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Abstract: Aiming at the problems of large amount of data collected by airborne sensors, lack of 

data association, and low processing efficiency, this paper proposes a parallel LSTM algorithm 

model suitable for Spark platform. First, use the Spark platform to complete the traversal scan 

operation in the memory RDD of all nodes in the distributed cluster, and combine the directed 

acyclic graph to create a Pipeline pipeline to implement a parallel computing framework. An 

algorithm model to optimize the parameters of LSTM neural network is proposed, and load 

balancing processing method is introduced to realize that all nodes of the distributed system can 

share the computing tasks in a balanced manner. The experimental results show that compared to 

the stand-alone case, the parallelized LSTM algorithm improves the efficiency. The prediction 

efficiency of the LSTM algorithm model after load balancing processing is higher, which shows 

that the distribution of traversal tasks of each node is more balanced and the degree of parallelization 

is higher.  
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0  Introduction 

The stable operation of aero engines is the 

key to ensuring the safety and reliability of the 

aircraft. Tracking the operating status of the 

engine and predicting possible future failures is 

a key and necessary part of the predictive 

maintenance of the aircraft. 

There are three main methods for the 

health management system of aero-engines. 

One is the model-driven method, which is 

mainly based on the physical characteristics of 

the aero-engine to establish a physical failure 

model. For example, Luo[1] uses known 

mechanics and mechanical principles to 

analyze crack fatigue data. Carry out research 

and establish its physical failure model to 

predict the corresponding failure time. Such 

methods rely on physical failure mechanisms 

that are difficult to grasp, and are often targeted 

at a single model, with insufficient 

generalization capabilities; the second is 

knowledge-driven methods, which use expert 

systems and ontology reasoning knowledge to 

drive RUL prediction research, such as Hu[2], 

etc., considering maintenance In the actual 

working conditions of insufficient activity, the 

parameters are estimated based on the 

maximum likelihood estimation method and 

the Bayesian method, and the stochastic 

degradation model is established to derive the 

RUL probability density function; Sun[3] and 

others aim at the state characteristics of some 

potential failures of aeroengines, It is proposed 

to establish aeroengine RUL prediction model 

based on random filtering theory and K-means 

method. This kind of method is suitable for 

small sample data set processing, but it is not 



suitable for the processing and analysis of 

massive data. The third is data-driven method. 

The traditional method is to establish 

mathematical statistical model to analyze and 

process data. At present, it is mostly based on 

machine learning, deep learning and neural 

network methods to carry out theoretical 

research and application practice, compre-

hensively consider and weigh factors such as 

data scale, data structure characteristics, 

architecture computing power, algorithm 

robustness, model generalization ability, 

prediction accuracy, etc., on this basis Choose 

a reasonable method to achieve RUL prediction. 

Long and short-term memory neural 

network (LSTM), as an improved time 

recurrent neural network (RNN), not only has 

neural network distributed storage, self-

organization, self-adjustment and nonlinear 

fitting capabilities, but also can learn long and 

short-term time series information. It is suitable 

for processing and forecasting interval and 

delay events in time series. 

The distributed computing architecture is 

suitable for the rapid processing and computing 

tasks of large-scale data. At this stage, Apache 

Hadoop, Spark and Flink are the main ones. 

Spark has the advantages of parallel computing 

on multiple nodes in the cluster that Hadoop 

MapReduce has. The support of iterative 

operations and low-latency interactive data 

mining tasks effectively solve the time problem 

of large-scale data parallel computing[4]. In this 

paper, a parallel LSTM algorithm model is 

designed in combination with the Spark 

architecture. The algorithm execution process 

is modeled based on a directed acyclic graph 

(DAG), and a load-balancing multi-node 

operation strategy is introduced to enable the 

algorithm model to iterate quickly and optimize 

LSTM network parameters.  

