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Abstract—Many applications such as surveillance, forensics,
satellite imaging, medical imaging, etc., demand High-Resolution
(HR) images. However, obtaining an HR image is not always
possible due to the limitations of optical sensors and their costs.
An alternative solution called Single Image Super-Resolution
(SISR) is a software-driven approach that aims to take a
Low-Resolution (LR) image and obtain the HR image. Most
supervised SISR solutions use the HR image as a target and do
not include the information provided in the LR image, which
could be valuable. In this work, we introduce Triplet Loss-
based Generative Adversarial Network hereafter referred to as
SRTGAN for image SR problem on real-world degradation. We
introduce a new triplet-based adversarial loss function which
exploits the information provided in the LR image by using it as
a negative sample. Allowing the patch-based discriminator with
access to both HR and LR images optimizes to better differentiate
between HR and LR image; hence, improving the adversary.
Further, we propose to fuse the adversarial loss, content loss,
perceptual loss, and quality loss to obtain an SR image with
high perceptual fidelity. We validate the superior performance
of the proposed method over the other existing methods on the
RealSR dataset in terms of quantitative and qualitative metrics.

I. INTRODUCTION

Single Image Super-Resolution (SISR) refers to the re-
construction of High Resolution (HR) images from the Low
Resolution (LR) input image. It is widely applicable in various
fields such as medical, satellite imaging, forensics, security,
robotics, and so on where LR images are abundant. It is an in-
herently ill-posed problem since obtaining the SR image from
an LR image that might correspond to any patch of the HR
image which is intractable. The most employed solutions are
the supervised super-resolution methods due to the availability
of the HR data and the development of many state-of-the-art
models.

The SISR includes image deblurring, denoising, and super-
resolution, which makes it a highly complex task to reconstruct
HR image from the LR input. Due to recent technological
advances, such as computational power and availability of
data, there has been substantial development in various CNN
architectures and loss functions to improve SISR methods
[1]–[6]. These models have been primarily tested on the

* denotes equal contribution

simulated datasets in which the downsampled LR images are
obtained from the HR images by using known degradation
such as bicubic sampling. For instance, Fig. 1 shows that
the characteristics such as blur and details of true and bicu-
bic downsampled LR images do not correspond exactly for
both RealSR and DIV2KRK dataset. Such differences can
be attributed to underlying sensor noise and unknown real-
world degradation. Hence, the models perform well on those
synthetically degraded images, they generalize poorly on the
real-world dataset [7]. Further, most of the works have shown
that increasing the number of the CNN layers, do increase the
performance of the model up to some extent. However, they
are unable to capture the high frequency information such as
texture in the images as they rely on the pixel-wise losses and
hence suffer from poor perceptual quality [8]–[11].

To address the issues mentioned above, the research com-
munity has also proposed using Generative Adversarial Net-
works (GANs) for SISR task. The first GAN-based framework
called SRGAN [14] introduced the concept of perceptual
loss for super-resolution, which has both content and adver-
sarial losses. Subsequently, numerous GAN-based methods
were introduced that have shown improvements in the super-
resolution results [14]–[16]. GANs are also used for generating
perceptually better images [14], [15], [17]. Motivated by such
works, we propose SR using Triplet loss based GAN (SRT-
GAN) - a triplet loss based patch GAN comprising a generator
trained in a multi-loss setting and a patch-based discriminator.
The discriminator takes its input as an LR and corresponding
HR and SR images. The inherent formulation of the triplet loss
implicitly forces the discriminator to penalize LR foreground
patch more than a LR background patch, which is missing
when directly trained using vanilla GAN. In a vanilla GAN,
in which we train the discriminator to classify image as HR or
LR, each patch of the image would be scored in quality, the
caveat being, even in HR images, the background is blurred
and could be considered lower quality which would cause
spurious loss to back propagate. We overcome this issue in
triplet loss by introducing the LR and HR images as negative
and positive samples, respectively and the SR image as an
anchor.

