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Abstract—The vector autoregressive (VAR) model is one of 
the cores of analyzing the structure of multivariate time series 
over time. VAR is becoming more and more popular with 
complex data structure and huge data size. However, at the 
same time, the traditional MCMC application on the VAR 
model encounters the problem of excessive calculation time. To 
overcome the problem, we proposed the variational Bayesian 
Method for the VAR data analysis. The performance of the 
proposed method is illustrated via simulation studies.  
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I. INTRODUCTION  
The vector autoregressive (VAR) model is one of the cores 
for analyzing the time-dependent structure of multivariate 
time series. It is an extension of the univariate autoregressive 
(AR) model, which not only has sequence dependence in each 
time series but also has mutual dependence in different time 
series. In recent years, due to the complicate data structure 
and huge data size, VAR is more and more popular. For 
example, Weron [1] and Ziel and Weron [2] use VAR model 
in the electricity price related applications. However, with the 
increasing of the dimensionality, the VAR model has the 
overparametric problem which would give some troubles in 
the data analysis, because when the model has m time series 
and each time series has 𝑝𝑝 lags, there should estimate 𝑝𝑝𝑝𝑝2 
coefficients in the VAR model. 
 
To overcome this weakness in VAR model, we may impose 
some meaningful structural assumptions and then the 
structure selection is implemented to reduce the 
dimensionality of the parameters. Bickel and Song [3] 
introduced three different parameter structures and a LASSO 
type method was proposed to identify the proper structures. 
Nicholson et al. [4] generalized their works to cover more 
VAR structures and in addition to LASSO penalty function, 
they also considered the group and sparse group penalties. 
Instead of penalty approach for structure selection, Bayesian 
approach is also commonly used. Chu et al. [5] proposed a 
Bayesian structure selection approach to deal with three VAR 
structures mentioned in Bickel and Song [3]. In Chu et al. [5], 
the indicators are added into the model to denote the 
meaningful VAR structures and then an MCMC algorithm is 
used to generate the posterior samples of the indicators for 
the future inference. They did show the advantage of their 
Bayesian approach via several simulations and a real example.  
 
Due to the nature of MCMC algorithms, as model complexity 
and the sample size increase, the computing time increases 
dramatically. For example, in Chu et al. [5], their approach 
would take 1 to 6 hours for the case of 20 dimensional 

simulation data according the group structures. Thus the goal 
of this work is to increase the computational efficiency for 
the VAR analysis approach.  

II. METHOD 

To increase the computational efficiency of the Bayesian 
inference approach, the variational Bayesian approach, 
proposed by Titsias and Lazaro Gredilla [6] and Carbonetto 
and Stephens [7], is adopted here. Instead of directly 
generating posterior samples, the variational Bayesian 
method is to find the best approximate distribution of the true 
posterior by minimizing Kullback-Leibler divergence (KL-
divergence) for Bayesian inference. Thus according to [8], in 
the variational Bayesian approach, the key is to solve the 
following optimization problem,  

min
Q∈ℚ
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where P is used to denote the true posterior distribution and 
Q is the approximate distribution. Consider the structure 
selection problems. Cai et al. [9] proposed the sparse group 
variable selection of the variational Bayesian method with 
spike-and-slab prior in the linear model. In the prior, using 
spike-and-slab prior to deal with the variable selection 
problems. Thus, the goal of this work is to propose the 
variational Bayesian approach for the VAR modeling 
according to the idea of Cai et al. [9].  
 
In this work, following Song and Bickel [3] and Chu et al. [5], 
the three structures for the parameter matrix in VAR model 
are considered. There are universal grouping, sigmentize 
grouping and no grouping. The universal group is that all 
columns are as one group in the same row. For the 
segmentized grouping structure, all of the time series is 
divided into nonoverlapping group sets by prior knowledge. 
Then, coefficients are estimated by segment-by-segment. 
Finally, for the no grouping structure, each time series is 
viewed as individual and estimates it column-by-column. In 
our proposed variational Bayesian approach, similar to Chu 
et al. [5], latent variables are augmented into the VAR model 
to denote the active structures. Then based on the binomial 
priors for the latent variables, the independent spike-and-slap 
priors are set for the parameters. Due to these prior 
assumptions, the approximation posterior function, Q, is 
defined as the product of these prior densities. Finally, the 
corresponding minimization problem is solved via an 
expectation-maximization (EM) type method.  

