ

ρ2(σ)
, sf =

∫ tf dσ

ρ2(σ)
and ν(s) = ρ(t(s)). (9)

The additional term in Eq.(9) can be eliminated by the following canonical transformation:

−→
B = −→p −m

−→
Q
ν̇(s)

ν(s)
and −→

Q =
−→
Q (10)
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with the associated generating function F2(
−→
B ,

−→
Q, s) =

−→
B
−→
Q+m

−→
Q 2 ν̇

2ν
leads to a new Hamil-

tonian

h(
−→
B ,

−→
Q, s) =

−→
B 2

2m
+

mω̄2(s)
−→
Q 2

2
+ ν2(s)V (

−→
Qν(s),

∫
s

ν(σ)dσ) (11)

where
ω̄2(s) =

ν̄(s)

ν(s)
− 2

(
ν̇(s)

ν

)2

= ρ3(t)ρ̈(t). (12)

Taking into account the invariance in this last canonical transformation (10), of the measure,
the propagator (8) is written as:

K(
−→
Q f , tf/

−→
Q i, ti) = (ρfρi)

−3/2 exp
[
im

2

{
ν̇(sf )

ν(sf )

−→
Q 2

f −
ν̇(si)

ν(si)

−→
Q 2

i

}]∫
D[

−→
Q(s)]D[

−→
B (s)]

exp
{
i

∫ sf

si

[
−→
B
−̇→
Q −

(−→B 2

2m
+

mω̄2(s)
−→
Q 2

2
+ ν2(s)V (

−→
Qν(s),

∫
s

ν2(σ)dσ)
)]
ds

}
(13)

or, equivalently, by use of (1) and the relation: ν̇(s)
ν(s)

= ρ(t)ρ̇(t)

K(
−→
X f , tf/

−→
X i, ti) = (ρfρi)

−3/2 exp
[
im

2

{
ρ̇(T )

ρ(T )

−→
X 2

f −
ρ̇(0)

ρ(0)

−→
X 2

i

}]∫
D[

−→
Q(s)]D[

−→
B (s)]

exp
{
i

∫ sf

si

[
−→
B
−̇→
Q −

(−→B 2

2m
+

mω̄2(s)
−→
Q 2

2
+ ν2(s)V (

−→
Qν(s),

∫
s

ν2(σ)dσ)
)]
ds

}
(14)

3. Application to harmonic oscillator
In the case of harmonic oscillator the potential has an independent time form:

V (
−→
X, t) =

m

2

−̇→
X

2

.

After substituting this potential in (14) and putting zero the factor beside a quadratic term
using (12), we obtain

ρ3(t)ρ̈(t) + ρ4(t) = 0

whose general solutions is: ρ(t) = a cos(t) + b sin(t).
Finallay, we are dealing with propagator of free particle:

K(
−→
X f , tf/

−→
X i, ti) = (ρfρi)

−3/2 exp
[
im

2

{
ρ̇(T )

ρ(T )

−→
X 2

f −
ρ̇(0)

ρ(0)

−→
X 2

i

}]∫
D[

−→
Q(s)]D[

−→
B (s)]

exp
{
i

∫ sf

si

[
−→
B
−̇→
Q −

−→
B 2

2m

]
ds

}
= (ρfρi)

−3/2 exp
[
im

2

{
ρ̇(T )

ρ(T )

−→
X 2

f −
ρ̇(0)

ρ(0)

−→
X 2

i

}]
Kfree(

−→
X f , tf/

−→
X i, ti)

(15)

Knowing that:

sf − si = ∆s =

∫ T

0

dσ

ρ2(σ)
=

∫ T

0

dσ

(a cos(σ) + b sin(σ))2 =
sin(T )
aρ(T )

(16)

and the propagator of free particle:

Kfree(
−→
Q f , sf/

−→
Q i, si) =

(
m

2πi(∆s)

)3/2

exp im

2(∆s)
(
−→
Q f −

−→
Q i)

2, (17)
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we find immediately after subtitution of (16) and (17) in (15) the propagator of the harmonic
oscillator [6]:

K(
−→
X f , tf/

−→
X i, ti) =

(
m

2πi sin(T )

)3/2

exp im

2 sin(T )
{
(
−→
X 2

f +
−→
X 2

i ) cos(T )− 2
−→
X f

−→
X i

}
(18)

4. Conclusion
In this work, we have presented the method of general canonical transformations (GCT)
applied to harmonic oscillator moves. Thanks to this method, we have calculated the prop-
agator of three-dimensional harmonic oscillator via the one of free particle. Of course, the
generalization to D-dimensional case follows the same scheme. This method can, undoubt-
edly, be applied to other problems in a large area of physics.
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