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Abstract—This paper focuses on addressing the stochastic
capacitated disassembly lot sizing problem, which aims to deter-
mine the optimal quantity and disassembly dates of used products
in an uncertain environment. The objective is to satisfy the
demand for components and modules while considering random
yield factors. Notably, this work introduces a scenario-based two-
stage stochastic integer programming model that addresses the
complexities of a multi-level disassembly structure with dynamic
demands for the different components at each level and the
yield uncertainties. The objective of the proposed model is to
minimize the expected total cost including holding, backlogging,
overcapacity, and setup costs. Computational experiments are
performed on several instances to evaluate the performance of
the suggested model, and the benefits and implications of this
research are highlighted.

Index Terms—Disassembly lot-sizing, yield uncertainty, two-
stage stochastic programming

I. INTRODUCTION

The disassembly process in the handling of used products
has gained significant attention due to its relevance to both
environmental and economic considerations. Used and/or
end-of-life products, such as vehicles and electronic devices,
can be disassembled since they contain valuable resources
that can be recovered and reused, reducing the demand
for new raw materials and minimizing waste [1] [2]. By
disassembling used returned products, constituent materials,
parts, subassemblies, or other groupings can be systematically
separated and sorted for recycling or refurbishment [3].

To optimize the disassembly process, various decision
problems have been studied such as disassembly line
balancing, disassembly sequencing, disassembly scheduling,
automation and ergonomic problems [4], (see [5], [6], [7], [8],
[9] for extensive literature evaluations on the aforementioned
problems). Among all these issues, the focus of this paper
is to study the Disassembly Lot-Sizing (DLS) problem,

which is a significant planning challenge within the field
of disassembly systems. The main objective is to determine
the optimal schedules for disassembling the used products
i.e. the quantity of products and timing of their disassembly
while satisfying the demand for their individual parts and
components within a given planning horizon.

In the context of industrial applications, the disassembly
process is subject to diverse forms of uncertainty that
can significantly impact its effectiveness. Uncertainties
arise from multiple sources, including fluctuations in
component demand, variability in disassembly yield rates,
and unpredictable disassembly lead times [10]. These
uncertainties introduce disruptions in the disassembly plan,
often resulting in unfulfilled customer demands. One of the
key challenges in disassembly processes is the considerable
variability in the quality of returned products. This leads to
the uncertainty of the number of good quality items obtained
from disassembling a specific returned product. The main
objective of this study is to address this challenge by devising
a strategy to determine the optimal disassembly schedules
under yield uncertainties.

The DLS study challenges are classified based on product
structure (bi-level or multi-level), capacitated or uncapacitated
problem [11], and deterministic or stochastic environment.

The focus of research has been on studying uncapacitated
problems within deterministic contexts (e.g. [12],[13],
[14], [15], [16]). In order to align with industrial reality,
research has started considering and incorporating capacity
constraints into the analysis of the deterministic DLS (e.g.
[17], [18], [19], [20], [21]). Recognizing that capacity
constraints alone may not capture the complexities of
industrial reality in the DLS problems, attention has been
directed toward addressing uncertainties in decision-making



processes, as summarised in Table I. The literature has
particularly explored uncertainties for used products with
two-level structures. Among uncertainties, several works have
considered random demand which pertains to the unknown
demand for disassembled components. [22] has proposed a
re-formulated reverse MRP algorithm using a fuzzy logic
approach to deal with the demand uncertainty, [23] proposed
a Lagrangian Heuristics (LH) for the capacitated DLS under
random demand. [24] added the yield uncertainty with the
random demand and proposed an Outer Approximation
(OA) based algorithm to deal with the two-level capacitated
DLS problem. [7] focused on the unpredictable Disassembly
Lead Times (DLT) as another type of uncertainty in several
works and proposed a scenario-based Stochastic Linear
Programming (S-LP) model. [25] extended the work proposed
by [7] by taking into account the disassembly time capacity
and developed a Sample Average Approximation (SAA)
approach to deal with the Two-Stage Mixed Integer Linear
Programming (2S-MILP). [26] proposed an optimization
methodology that combines the Monte Carlo simulation with
a Genetic Algorithm (GA) to address large-scale instances as
an extension of the work of [25]. [27] proposed a Scenario
Aggregation (SA) approach to deal with the 2S-MILP and
the random disassembly lead times scenarios. In the same
disassembly structure type which is a two-level structure,
[28] extended the navigation and merged the operation time
uncertainty with the demand uncertainty. the authors proposed
a Hybrid Genetic-based Algorithm (HGA) for the capacitated
DLS MILP.