Further, the proposed SR method is trained on a fusion of



RealSR dataset [12] DIV2KRK Dataset [13]

Fig. 1: True LR and corresponding bicubic downsampled LR image from ground truth HR of the RealSR dataset [12] and
DIV2KRK dataset [13].

losses namely the content, multi-layer perceptual, triplet-based
adversarial and quality assessment. Minimizing the content
and perceptual losses train the network to keep the information
consistent in the HR and LR images; however, training just on
content loss can cause blurring. Perceptual loss overcomes this
problem by not directly computing the loss on pixel values but
on the latent space. The quality assessment network assesses
an image based on human rankings; hence. minimizing this
loss would lead to increasing the quality of image based
on human perception. Finally, the adversarial loss is a loss
function that is aimed to aid the generator in creating SR image
through a min-max setting. Using such fusion of different
loss functions, we obtain superior visual quality of SR results.
Additionally, the proposed method also gains better PSNR and
competing SSIM values on RealSR dataset, which are still not
a valid metric as they fail to capture the perceptual features.
Hence, we evaluate the performance of the proposed method
on the perceptual measure, i.e., LPIPS score, and the proposed
method outperforms the other state-of-the-art methods in the
quantitative evaluation in addition to the visual performance.

The proposed novel method provides superior results on
the synthetic data and outperforms to the current state-of-
the-art methods on the Real-Data for upscaling factor ×4.
We demonstrate this using two datasets - RealSR (real-
world degradation) [12] and DIV2KRK dataset (synthetic
degradation) [13]. In addition, DIV2KRK which happens to
be a synthetic dataset also has this variation as it has a
highly complex and unknown degradation model. Hence, our
proposed method has been trained and validated on these
datasets proving the generalizability on the real-world data.

Our key contributions in this work can therefore be listed
as:

• We introduce a new triplet-based adversarial loss function
which exploits the information provided in the LR image
by using it as a negative sample as well as the HR image
which is used as a positive sample.

• Further, a patchGAN based discriminator network is
utilized that assists the defined triplet loss function for
training of the generator network.

• Additionally, the proposed SR method is trained on
weighted combination of various losses. Such fusion

of different loss functions leads to superior quantitative
and subjective quality of SR results as illustrated in the
results.

• The sensitivity of the proposed network is analyzed with
experiments in the ablation study. Additionally, different
experiments have been carried out in order to judge the
potential of the proposed model. Also, quantitative and
qualitative studies have been performed, which show the
superiority of the proposed method-SRTGAN over the
other state-of-the-art SR works.

The structure of the paper is designed in the following
manner. Section II consists of the related work in the field.
Further, the description of the proposed method is elaborated
in Section III. It includes the proposed framework, the net-
work architecture and loss formulation related to the training
the Generator and Discriminator networks. The experimental
validation of the proposed methods is presented in Section IV,
followed by the conclusion of the work in Section VI.

II. RELATED WORKS

Dong et al. [18] proposed Convolutional Neural Network
(CNN) based SR approach (referred to as SRCNN) where
only three layers of convolution had been used to correct
finer details in an upsampled LR image. Similarly, FSRCNN
[5] and VDSR [19] were inspired by SRCNN with suitable
modifications to further improve the performance. VDSR [19]
is the first model that uses deep convolutional neural network
and introduces the use of the residual design that helps in the
faster convergence with improvement in SR performance. Such
residual connection also helps to avoid vanishing gradient
problem, which is the most common problem with deeper
networks. Inspired from VDSR [19], a number of works [6],
[14], [20]–[22] have been reported with the use of residual
connection to train deeper models. Apart from residual net-
work, an alternative approach using dense connections has
been used to improve SR images in many recent networks [4],
[23], [24]. The concept of attention was also used in several
efforts [20], [25] to focus on important features and allow
sparse learning for the SR task. Along similar lines, adversarial
training [26] has been reported to obtain better perceptual SR
results. Ledig et al. introduced adversarial learning for super-
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resolution termed as SRGAN [14], which shows perceptual
enhancement in the SR images even with low fidelity metrics
such as PSNR and SSIM. Many works such as SRFeat [17] and
ESRGAN [15] inspired by SRGAN have been recently reported
to improve the perceptual quality in obtaining SR images. A
variant of GAN, TripletGAN [27] demonstrated that a triplet
loss setting will theoretically help the generator to converge
to the given distribution. Inspired by TripletGAN, PGAN [28]
has been proposed, which uses triplet loss to super-resolve
medical images in a multistage manner.