III. SIMULATION 
To illustrate the performance of the proposed variational 
Bayesian approach, VARVB, simulation studies in Chu et al. 



[5] are considered. In this section, three scenarios with 
respect to the three different structures are set up and the 
dimension of time series is 10 and 20 respectively. In each 
scenario, the variance structures of the error terms come from 
2 different set-ups, the identity matrix, I, and the covariance 
matrix 𝛴𝛴  respectively. We generate data with 301 samples 
and use 300 samples for model training with a fixed number 
of  lags, 10, and the last single sample for prediction purpose. 
Overall, 10 replicates are implemented for each scenario by 
independently re-generating the data and the number of 
groups is assumed to be known in this simulation. In addition 
to VARVB, we also implement the VAGSA method in Chu 
et al. [5] for the comparison purpose. In the VAGSA, it 
iterated 3,000 sweeps and make inferences from the last 
1,000 sweeps. For performance comparisons, we report four 
measurements, the true positive rate (TPR); the false positive 
rate (FPR); the average of the model sizes (𝑀𝑀� ); and the 
average (standard deviation) of the mean square prediction 
error (𝑀𝑀𝑀𝑀𝑃𝑃𝐸𝐸��������). As a result, in most scenarios, the TPR and 
𝑀𝑀𝑀𝑀𝑃𝑃𝐸𝐸�������� in both methods and cases are similar. In the FPR and 
𝑀𝑀� , our method is better than VAGSA. However, in the cases 
of segmentize grouping (scenario 2) with 20-dimension time 
series with covariance error, do not work well for our method. 
The reason may be due to that in one of 10 replicates, our 
method selects fewer correct variables and more incorrect 
variables which causes a bad result. In the elapsed time, our 
method has a good reduction average 4 times the time cost in 
all of the cases. especially in the case with group structure. It 
can reduce 10 times than VASGA. Thus, it means that we can 
reduce the time and without losing a lot of accuracies. 

IV. CONCULSION 
This research proposes a priori variational Bayesian method 
for a VAR model. Due to our simulation results, overall the 
performance of the proposed method is comparable with the 
traditional Bayesian approach. But this new variational 
Bayesian approach does save a lot of computation cost and 
have potential to deal with the larger data sizes. We leave 
this as a future work.  

TABLE I.  THE RESULT IN 10 DIMENSION VAR MODEL 

 Method TPR FPR 𝐌𝐌�  𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴��������� 
Scenario 

1 
   True=72  

𝑰𝑰𝟏𝟏𝟏𝟏 VARVB 100% 0.06% 72.60 0.92(0.23) 
 VAGSA 100% 0.34% 74.20 0.94(0.25) 

𝚺𝚺𝟏𝟏𝟏𝟏 VARVB 100% 0.06% 72.60 0.92(0.84) 
 VAGSA 100% 0.23% 74.20 0.87(0.86) 

Scenario 
2 

   True=40  

𝑰𝑰𝟏𝟏𝟏𝟏 VARVB 100% 0.13% 41.20 0.90(0.21) 
 VAGSA 100% 0.49% 44.70 0.94(0.26) 

𝚺𝚺𝟏𝟏𝟏𝟏 VARVB 100% 0.03% 40.30 0.73(0.36) 
 VAGSA 99% 0.46% 44.40 0.88(0.39) 

Scenario 
3 

   True=18  

𝑰𝑰𝟏𝟏𝟏𝟏 VARVB 97% 0.18% 19.30 0.88(0.21) 
 VAGSA 96% 0.11% 18.40 0.87(0.20) 

𝚺𝚺𝟏𝟏𝟏𝟏 VARVB 96% 0.13% 18.69 0.72(0.37) 
 VAGSA 96% 0.09% 18.20 0.87(0.37) 

 
 
 

TABLE II.  THE RESULT IN 20 DIMENSION VAR MODEL 

TABLE III.   ELAPSED TIME  OF SIMULATION IN SECONDS 

m=10 VARVB Scenario 
1 

Scenario 
2 

Scenario 
3 

CPU times (𝑰𝑰𝟏𝟏𝟏𝟏)  83.17 200.89 786.38 
CPU times (𝚺𝚺𝟏𝟏𝟏𝟏)  104.75 296.90 1154.94 

