
EasyChair Preprint
№ 5482

Research on Parallel LSTM Algorithm Based on
Spark

Yangyang Zhao, Wei Niu and Meinan Wang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 8, 2021

Research on Parallel LSTM Algorithm Based on Spark

Zhao Yangyang1, Niu Wei1, Wang Meinan1

(1. Xi’an Aeronautics Computing Technique Research Institute, AVIC, Xi’an 710068, China)

Abstract: Aiming at the problems of large amount of data collected by airborne sensors, lack of

data association, and low processing efficiency, this paper proposes a parallel LSTM algorithm

model suitable for Spark platform. First, use the Spark platform to complete the traversal scan

operation in the memory RDD of all nodes in the distributed cluster, and combine the directed

acyclic graph to create a Pipeline pipeline to implement a parallel computing framework. An

algorithm model to optimize the parameters of LSTM neural network is proposed, and load

balancing processing method is introduced to realize that all nodes of the distributed system can

share the computing tasks in a balanced manner. The experimental results show that compared to

the stand-alone case, the parallelized LSTM algorithm improves the efficiency. The prediction

efficiency of the LSTM algorithm model after load balancing processing is higher, which shows

that the distribution of traversal tasks of each node is more balanced and the degree of parallelization

is higher.

Key words: Spark; parallel computing; LSTM; load balancing processing

0 Introduction

The stable operation of aero engines is the

key to ensuring the safety and reliability of the

aircraft. Tracking the operating status of the

engine and predicting possible future failures is

a key and necessary part of the predictive

maintenance of the aircraft.

There are three main methods for the

health management system of aero-engines.

One is the model-driven method, which is

mainly based on the physical characteristics of

the aero-engine to establish a physical failure

model. For example, Luo[1] uses known

mechanics and mechanical principles to

analyze crack fatigue data. Carry out research

and establish its physical failure model to

predict the corresponding failure time. Such

methods rely on physical failure mechanisms

that are difficult to grasp, and are often targeted

at a single model, with insufficient

generalization capabilities; the second is

knowledge-driven methods, which use expert

systems and ontology reasoning knowledge to

drive RUL prediction research, such as Hu[2],

etc., considering maintenance In the actual

working conditions of insufficient activity, the

parameters are estimated based on the

maximum likelihood estimation method and

the Bayesian method, and the stochastic

degradation model is established to derive the

RUL probability density function; Sun[3] and

others aim at the state characteristics of some

potential failures of aeroengines, It is proposed

to establish aeroengine RUL prediction model

based on random filtering theory and K-means

method. This kind of method is suitable for

small sample data set processing, but it is not

suitable for the processing and analysis of

massive data. The third is data-driven method.

The traditional method is to establish

mathematical statistical model to analyze and

process data. At present, it is mostly based on

machine learning, deep learning and neural

network methods to carry out theoretical

research and application practice, compre-

hensively consider and weigh factors such as

data scale, data structure characteristics,

architecture computing power, algorithm

robustness, model generalization ability,

prediction accuracy, etc., on this basis Choose

a reasonable method to achieve RUL prediction.

Long and short-term memory neural

network (LSTM), as an improved time

recurrent neural network (RNN), not only has

neural network distributed storage, self-

organization, self-adjustment and nonlinear

fitting capabilities, but also can learn long and

short-term time series information. It is suitable

for processing and forecasting interval and

delay events in time series.

The distributed computing architecture is

suitable for the rapid processing and computing

tasks of large-scale data. At this stage, Apache

Hadoop, Spark and Flink are the main ones.

Spark has the advantages of parallel computing

on multiple nodes in the cluster that Hadoop

MapReduce has. The support of iterative

operations and low-latency interactive data

mining tasks effectively solve the time problem

of large-scale data parallel computing[4]. In this

paper, a parallel LSTM algorithm model is

designed in combination with the Spark

architecture. The algorithm execution process

is modeled based on a directed acyclic graph

(DAG), and a load-balancing multi-node

operation strategy is introduced to enable the

algorithm model to iterate quickly and optimize

LSTM network parameters.

1 Spark parallel computing

framework

1.1 Parallel computing process of Spark

architecture

The running architecture of Spark consists

of Driver and Executor. Driver is responsible

for DAG segmentation of user code and divide

it into different stages, and then submit the task

scheduling corresponding to each stage to

Executor for calculation, so that Executor

executes the same stage in parallel task, the

specific calculation process is shown in Figure

1.

HDFS
HDFS

Stage1 Stage2

Transformation Action

Executor

DAG

Fig.1 Spark parallel computing flowchart

In addition, the data is processed by the

machine learning workflow (Pipeline) that

creates the training model[5], and the pipeline

processing flow is shown in Figure 2.