Most of the works suggested above have the limitation of the
training data prepared by artificial degradation such as bicubic
downsampling. The CNN model trained on such dataset often
generalizes poorly for real-world data where degradation is
significantly different from that of bicubic downsampling (see
Fig. 1). In order to make models generalizable to the real-
world data, the supervised deep networks require real LR-
HR paired images which is challenging. To this extent, Cai
et al. [12] introduced the RealSR dataset and a baseline
network named Laplacian Pyramid-based Kernel Prediction
Network (LP-KPN) to recover real-world HR images. Many
representative SR works on the RealSR dataset have been
reported recently with considerations to real data [29]–[35].

Further, Cheng et al. [30] proposed an encoder–decoder
based residual network for the real SR approach. They em-
ploy coarse to fine method, which gradually restores lost
information and reduces the noise effects. Kwak et al. [35]
introduced a fractal residual network to super-resolve the real-
world LR image by using autoencoder-based loss function.
They also proposed an inverse pixel shuffle at the beginning
of the network architecture which helps them to reduce the
number of training parameters. For high fidelity recovery of
image details, Du et al. [33] proposed an Orientation-Aware
Deep Neural Network (OA-DNN), which consists of several
Orientation Attention Modules (OAMs). Here, in each OAM,
three well-designed convolution layers are used to extract
orientation-aware features in different directions. Further, Xu
and Li [34] have introduced a spatial color attention-based
network called SCAN for real SR. In SCAN, the spatial color
attention module is designed to jointly exploit the spatial and
spectral dependency within color images. In this direction, to
improve the perceptual quality of SR images on realSR dataset,
we propose a novel framework based on triplet loss in the
manuscript inspired from [27].

Although, there have been previous attempts to incorpo-
rate the triplet loss optimization for super-resolution such as
PGAN [28], which progressively super-resolve the images
in a multistage manner, it has to be noted that they are
specifically targeted to medical images, and in addition, the
LR images used are obtained through a known degradation
(such as bicubic sampling) and blurring (Gaussian filtering).
Thus, it fails to address the real-world degradation. Using the
triplet loss, the proposed patch-based discriminator is able to
differentiate better between low and high resolution images,
thereby improving the perceptual fidelity. To the best of our
knowledge, the application of triplet loss to the real-world

Fig. 2: The architecture framework of proposed method-
SRTGAN for image SR.

SISR problem has not been explored before. We therefore
propose the new approach as explained in the upcoming
section.

III. PROPOSED METHOD

Fig. 2 shows the detailed framework of the proposed
architecture. The proposed supervised SR method expects
the LR and its corresponding HR images as the input. It
performs SR on the LR image using the generator network
and the training of the generator network rely on a fusion
of losses consisting of content, perceptual, adversarial, and
quality assessment. As depicted in Fig. 2, the content Loss is
calculated as the pixel based difference as L1 loss between
the SR and HR images. It helps to guide the generator to
preserve the content of HR image in the SR image. As the
generator network is trained in an adversarial setting with the
discriminator, we use a triplet setting for calculating GAN
loss, which also boosts the stability of the learning. Apart
from GAN loss, we incorporate perceptual loss, which is
calculated as L1 loss between features obtained from pre-
trained VGG network as suggested in SRGAN [14]. Moreover,
to improve the perceptual quality of SR image, we employ
quality assessment loss based on Mean Opinion Score (MOS),
which is introduced by Prajapati et al. [22]. The validation of
each setting in the framework is demonstrated in the ablation
section later. The different networks utilised in the proposed
method is described in the following texts.

Generator Network (G): Fig. 3 shows the design architec-
ture of the generator network published in [36]. Based on its
functionality, the architecture can be divided into three differ-
ent modules: Low-Level Information Extraction (LLIE), High-
Level Information Extraction (HLIE), and SR reconstruction
(SRRec) modules. In order to extract the low-level details
(i.e., Il), LR input (ILR) is first fed to the LLIE module.
This module consists of a convolutional layer having kernel
size 5 and 32 channels. Larger kernel is used, which leads
to larger reception area for predicting the accurate low-level
information. This can be expressed mathematically as,

Il = fLLIE(ILR), (1)

3



Fig. 3: The design architecture of the generator network [36].