 VAGSA Scenario 
1 

Scenario 
2 

Scenario 
3 

CPU times (𝑰𝑰𝟏𝟏𝟏𝟏)  1225.66 2835.45 5294.96 
CPU times (𝚺𝚺𝟏𝟏𝟏𝟏)  1096.47 1685.83 4556.46 

m=20 VARVB Scenario 
1 

Scenario 
2 

Scenario 
3 

CPU times (𝑰𝑰𝟐𝟐𝟏𝟏)  221.46 671.62 3227.11 
CPU times (𝚺𝚺𝟐𝟐𝟏𝟏)  359.47 1475.56 4434.28 

 VAGSA Scenario 
1 

Scenario 
2 

Scenario 
3 

CPU times (𝑰𝑰𝟐𝟐𝟏𝟏)  2483.74 5024.19 14935.81 
CPU times (𝚺𝚺𝟐𝟐𝟏𝟏)  2586.12 4790.69 21157.75 

REFERENCES 
[1] R. Weron, “Electricity price forecasting: A review of the state-of-the-

art with a look into the future,”  International journal of forecasting, vol. 
30, pp. 1030-1081, 2014. 

[2] F. Ziel, and R.Weron, “ Day-ahead electricity price forecasting with 
high-dimensional structures: Univariate vs. multivariate modeling 
frameworks, ” Energy Economics, vol. 70, pp. 396-420, 2018. 

[3] S. Song, and P. J. Bickel, ” Large vector auto regressions, ” preprint 
2011 . 

[4] W. B. Nicholson, D. S. Matteson, and J. Bien, “ Structured 
regularization for large vector autoregressions, ”  Cornell University, 
2014. 

[5] C. H. Chu, M. N. Lo Huang, S. F.Huang and R. B. Chen, “ Bayesian 
structure selection for vector autoregression model, ” Journal of 
Forecasting, vol. 38, pp. 422-439, 2019. 

[6] M. K. Titsias, and M. Lázaro-Gredilla, “ Spike and slab variational 
inference for multi-task and multiple kernel learning, ” In Advances in 
neural information processing systems, pp. 2339-2347, 2011. 

[7] P. Carbonetto, and M. Stephens, “ Scalable variational inference for 
Bayesian variable selection in regression, and its accuracy in genetic 
association studies, ” Bayesian analysis, vol. 7, pp. 73-108. 2012. 

[8] C. M. Bishop. Pattern recognition and machine learning. Springer, 
2006. 

[9] M. Cai, M. Dai, J. Ming, H. Peng, J. Liu, and C. Yang, “ BIVAS: a 
scalable Bayesian method for bi-level variable selection with 
applications, ” Journal of Computational and Graphical Statistics, vol 
29,  pp. 40-52 , 2020 

 

 Method TPR FPR 𝐌𝐌�  𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴��������� 
Scenario 

1 
   True=145  

𝑰𝑰𝟐𝟐𝟏𝟏 VARVB 100% 0.03% 146.00 1.07(0.18) 
 VAGSA 100% 0.18% 152.10 1.08(0.16) 

𝚺𝚺𝟐𝟐𝟏𝟏 VARVB 100% 0.01% 145.10 0.92(0.44) 
 VAGSA 100% 0.14% 150.00 0.88(0.44) 

Scenario 
2 

   True=109  

𝑰𝑰𝟐𝟐𝟏𝟏 VARVB 100% 0.06% 111.20 1.09(0.14) 
 VAGSA 100% 0.22% 117.60 1.07(0.13) 

𝚺𝚺𝟐𝟐𝟏𝟏 VARVB 99% 0.54% 129.30 0.75(0.20) 
 VAGSA 100% 0.17% 116.00 0.88(0.20) 

Scenario 
3 

   True=27  

𝑰𝑰𝟐𝟐𝟏𝟏 VARVB 99% 0.07% 29.30 1.06(0.14) 
 VAGSA 99% 0.13% 32.10 1.06(0.14) 

𝚺𝚺𝟐𝟐𝟏𝟏 VARVB 98% 0.06% 28.70 0.84(0.34) 
 VAGSA 99% 0.10% 30.60 0.89(0.34) 