DataFrame of

Prediction Result

DataFrame

of Training

Data

 Pipeline

DataFrame

of New Data

Feature

Extraction

Normali

zed
PCA LSTM

 PipelineModel

Feature

Extraction

Normali

zed
PCA LSTM

Training

Prediction

Pipeline.fit()

PipelineModel.

transform()

Fig. 2 Training model flow on the Pipeline

Using machine learning algorithm

training data in Pipeline, a PipelineModel is

generated after execution. Pipeline and

PipelineModel help to ensure that the feature

processing flow of training data and test data is

consistent. A Pipeline structure contains one or

more Stage modules for data processing. Each

stage will complete a data processing task,

including feature extraction, normalization

processing, and feature dimensionality

reduction. With these stages that deal with

specific problems, Organize and create a

Pipeline in a specific logical sequence, making

pipelined machine learning more efficient and

faster than single-step independent modeling.

1.2 Load balancing strategy of each node on

the Spark platform

In the Spark platform, the multi-node

technology in the distributed system is used to

parallelize the algorithm model to improve the

efficiency of the algorithm. In this paper, the

load balancing strategy is adopted to ensure

that each node can share the traversal task in

the algorithm in a balanced way, and give full

play to the potential of each node to participate

in the operation. The specific implementation

method is as follows[6].

Set the number of loads as n, and set up

the load monitoring model in t period. The

changes of the load are irregular on the time

axis. Analyzing the load connected to the Spark

platform can predict the number of traversed

loads in the time series. The actual number of

neural network layers to be traversed in the

previous time period and the predicted number

are used to establish the prediction model for

the current time period, and the weights are

constantly revised to approximate the actual

number. Suppose M(t) is the predicted value of

load quantity in t period, m(t) is the actual load

quantity in t period, and ω is the weight factor.

The predicted value of the load quantity in the

next time period can be calculated according to

formula (1):

𝑀𝑡+1 = 𝑀𝑡 + 𝜔(𝑚𝑡 −𝑀𝑡) （1）

Suppose ε is the predicted change value of

the load quantity in two consecutive times, then:

𝜀 = 𝑀𝑘 −𝑀𝑘−1 （2）

In order to solve the error caused by a

single calculation, this paper adopts the method

of averaging multiple predicted values to

increase the prediction accuracy. The

calculation method is shown in formula (3):

�̅� =
∑ 𝑀𝑘
𝑛
𝑘=1

𝑛
 （3）

Judge the load change according to the

difference between |ε| and �̅�. When |ε| > �̅�,

it means that the load of the node has changed

significantly in the current time period,

continuing the load time slice of each node in

the previous time period Set the strategy; when

|ε| < �̅�, it means that the load change of the

node is small, and measures need to be taken to

adjust the load time slice strategy of the node

in time and increase its load appropriately.

2 Parallel LSTM algorithm design

The LSTM network standard module

includes the standard cyclic layer in the RNN

network, and introduces a threshold

mechanism—"memory" control gate to control

the accumulation speed of information. The

specific structure is shown in Figure 3.

tc

th

1tc −

1th −

ty

tx

tf to
ti

Fig. 3 The LSTM Schematic diagram of LSTM

network standard module

The LSTM network standard module is

divided into two parts, namely the long-term

state tc and the short-term state th . At the same

time, three control gates are added along the

state path[9]: forget gate tf , input gate ti , and

output gate to

to adjust information.

(1) Forget gate: It is to control at time t ,

the information component of the previously

long-term state 1tc − after passing tf are kept

in the current tc , expressed as 1t tf c − . The

realization formula of tf is:

T

1([,])t f t t ff h x b −= + （4）

（2）Input gate: It is to control at time t ,

the information component of the input tx and

the previously short-term state 1th − after

passing ti are kept in the current tc , expressed

as t ti c . The realization formula of ti is:

T

1

T

1

([,])

([,])

t i t t i

t c t t c

i h x b

c h x b

−

−

 = +

= +

 （5）

Where () is the Sigmoid function and

() is the Tanh function.

（3）Output gate: It is to control at time

t , the information component of the current

long-term state tc after passing to is retained

in the current th , expressed as ()t to c ,

and the realization formula of to is:

1

T

1

()

([,])

t t t t

t t t t t

t o t t o

h y o c

c i c f c

o h x b

−

−

 = =

= +

= +

 （6）

For data sets with relatively high data

levels, this article proposes an algorithm

parallelization scheme for LSTM. For a

training set with a total sample size of Q, it is

divided into N groups for parallel calculation,

and each group runs in parallel. Serial

calculation using traditional LSTM algorithm.

After calculating the result X in each group, Xs

can form a new sequence (x1, x2,…, xn). For

this new sequence of length N, continue to

repeat the above steps. After this cycle several

times, the length of the new sequence itself will

reach a threshold W. For this sequence of length

W, the LSTM algorithm is used for serial

calculation to calculate the final result. The

grouping diagram is shown in Figure 4.