where fLLIE indicates the operation of the LLIE module.
The HLIE module uses the low-level information obtained

from the LLIE module to extract edges and fine structural
details present in HR image. The HLIE module consists of
16 Residual-In-Residual (RIR) blocks with one long skip
connection. It is noted that the long skip connection is used
to stabilize the network [14], [15], [22], [36]. Each RIR block
is designed using 3 residual blocks with 1 × 1 convolutional
layer in skip connection. The Residual block consists of 4
convolutional layers with a kernel size of 3 and a Channel
Attention (CA) module. The CA module re-scales each chan-
nel individually on the basis of the statistical average of each
channel [20]. As depicted in Fig. 3, skip connections are also
used in residual blocks, which aids in stabilizing the training of
deeper networks and resolving the vanishing gradient problem.
The output from HLIE module can be expressed as,

Ih = fHLIE(Il). (2)

Here, the fHLIE denotes the function of the HLIE module.
Now, the feature maps with high-level information are passed
to the SR Reconstruction (SRRec) module, which comprises
of 1 up-sampling block and 2 convolutional layers. This helps
in mapping the high-level information feature maps to the
required number of channels needed for SR output image
(ISR). This can be expressed as,

ISR = fREC(Ih), (3)

where fREC is the reconstruction function of the SRRec
module. In each up-sampling block, the nearest neighbor is
employed to perform 2× up-sampling with convolutional layer
having kernel size of 3 and feature maps of 32. Finally, a
convolutional layer is used to map 32 channels into 3 channels
of SR image in the generator network.

Discriminator (D) Network: We further use a PatchGAN
[37] based discriminator network to distinguish foreground

and background on patch with scale of 70 × 70 pixels. The
proposed architecture is displayed in Fig. 4. It has been
designed by following the guidelines suggested in the work of
PatchGAN [37]. It consists of five convolutional layers with
strided convolutions. The number of channels is increased by a
factor of two after each convolution, excluding the last output
layer where channel is kept one. It uses a fixed stride of two
except for the second last and output layer where stride is
set to 1. It is noted that a fixed kernel size of 4 is used for
all layers throughout the discriminator network. Further, each

Fig. 4: The architecture design of discriminator. Here, n repre-
sents number of channels and S represents stride, respectively.

convolutional layer except the output layer is used with leaky
ReLU activation having leaky constant of 0.2, and padding of
size one. All intermediate convolutional layers except the first
and last layer use Batch Normalisation.

Quality Assessment (QA) Network: To improve the per-
ceptual quality of SR images, a novel quality-based score
which serves as a loss function in training as inspired by
Prajapati et al. [36] is also employed. The design of such
deep network is inspired by the VGG, as shown in Fig. 5
[14]. The QA network is trained to mimic how humans rank
images based on its quality; hence, adding the QA loss in
the overall optimization improves the image quality based on
human perception. Here, two paths have been used to provide
input to the network instead of a single one, and both of these
features are subtracted to proceed further. Each VGG block
comprises of two convolutional layers, the second of which
utilizes a stride value of 2 to reduce the spatial dimension
of the features. To limit the number of trainable parameters,
the network uses Global Average Pooling (GAP) layer instead
of flattening layer. To overcome the issue of over-fitting, a
drop-out technique is employed at fully connected layers.
The KADID-10K [38] dataset, consisting of 10, 050 images,
was used to train the QA network. Further, the dataset has
been separated in 70%-10%-20% ratio for train-validate-test
purposes respectively during the training process.

A. Loss Functions

As depicted in Fig. 2, the proposed framework is trained
using a fusion of content loss (pixel-wise L1 loss), GAN loss
(triplet based), QA loss, and perceptual loss. Mathematically,
we can describe the loss of generator by following formula:

Lgen = λ1Lcontent+λ2LQA+λ3L
G
GAN+λ4Lperceptual. (4)

The values of λ1, λ2, λ3 and λ4 are set empirically to 5,
2× 10−7, 1× 10−1 and 5× 10−1, respectively. As mentioned
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Fig. 5: The architecture of QA network [36].

earlier, the content loss has been used to preserve the content,
which is an L1 loss between original HR image (i.e., IHR) and
generated SR image (i.e., ISR), and same can be expressed as,

Lcontent =

N∑
‖G(ILR)− IHR)‖1, (5)

where N is the number of batch in training process, and G
represents the function of generator.