As previously stated, DLS problems under uncertainty
are primarily solved for used products with a two-level
echelon. However, the literature on DLS problems involving
multi-level returned used products is limited. The main reason
for this limitation is the presence of parental component
bonds, which refer to the interdependencies among the
parents and children components at each alternative level.
These parental bonds significantly increase the complexity
of the problem. To address this research gap with the multi-
echelon returned used products, [29] proposed a stochastic
demand-driven two-stage robust programming model for a
three-level disassembly structure. [30] proposed a Lagrangian
relaxation approach for the MILP in hybrid manufacturing
and remanufacturing systems with demand uncertainty. In
the same context, [31] considered an uncapacitated DLS
problem within a remanufacturing system under yield and
demand uncertainties. The authors suggested a Multi-Stage
Mixed Integer Linear Programming (MS-MILP) approach.
[32] dealt with the random Ordering Lead Times (OLT)
in the multi-level DLS problem and developed a two-stage
stochastic model.

In this paper, our main contributions are summarised as
follows:

1) We focus on the influence of yield model selection

on the quality of disassembly decisions for a single multi-
level item. To the best of our knowledge, we are the first
to deal with a multi-echelon capacitated DLS problem with
dynamic demands and random yields. The problem is NP-hard
because of the interdependence of the various sub-assemblies
and components at each level and the time capacity limits [18].
Additionally, the yield uncertainties and the dynamic demands
of the different components make the problem harder to solve;

2) We develop a scenario-based stochastic two-stage
program that considers all the possible scenario combinations
to cope with the problem’s complexity.

The remainder of this work is structured as follows. Section
II gives a detailed description of the problem studied. Section
III presents the stochastic mathematical formulation of the
problem. Section IV lays out the numerical results and finally
section V concludes the paper and provides directions for
future research.

II. PROBLEM DESCRIPTION

We assume a multi-level disassembly system with numerous
components at each level as illustrated in Fig.1.

Fig. 1. A multi-level DLS system

The root item represents the product to be ordered (item
1). Sub-assemblies are intermediary modules that can be
disassembled further (items 2,3 and 4), while the leaf items
represent the items that cannot be further disassembled (items
5, 6, 7 and 8). Furthermore, a child item is any object that
has a parent, whereas a parent item is any item that has at
least one child. Each part in the disassembly product structure
can have only one parent, resulting in no part commonality.

Since the returned used products differ in quality, it
is unknown how many good-quality components will be
obtained. The number of child item i obtained from his
parent item ϕ(i) is random and bounded over known
intervals

[
R−

ϕ(i),i, R
+
ϕ(i),i

]
. As previously stated, demand

for disassembled components is dynamic over the planning



TABLE I
RELEVENT STOCHASTIC DLS PROBLEMS

Authors Level Uncertainty Capacity Resolution approach2 multi Demand Yield DLT DOT OLT
[22] ✓ ✓ F-RMRP
[23] ✓ ✓ ✓ MILP, LH
[29] ✓ ✓ 2S-MILP
[29] ✓ ✓ MILP, LH
[30] ✓ ✓ ✓ ✓ MILP, OA
[31] ✓ ✓ ✓ ✓ MS-MILP
[33] ✓ ✓ S-LP
[25] ✓ ✓ ✓ SAA
[26] ✓ ✓ ✓ GA
[27] ✓ ✓ ✓ SA
[32] ✓ ✓ ✓ 2S-MILP
[28] ✓ ✓ ✓ ✓ MILP, HGA
current paper ✓ ✓ ✓ 2S-MILP

horizon. They are external for leaf items and sub-assembly
parts and internal for root and subassemblies. Finally, the
demand can only be satisfied by disassembling returned
products. Furthermore, due to yield uncertainties in the
disassembly process, meeting certain demands at specific
levels may not be possible. Therefore, the concept of backlog
is introduced to address this issue by allowing missed
demands to be fulfilled at a later stage.

Without loss of generality, we make the following assump-
tions:

• A multi-period disassembly planning for a single type of
root product is considered;

• Disassembly time capacity is limited and the added over
capacity is restricted;

• The root items availability for disassembly is determin-
istic and constant.;

• Initial inventory and backlog levels are null;
• Disassembly yield is a random discrete variable with

a known probability distribution and a bounded known
interval R+

ji and R−
ji;

• R+
ji and R−

ji are strictly positive;

III. MODEL FORMULATION

The objective of this research is to formulate a mathematical
model specifically designed for capacitated multi-level
disassembly systems under yield uncertainties. To facilitate a
comprehensive understanding of the model, a list of notations
used is provided in Table II.

In this paper, we present a scenario-based stochastic
optimization. Specifically, we illustrate yield uncertainty by a
set of scenarios. A scenario is a possible realization of the
yield obtained from disassembling one unit of parent item i.
Let Ωi be the set of all possible realisations of rωΦ(i),i

for each component i. Each scenario ω is a realisation of
the random yield for the component i in a closed interval[
R−

Φ(i),i, R
+
Φ(i),i

]
, where R+

Φ(i),i and R−
Φ(i),i are respectively

the maximum and the minimum quantities of item i obtained

TABLE II
NOTATIONS

Index

t Index of period t, t ∈ T
i Index of item i, i ∈ I
ω Index for scenarios of disassembly yield for each component i, ω ∈ Ωi.