Result

1 2 K-1 k……

…
…

1 2 k……

1 k…… 1 k……

M/1 M/k-1 M/k……

1 k…… 1 k……

……

LSTM LSTM LSTM LSTM

Fig. 4 The LSTM Schematic grouping diagram

3 Test results and analysis

In order to verify the performance of the

parallelized LSTM algorithm model, an

example simulation is carried out in this section.

The example simulations were carried out on a

single machine and a Spark distributed cluster.

Build a Hadoop+Spark big data platform. In

terms of hardware, it is built by six 8-core

processor servers, each with 16G memory, and

uses zookeeper components for distributed

coordination and management. One server is

selected as the leader, and the remaining 5 are

Follower and Observer; in terms of software,

the operating system is Ubuntu16.04, Hadoop

and Spark cluster environments are installed

and deployed, and open source software is used

to form a fully distributed big data platform,

which is more efficient than a single-node

pseudo-distributed platform.

Select the Spark framework in the stand-

alone mode and the MapReduce framework in

the cluster mode to compare, process data sets

of different sizes and record the time it takes to

run a complete job. The result is shown in

Figure 5.

Fig. 5 Data processing time under different

computing frameworks

It can be found that as the scale of data

continues to increase, the data processing speed

advantage of a fully distributed Spark

framework computing cluster over the Spark

framework in stand-alone mode and the

MapReduce framework in cluster mode

becomes more and more obvious. This is

because Spark distributes tasks to multiple

processors, and uses lazy evaluation to

optimize the entire data preprocessing process,

so that data processing can be completed

efficiently and quickly. At the same time,

because the Spark framework uses high-level

data abstraction, flexible RDD sets, and high-

reuse memory calculations, compared to

Hadoop MapReduce, it saves data reading time

and improves the real-time performance of data

processing.

In addition, this paper selects 2.6G aero-

engine's health data to inputs the parallelized

PSO-LSTM neural network algorithm model,

which is respectively calculated under the

framework of Spark and MapReduce. The

results are shown in Figure 6.

(a)

(b)

Fig. 6 The performance comparison with Spark

and MapReduce

Figure (a) shows that as the number of

iterations increases, the performance of Spark's

computing performance is particularly

improved. This is because Spark is based on

memory computing, the intermediate results

are stored in memory, and the parallelized

LSTM network is used, which greatly improves

Spark The ability of parallel computing reduces

the completion time of iterative tasks. Figure (b)

shows that as the number of GA-LSTM

network nodes increases, the computational

complexity of the system increases, and the

running time of Spark and MapReduce will

increase accordingly. After multiple

verifications, the computational efficiency of

Spark combined with parallel LSTM network

algorithms is higher than that of MapReduce.

An order of magnitude higher.

4 Conclusion

In this paper, the Spark platform is used to

implement the parallelized LSTM algorithm

model, which can effectively improve the

efficiency of the prediction algorithm model.

The use of load balancing strategies can further

optimize the efficiency of each node and

increase the degree of parallelization. However,

the current research is only tested in terms of

running time, and the accuracy of data mining

has not been significantly improved.

Subsequent research will focus on how to

further enhance accuracy while improving

operational efficiency.

Reference:

[1] Luo Bin. Research on fleet maintenance decision-

making method based on structural fatigue life

prediction[D]. Harbin: Harbin Institute of Technology,

2018.

[2] Hu C H, Hong P, Wang Z Q, et al. A new remaining

useful life estimation method for equipment subjected

to intervention of imperfect maintenance activities[J].

Chinese Journal of Aeronautics, 2018, 31(3):514-528.

[3] Sun Shaohui, Wang Huawei, Li Wei. Prediction of

remaining life of aero-engine during potential failure

period[J]. Aeronautical Computing Technology, 2012,

42(1): 8-11.

[4] Meng Xiaofeng, Kindness. Big Data Management:

Concepts, Techniques and Challenges[J]. Computer

Research and Development, 2013, 50(1):146-169.

[5] A. Svyatkovskiy, K. Imai, M. Kroeger, et al. Large-

scale text processing pipeline with Apache

Spark[C]//2016 IEEE International Conference on Big

Data. IEEE, 2016.

[6] Yang Jixiang, Tan Guozhen, Wang Rongsheng.

Overview of parallel and distributed computing

dynamic load balancing strategies [J]. Chinese Journal

of Electronics, 2010, 38(005): 1122-1130.

[7] Li Jingfeng, Chen Yunxiang, Xiang Huachun, et al.

Residual life prediction of aero-engine based on

LSTM-DBN[J]. Systems Engineering and Electronic

Technology, 2020, 42(7): 211-218.