As discussed earlier, to further improve the perceptual
quality of SR image, a Quality Assessment (QA) loss is also
introduced in the proposed framework, which is computed
using trained QA network. It rates the quality of SR image on
a scale of 1-5, with a higher value indicating better quality.
This predicted value is used to calculate the QA loss i.e., LQA,
which is expressed as [36],

LQA =

N∑(
5−Q(ISR)

)
, (6)

where Q(ISR) represents the quality score of SR image
obtained from the proposed QA network. The perceptual loss
Lperceptual is used here to improve the perceptual similarity
of the generated image with its ground truth, which can be
expressed as,

Lperceptual =

N∑[ 4∑
i=1

MSE(F i
HR, F

i
SR)
]
. (7)

Here,
∑N

[·] denotes an average operation of all super resolved
(fake data) in the mini-batch, MSE(a, b) represents Mean
Square Error (MSE) between a and b, F i: Normalised features
taken from layers[i] and layers = [relu12, relu22, relu33,
relu43]. Here, layers is the list of four layers of VGG-16
used for the calculation of perceptual loss [9]. Such loss
is calculated as the MSE between the normalized feature
representations of generated image (FSR) and ground truth
HR (FHR) obtained from a pre-trained VGG-16 network. It
is not dependent on low-level per-pixel information that leads
to blurry results. Instead, it depends on the difference in high-
level feature representations which helps to generate images
of high perceptual quality. In addition, the idea of using multi-
layer feature representations adds to its robustness.

The GAN loss used here is a triplet-based loss function
to a patch-based discriminator. An image consists of 2 parts,

Background and Foreground; according to human perceptions,
we rate images to be higher quality based on the foreground,
which is the focus of the image. On the other hand, background
between LR and HR images is hard to differentiate as shown
in Fig 7. When using a Patch GAN with L2 loss, network try
to give SR and HR images with opposite labels, and they do
not consider the fact that a patch could correspond to the back-
ground image, and it will be very hard for the discriminator
to give an LR background and an HR background opposite
labels. A background patch could lead to a high loss and
cause instability and noise in training. However, in the case
of foreground patches, this idea will work well. To solve this
problem, we introduce the use of triplet loss: Instead of forcing
the discriminator output for HR and SR to be opposite labels,
we calculate the loss using the relative output produced by
the discriminator for HR, LR, and SR images. Here let us say
for a background image, the quality of the image for HR, LR,
and SR will be similar; hence the loss would not be large;
however, in the case of a foreground image, the discriminator
output of HR and LR is going to vary as the patch quality
will be different, and the discriminator and generator would
be trained likewise. Thus, the triplet loss has three variables
in it - positive, negative, and anchor. The cost function is such
that it minimizes the distance between the anchor and positive,
while maximizing the distance between the anchor and the
negative. For the generator, the anchor is defined as the SR
image (ISR), the positive is defined as the HR (IHR), and
the negative is low-resolution image (n(ILR)) where n is the
bicubic upsampling function. For discriminator training, the
positive and negative are interchanged. Thus, the generator
and discriminator losses are then defined as,

LG
GAN =

N∑[
MSE(D(ISR), D(IHR))−MSE(D(ISR), D(n(ILR)))

+1
]
,

LD
GAN =

N∑[
MSE(D(ISR), D(n(ILR)))−MSE(D(ISR), D(IHR))

+1
]
.

Here, MSE(a, b) represents MSE between a and b; n denotes
upsampling factor. Here, LD

GAN and LG
GAN loss functions

are used to train the discriminator and generator networks,
respectively. This triplet based GAN loss teaches the Generator
to generate sharp and high-resolution images by trying to con-
verge SR embeddings D(ISR) and HR embeddings D(IHR)
and diverge SR embeddings with LR embeddings D(n(ILR))
from the Discriminator. Simultaneously, it also trains the
patch-based Discriminator to distinguish the generated SR
image from ground-truth HR.

IV. EXPERIMENTAL RESULTS

In order to see the effectiveness of the proposed method,
we have conducted numerous experiments on two different
datasets. All experiments have been conducted on a computer
with Intel Xeon(R) CPU with 128GB RAM and NVIDIA
Quadro P5000 GPU with 16GB memory. Hyper-parameter
tuning, visual and quantitative evaluations of the proposed
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Fig. 6: The comparison of the SR results obtained using the proposed method-SRTGAN and without QA Loss and without
Triplet Loss (Vanilla GAN Loss) method on (A)-RealSR validation dataset [12] and (B)-DIV2KRK dataset [13].