Parameters

T Set of time periods of the planning horizon
I Set of items
Ip Set of parent items
Ie Set of sub-assembly items
Ic Set of leaf items
Ωi Set of possible scenarios of disassembly yield for each item i
dit External demand for leaf or subassembly item i in time period t,
∀i ∈ I\{1}
rωji Random number of units of item i obtained from disassembling one
unit of j for scenario ω, ∀i, j ∈ I
hi Inventory holding cost of one unit of item i, ∀i ∈ I\{1}
bi Backlogging cost of one unit of item i at period t, ∀i ∈ Ic
si Setup cost of parent item i, ∀i ∈ Ie
ϕi Parent of item i, ∀i ∈ I\{1}
gi Disassembly operation time for parent item i, ∀i ∈ Ie
Ct Available capacity in time-period t
F Maximum added overtime
ut Cost of adding a unit of extra capacity in period t
M A large number

Functions

E(.) Expected value of (.)

First Stage Decision variables

Qit Quantity of parent item i to disassemble in period t, ∀i ∈ Ip
Yit Binary indicator of disassembly for item i in period t, ∀i ∈ Ip
Ot disassembly overtime in period t

Second Stage Decision variables

Iωit Inventory level of item i at the end of period t for scenarios ω,
∀i ∈ I\{1}, ∀ω ∈ Ωi

Bω
it Backlog level of item i at the end of period t of scenarios ω,

∀i ∈ I\{1}, ∀ω ∈ Ωi



from disassembling one unit of its parent. We assume that at
least one good quality item i is available at each level i.e.
R−

Φ(i),i is not null and it is equal to 1.
The determination of the number of scenarios
for each component is determined by |Ωi| =(
R+

Φ(i),i −R−
Φ(i),i + 1

)
∀i ∈ I\{1}.

Scenarios are independent and we consider that they are
equally probable.

We solve the studied problem by a 2S-MILP with the first
stage variables being the decisions taken prior to observing the
yield scenarios and the second stage variables being decisions
made after the scenarios are realized. The first stage decision
variables are the disassembly quantities, the setup for item
i ∈ Ie, and the added overcapacity in period t while the
second stage variables are the inventory and backlog levels for
item i ∈ I\{1}. The stochastic formulation of the capacitated
multi-level disassembly lot-sizing problem considers a set of
scenarios that represents all possible yield realizations for
each component i ∈ I\{1}. The objective is to minimize
the expected objective value while determining the optimal
disassembly schedule. Our model builds upon the first seminal
work of [17], which focused on multi-echelon DLS with
capacity constraints and deterministic yields. We include the
yield uncertainties and propose the following 2S-MILP model:

E(TC) = min
∑

i∈I\{1}

∑
t∈T

∑
ω∈Ωi

1

|Ωi|
(hi.I

ω
it + bi.B

ω
it)

+
∑
t∈T

∑
i∈Ip

si.Yit + ut.Ot

 (1)

s.t:

Iωit −Bω
it = Ii0 −Bi0 +

t∑
τ=1

rωϕ(i),i.Qϕ(i),τ −
t∑

τ=1

Qiτ −
t∑

τ=1

diτ

∀i ∈ Ie,∀t ∈ T ,∀ω ∈ Ωi

(2)

Iωit −Bω
it = Ii0 −Bi0 +

t∑
τ=1

rωϕ(i),i.Qϕ(i),τ −
t∑

τ=1

diτ

∀i ∈ Ic,∀t ∈ T ,∀ω ∈ Ωi

(3)

Qit ≤ M.Yit ∀i ∈ Ip,∀t ∈ T (4)

∑
i∈Ip

gi.Qit ≤ Ct +Ot ∀t ∈ T (5)

Ot ≤ F ∀t ∈ T (6)

Qit ≥ 0 ∀i ∈ Ip,∀t ∈ T (7)

Yit ∈ {0, 1} ∀i ∈ Ie,∀t ∈ T (8)

Iωit ≥ 0 ∀i ∈ I\{1},∀t ∈ T ,∀ω ∈ Ωi (9)

Bω
it ≥ 0 ∀i ∈ I\{1},∀t ∈ T ,∀ω ∈ Ωi (10)

The objective function (1) minimizes the sum of the ex-
cepted inventory holding and backlog as well as setup and ca-
pacity exceeding costs over the planning horizon. Constraints
(2) and (3) define respectively the inventory balance level for
each sub-assembly item and each leaf item i at the end of
each time period t for a scenario ω. Constraints (4) guarantee
that a setup cost is generated in a period if any disassembly
operation needs to be performed in that period. Constraints
(5) give the disassembling capacity constraints in each period
t. Constraints (6) present the limit of the added disassembly
overtime. Finally, constraints (7)-(10) provide the domain of
the decision variables.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present the experimental results that
were conducted to analyze and evaluate the performance of
the proposed optimization approach.
The proposed model is implemented in C + + with Visual
Studio Community 2022 17.5.3 and solved with IBM CPLEX
22.1.1 on a PC with Intel (R) Pentium Quad Core processor
and 4 Go RAM under Windows 10.