1  Spark parallel computing 

framework 

1.1 Parallel computing process of Spark 

architecture 

The running architecture of Spark consists 

of Driver and Executor. Driver is responsible 

for DAG segmentation of user code and divide 

it into different stages, and then submit the task 

scheduling corresponding to each stage to 

Executor for calculation, so that Executor 

executes the same stage in parallel task, the 

specific calculation process is shown in Figure 

1. 
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Fig.1  Spark parallel computing flowchart 

In addition, the data is processed by the 

machine learning workflow (Pipeline) that 

creates the training model[5], and the pipeline 

processing flow is shown in Figure 2. 
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Fig. 2  Training model flow on the Pipeline 

Using machine learning algorithm 

training data in Pipeline, a PipelineModel is 

generated after execution. Pipeline and 

PipelineModel help to ensure that the feature 

processing flow of training data and test data is 

consistent. A Pipeline structure contains one or 

more Stage modules for data processing. Each 

stage will complete a data processing task, 

including feature extraction, normalization 

processing, and feature dimensionality 

reduction. With these stages that deal with 

specific problems, Organize and create a 

Pipeline in a specific logical sequence, making 

pipelined machine learning more efficient and 

faster than single-step independent modeling. 

1.2 Load balancing strategy of each node on 

the Spark platform 

In the Spark platform, the multi-node 

technology in the distributed system is used to 

parallelize the algorithm model to improve the 

efficiency of the algorithm. In this paper, the 

load balancing strategy is adopted to ensure 

that each node can share the traversal task in 

the algorithm in a balanced way, and give full 

play to the potential of each node to participate 

in the operation. The specific implementation 

method is as follows[6].  

Set the number of loads as n, and set up 

the load monitoring model in t period. The 

changes of the load are irregular on the time 

axis. Analyzing the load connected to the Spark 

platform can predict the number of traversed 

loads in the time series. The actual number of 

neural network layers to be traversed in the 

previous time period and the predicted number 

are used to establish the prediction model for 

the current time period, and the weights are 

constantly revised to approximate the actual 

number. Suppose M(t) is the predicted value of 

load quantity in t period, m(t) is the actual load 

quantity in t period, and ω is the weight factor. 

The predicted value of the load quantity in the 

next time period can be calculated according to 

formula (1): 

𝑀𝑡+1 = 𝑀𝑡 + 𝜔(𝑚𝑡 −𝑀𝑡)    （1） 

Suppose ε is the predicted change value of 

the load quantity in two consecutive times, then: 

𝜀 = 𝑀𝑘 −𝑀𝑘−1      （2） 

In order to solve the error caused by a 

single calculation, this paper adopts the method 

of averaging multiple predicted values to 

increase the prediction accuracy. The 

calculation method is shown in formula (3): 

�̅� =
∑ 𝑀𝑘
𝑛
𝑘=1

𝑛
        （3） 

Judge the load change according to the 

difference between |ε| and �̅�. When |ε| > �̅�, 

it means that the load of the node has changed 

significantly in the current time period, 

continuing the load time slice of each node in 

the previous time period Set the strategy; when 

|ε| < �̅�, it means that the load change of the 

node is small, and measures need to be taken to 

adjust the load time slice strategy of the node 



in time and increase its load appropriately. 

2  Parallel LSTM algorithm design  

The LSTM network standard module 

includes the standard cyclic layer in the RNN 

network, and introduces a threshold 

mechanism—"memory" control gate to control 

the accumulation speed of information. The 

specific structure is shown in Figure 3. 
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Fig. 3  The LSTM Schematic diagram of LSTM 

network standard module 

The LSTM network standard module is 

divided into two parts, namely the long-term 

state tc and the short-term state th . At the same 

time, three control gates are added along the 

state path[9]: forget gate tf , input gate ti , and 

output gate to
 
to adjust information. 

(1) Forget gate: It is to control at time t , 

the information component of the previously 

long-term state 1tc −   after passing tf   are kept 

in the current tc , expressed as 1t tf c − . The 

realization formula of tf  is: 

T

1( [ , ] )t f t t ff h x b  −=  +     （4） 

（2）Input gate: It is to control at time t , 

the information component of the input tx  and 

the previously short-term state 1th −   after 

passing ti  are kept in the current tc , expressed 

as t ti c . The realization formula of ti  is: 
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Where ( )   is the Sigmoid function and 

( )   is the Tanh function. 