Fig. 7: Comparison of background patch in LR and HR images.

approach with other state-of-the-art methods have been elab-
orated in the following subsections.

A. Training Details and Hyper-parameter Tuning

To perform supervised training using the proposed ap-
proach, we use RealSR dataset [12]. In this dataset, paired
LR-HR images on the same scene are captured by adjusting
the focal length of a digital camera. An image registration
algorithm is developed to progressively align the image pairs at
different resolutions. A total of 400 images have been used in
the dataset for training of the proposed model. For validation,
an additional 100 pairs of LR-HR images are used, which
are provided in the same dataset. Finally, for testing purpose,
images of validation sets of DIV2KRK [13] and testing images
of RealSR [12] datasets are used. During training phase, the
LR images are passed through different augmentations such
as random horizontal flipping, random rotation of 0 or 90,
and random cropping operations. We train our model using
Adam optimizer upto 1, 500 iterations with batch size of 32.
We keep β1 value as 0.9, and set learning rate at 1×10−5. We
decrease this learning rate by half after every 500 iterations.
Further, the total number of trainable parameters of generator
and discriminator networks are 3.7M and 2.7M , respectively.

We have also used QA network-based loss in order to
improve the perceptual quality of the SR images. The reference
of this method has been taken from the work of [36]. In

TABLE I: The quantitative assessment of the proposed method
without QA and without discriminator networks carried out on
RealSR validation dataset [12].

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o Triplet Loss (Vanilla GAN Loss) 25.879 0.72199 0.37095
w/o QA Network 16.126 0.39542 0.51217
Proposed 26.47283 0.754585 0.283878

addition, a Triplet Loss is used in loss optimization to enhance
the visual appearance and perception of the SR images to make
them more realistic. It uses the output from the previous stage
as a baseline, thereby being able to improve the quality of the
SR images in a stepwise manner.

B. Ablation Study

We show the experimental justification for employing Dis-
criminator network in addition to Triplet Loss and QA network
to improve the quality of SR images in the proposed method
in this section. The quantitative and qualitative results of this
experiment carried out on RealSR dataset [12] are depicted in
Table I and Fig. 6, respectively. Our approach shows better
SR results not only on synthetic data but also on the real
world data for RealSR dataset. The quantitative assessments
in terms of different distortion metrics such as PSNR &
SSIM and in terms of perceptual measure such as LPIPS
show that the proposed method with QA network and Triplet
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TABLE II: The quantitative comparison of the proposed
and other existing SR methods on RealSR validation and
DIV2KRK datasets.

Method PSNR ↑SSIM [40] ↑LPIPS [39] ↓PSNR ↑SSIM [40] ↑LPIPS [39] ↓
DIV2KRK [41] Dataset RealSR [12] Dataset

Bicubic 23.89 0.6478 0.5645 25.74 0.7413 0.4666
ZSSR [42] 24.05 0.6550 0.5257 25.83 0.7434 0.3503
KernelGAN [43] 24.76 0.6799 0.4980 24.09 0.7243 0.2981
DBPI [44] 24.92 0.7035 0.4039 22.36 0.6562 0.3106
DAN [45] 26.07 0.7305 0.4045 26.20 0.7598 0.4095
IKC [46] 25.41 0.7255 0.3977 25.60 0.7488 0.3188
SRResCGAN [16] 24.00 0.6497 0.5054 25.84 0.7459 0.3746
Proposed 24.17 0.6956 0.3341 26.47 0.7546 0.2838

Loss perform better (see Table I) when compared to the
performance obtained using the proposed method without
those modules. Further, as displayed in Fig. 6, the SR results
obtained using the proposed network with QA network and
Triplet Loss are perceptually better than the proposed approach
without incorporating these modules. The efficacy of the pro-
posed method can be verified by closely analyzing the visual
appearance of the outputs of different methods. It is observed
that the model without QA Network generates blurry output
and variation in the image’s natural color. The model without
Triplet Loss (Vanilla GAN Loss) quite resembles the color as
expected in the ground truth; however, it fails to sharpen the
image around the edges resulting in blurring. The superiority
of the proposed method can be seen as it is able to generate SR
images, displaying an adequate level of sharpening around the
edges and preserving the color-coding of the original image.
Here, one can easily deduce the perceptual improvement from
our proposed approach by observing at Fig. 6.