A. Instance generation

The benchmark values for certain parameters used in this
study are obtained from the following works [18] and [27]
to accommodate the specificity of the capacitated DLS with
random disassembly yields. Table III provides an overview of
the generation approach for each parameter, with the notation
D ∼ U(a, b) indicating that the parameter is randomly
generated according to a discrete uniform distribution within
the range [a, b].

TABLE III
CHARACTERISTICS OF DATA SETS

Parameters Values
dit D ∼ U(50, 200)
hi D ∼ U(5, 10)
bi D ∼ U(100, 200)
si D ∼ U(500, 1000)
gi D ∼ U(1, 4)
Ct D ∼ U(600, 720)
ut D ∼ U(20, 40)
Ft 120

rω
ϕ(i),i

D ∼ U(R−
ϕ(i),i

, R+
ϕ(i),i

)

A total of 135 instances were generated, consisting of 5
random instances for each combination of 3 levels of the
number of periods, 3 levels of the number of components,
and 3 levels of the range of yields of disassembling one unit
of the parent ϕ(i). The level variation of these parameters is



summarised in Table IV.

TABLE IV
PARAMETERS VARIATION

Parameter Variation
T 10 20 30
I 10 20 30

R+
ϕ(i),i

D ∼ U(2, 5) D ∼ U(2, 20) D ∼ U(2, 50)

B. Performance analysis

To take into account the importance of computation time in
the decision-making process, a time limit of 3600 seconds was
set for CPLEX to run. The performance measures that were
utilized include:

• N∗: The number of optimal solutions provided by the
CPLEX solver out of the 5 instances;

• CPU (s): The average computation times in seconds,
which represent the amount of time required to obtain
optimal solutions;

• Gap* (%): The average integrality gap obtained by
CPLEX, The gap is rounded to the nearest 0.01 for
approximation;

The analysis will primarily emphasize the CPU
performance of the proposed approach. Specifically, the
model’s performance is evaluated in terms of computational
efficiency and processing speed.

Table V provides insights into the impact of various
factors on the performance of the proposed 2S-MILP model
in capacitated disassembly problems. The factors under
consideration include the number of periods, the number
of items, and the disassembly yield (i.e., the number of
child items obtained from disassembling a parent item). It
is worth noting that these parameters directly influence the
computation time, namely the number of scenarios for each
component, the maximum yield achievable from the product
structure, and the number of components in the product
structure.

The number of scenarios for each component is important
because it determines the granularity of the analysis. When
the maximum yield that can be obtained from the product
structure is higher, more scenarios for each component need to
be considered to capture the range of possible outcomes. This
increases the computational complexity and can potentially
extend the computation time. Furthermore, the number of
components in the product structure also plays a significant
role. As the number of components increases, the total number
of scenarios to be observed grows. This leads to a larger
search space and subsequently increases the complexity of
the problem. This increased complexity can sometimes result
in the non-existence of a feasible solution in the limited
time of 3600 seconds (marked with ”-”), suggesting that

the computational limitations of the 2S-MILP approach are
encountered for larger scenario sets.

V. CONCLUSION AND PERSPECTIVES

In this study, we focused on addressing a multi-level
capacitated DLS problem for a specific type of used product.
The yields obtained from disassembling one unit of each
parent item were treated as stochastic variables, represented
using interval uncertainty. We proposed a two-stage multi-
period stochastic MILP that holds significant potential for
practical implementation in real-world industrial settings.
Industries engaged in product recovery and remanufacturing,
such as electronics or automotive face complex challenges
in optimizing disassembly operations while accounting for
uncertain yield outcomes. The presented model offers a
promising solution to address these challenges by efficiently
minimizing the expected total cost of inventory, backlogging,
setup, and overcapacity. The mathematical model incorporated
the representation of random yield parameters through a set
of all possible scenarios. The model gives exact solutions
and was tested on different size problems and performance
analysis is presented.

Our ongoing work presents exciting opportunities for fur-
ther research. Firstly, in real-world disassembly operations,
root items (i.e., the used returned products) availability can
indeed be uncertain and subject to variability. Considering
this uncertainty is an important extension of the current work.
Developing heuristics to address the challenges posed by large
test instances would be a valuable direction to explore.
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