（3）Output gate: It is to control at time 

t  , the information component of the current 

long-term state tc  after passing to  is retained 

in the current th  , expressed as ( )t to c  , 

and the realization formula of to  is: 
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For data sets with relatively high data 

levels, this article proposes an algorithm 

parallelization scheme for LSTM. For a 

training set with a total sample size of Q, it is 

divided into N groups for parallel calculation, 

and each group runs in parallel. Serial 

calculation using traditional LSTM algorithm. 

After calculating the result X in each group, Xs 

can form a new sequence (x1, x2,…, xn). For 

this new sequence of length N, continue to 

repeat the above steps. After this cycle several 

times, the length of the new sequence itself will 

reach a threshold W. For this sequence of length 

W, the LSTM algorithm is used for serial 

calculation to calculate the final result. The 



grouping diagram is shown in Figure 4. 
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Fig. 4  The LSTM Schematic grouping diagram 

3  Test results and analysis 

In order to verify the performance of the 

parallelized LSTM algorithm model, an 

example simulation is carried out in this section. 

The example simulations were carried out on a 

single machine and a Spark distributed cluster. 

Build a Hadoop+Spark big data platform. In 

terms of hardware, it is built by six 8-core 

processor servers, each with 16G memory, and 

uses zookeeper components for distributed 

coordination and management. One server is 

selected as the leader, and the remaining 5 are 

Follower and Observer; in terms of software, 

the operating system is Ubuntu16.04, Hadoop 

and Spark cluster environments are installed 

and deployed, and open source software is used 

to form a fully distributed big data platform, 

which is more efficient than a single-node 

pseudo-distributed platform. 

Select the Spark framework in the stand-

alone mode and the MapReduce framework in 

the cluster mode to compare, process data sets 

of different sizes and record the time it takes to 

run a complete job. The result is shown in 

Figure 5. 

 

Fig. 5  Data processing time under different 

computing frameworks 

It can be found that as the scale of data 

continues to increase, the data processing speed 

advantage of a fully distributed Spark 

framework computing cluster over the Spark 

framework in stand-alone mode and the 

MapReduce framework in cluster mode 

becomes more and more obvious. This is 

because Spark distributes tasks to multiple 

processors, and uses lazy evaluation to 

optimize the entire data preprocessing process, 

so that data processing can be completed 

efficiently and quickly. At the same time, 

because the Spark framework uses high-level 

data abstraction, flexible RDD sets, and high-

reuse memory calculations, compared to 

Hadoop MapReduce, it saves data reading time 

and improves the real-time performance of data 

processing. 

In addition, this paper selects 2.6G aero-

engine's health data to inputs the parallelized 

PSO-LSTM neural network algorithm model, 

which is respectively calculated under the 

framework of Spark and MapReduce. The 

results are shown in Figure 6. 
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Fig. 6  The performance comparison with Spark 

and MapReduce 

Figure (a) shows that as the number of 

iterations increases, the performance of Spark's 

computing performance is particularly 

improved. This is because Spark is based on 

memory computing, the intermediate results 

are stored in memory, and the parallelized 

LSTM network is used, which greatly improves 

Spark The ability of parallel computing reduces 

the completion time of iterative tasks. Figure (b) 

shows that as the number of GA-LSTM 

network nodes increases, the computational 

complexity of the system increases, and the 

running time of Spark and MapReduce will 

increase accordingly. After multiple 

verifications, the computational efficiency of 

Spark combined with parallel LSTM network 

algorithms is higher than that of MapReduce. 

An order of magnitude higher. 

4  Conclusion 

In this paper, the Spark platform is used to 

implement the parallelized LSTM algorithm 

model, which can effectively improve the 

efficiency of the prediction algorithm model. 

The use of load balancing strategies can further 

optimize the efficiency of each node and 

increase the degree of parallelization. However, 

the current research is only tested in terms of 

running time, and the accuracy of data mining 

has not been significantly improved. 

Subsequent research will focus on how to 

further enhance accuracy while improving 

operational efficiency. 
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