C. Quantitative Analysis

Generally, for comparison of SR results obtained using
the proposed method with other state-of-the-art methods, the
PSNR and SSIM values are estimated, which are the standard
measurements for the SR problem. However, these metrics do
not entirely justify the quality based on human perception.
Therefore, we estimate an additional metric, called LPIPS
[39] which is a deep network based full-reference perceptual
quality assessment score. A low LPIPS value indicates better
visual quality.

Table II shows the comparison of all three metrics obtained
on the RealSR validation [12] and DIV2KRK [13] datasets.
The proposed method-SRTGAN obtains better SSIM and
LPIPS values than the other existing state-of-the-art methods
indicating the superiority of the proposed method in terms
of quantitative evaluation. In terms of PSNR, our proposed
method outperforms to other state-of-the-art methods on the
RealSR dataset [12], whereas it performs competitively to
other methods on the DIV2KRK dataset [13]. The perceptual
metric, LPIPS obtained using the proposed method is signifi-
cantly better for both datasets using the proposed method (see
Table II).

D. Qualitative Analysis

In addition to quantitative comparison, in this section, we
demonstrate the effectiveness of the proposed method through

visual inspection. We compare the SR results on an image
of RealSR validation dataset [12] in Fig. 8 in which original
HR image (Ground Truth) is available, and on two sample
images of DIV2KRK dataset [13] (see Fig. 9 and Fig. 10)
where original images are not provided. Additionally, we use
different state-of-the-art pre-trained networks such as ZSSR
[42], KernelGAN [43], DBPI [44], DAN [45], IKC [46],
and SRResCGAN [16] to perform SR comparison. It can
be observed from these SR results that the amount of noise
present in the SR image of the proposed method is reduced
considerably, and the clarity of the image is increased as
compared to the recently proposed competing methods. In
addition, our method is able to produce similar colors as the
ground truth while competing approaches such as IKC and
KernelGAN over-boosts the colors in the generated images.

It can be concluded that the proposed method for SISR
generates better quality SR images having fewer noise arti-
facts than those obtained with other state-of-the-art methods.
Furthermore, this result is also demonstrated by the quantita-
tive evaluation of various quality metrics (see Table II) and
obtained perceptual quality on various datasets as illustrated
in different figures (see Fig. 6 - Fig. 10).

V. LIMITATIONS

The proposed work obtains better results on real-world data;
however, we note certain limitations as well. The network
is stable only when fine-tuned for all the losses. As we
can observe in Fig. 6, the removal of the QA loss leads
to undesirable outputs. Thus, fine-tuning of each loss is an
expensive process. Another limitation for using the current
model is that the generator and discriminator are trained in a
supervised manner and hence it requires true HR-LR image
pairs which can be difficult to obtain as this will need the same
image to be clicked by cameras of two different resolutions.
However, our work can be easily extended to unsupervised
approach, as the core idea of generative modeling is to treat
such unsupervised problems in a supervised manner.

VI. CONCLUSION

We have proposed a solution to the problem of SISR
based on TripletGAN that fuses the novel triplet loss and no-
reference quality loss along with the other conventional losses.
We further modify the design of discriminator to be a patch-
based discriminator for improving image quality at the scale
of local image patches. The triplet loss uses not only the high-
resolution image but also the low-resolution image and hence,
it captures the essential information required in the SR image.
Through experiments, we have demonstrated that the proposed
method-SRTGAN can super-resolve images by a factor of ×4
of original LR image with improved perceptual fidelity. As
demonstrated through the SR results, the proposed method is
able to obtain superior performance to competing methods in
the SR task in terms of perceptual quality.
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Fig. 8: The comparison of the SR results obtained using the proposed and other state-of-the-art methods on RealSR validation
dataset [12].

Fig. 9: The comparison of the SR results obtained using the proposed and other state-of-the-art methods on DIV2KRK dataset
[41].

Fig. 10: The comparison of the SR results obtained using the proposed and other state-of-the-art methods on DIV2KRK dataset
[41].
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