
EasyChair Preprint
№ 2147

CWE Pattern Recognition Algorithm in
Any-Language Source Code

Sergiu Zaharia

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 12, 2019

CWE Pattern Recognition Algorithm in

Any-Language Source Code*

Sergiu Zaharia†
 Security Center of Excellence

 BearingPoint / Bucharest, Romania

 sergiu.zaharia@bearingpoint.com

ABSTRACT

Source code became one of the backbones for business and

personal processes, with significant growth rate. As applications

are one of the most used attack surfaces against individuals and

organizations from all sectors, their intrinsic vulnerability arising

from the supporting source code must be reduced by design.

Currently there are technology providers and open communities

which provide Static Analysis Security Testing (SAST) solutions,

able to detect vulnerabilities in code written in the most used

programming languages and development frameworks.

The proposed solution consists of a Code Analysis Module that can

identify vulnerability patterns in source code written in languages

with less coverage, including code developed in languages which

have not been previously learned by the solution. The ability of

understanding and transforming unknown programming languages

to the Intermediate Representation, which is then analyzed by a

common machine learning algorithm for vulnerability patterns, is

core idea for this research project.

CCS CONCEPTS

• Security and privacy / Software and application security

• Security and privacy / Software security engineering

KEYWORDS

Static Analysis, Software Vulnerabilities, Application Security

1. CONTEXT

Source code became one of the backbones for business and

personal processes, with significant growth rate. GitHub, the

development platform used by 28 million developers, declared that

more than 2.9 trillion lines of code have been committed in 2017

alone [1]. As applications are one of the most used attack surfaces

against individuals and organizations from all sectors in the last

years, their intrinsic vulnerability arising from the supporting

source code has to be reduced by design. Overall, there is a strong

need for solutions being able to scan source code automatically and

identify code level security vulnerabilities early in the software

development phase. Currently, SAST solutions cover only Top 30

most used programming languages and development frameworks.

The remaining programming languages (e.g. D, R languages) are

not secured as result of the gap in both supporting technology and

security experts. This situation opens a huge attack surface for

hackers willing to compromise applications and consequently,

organizations’ or individuals’ security. Today, an amount of 995

technical vulnerabilities - specific to different programming

languages or common to all types of source code - is maintained by

MITRE [3] as Common Weakness Enumeration (CWE) items.

2. PROPOSED SOLUTION

We recommend the Code Analysis Module which identifies CWE

patterns in source code written in both popular programming

languages or in languages with less coverage, including languages

which have not been learned by the solution. From a functional

perspective, this consists of the following two blocks:

Figure 1: Code Analysis Module – Functional Blocks

The ML Based Translator is built on a Language-Agnostic

scanner which transforms any language into an Intermediate

Representation (IR) using similarities of lexical tokens within

programming languages. Languages like C, Java and those

inheriting them have quite similar keywords used by different but

close grammars. This property can leverage the transformation of

various languages in a common IR, using NLP-aware algorithms to

choose the best IR keyword (rk
(IR), k=1..n, in Figure 2).

Figure 2: Transformation of programming languages in IR

For example, a snippet of CWE23 vulnerable code:

recvResult = recv(connectSocket, (char *)(data + dataLen), sizeof(char) *

(FILENAME_MAX - dataLen - 1), 0); pFile = FOPEN(data, "wb+");

is represented in IR format as below, where keyword are tokens not

yet attributed to CWEs, which preserve program’s context, and data

flow is maintained through the relative positioning of tokens in the

CWE classification input vector. The IR is practically an ordered

set of CWE relevant tokens and generic identifiers, built using a

specially designed Machine Learning algorithm.

*Research topic under the PhD Program in University POLITEHNICA of Bucharest;

† Correspondence to: sergiu.zaharia@bearingpoint.com

BDA 2018, Bucarest, 22-26 Octobre 2018 Sergiu Zaharia

IR for code snippet IR for CWE classification algorithm
CWE_TOKENS['0'] = 'recv'

CWE_TOKENS['1'] = 'FOPEN'

CWE_TOKENS['2'] = '0'

CWE_TOKENS['3'] = '0'

CWE_KEYWORDS['0'] = 'char'

CWE_KEYWORDS['1'] = 'sizeof'

CWE_KEYWORDS['2'] = 'char'

CWE_KEYWORDS['3'] = '0'

CWE_KEYWORDS['4'] = '0'

CWE_KEYWORDS['5'] = '0'

IDENTIFIERS['0'] = 'recvResult'

IDENTIFIERS['1'] = 'connectSocket'

IDENTIFIERS['2'] = 'data'

IDENTIFIERS['3'] = ''

IDENTIFIERS['4'] = 'dataLen'

IDENTIFIERS['5'] = 'FILENAME_MAX'

IDENTIFIERS['6'] = 'dataLen'

IDENTIFIERS['7'] = 'pFile'

IDENTIFIERS['8'] = 'data'

IDENTIFIERS['9'] = '"wb'

IDENTIFIERS['10'] = '"'

IDENTIFIERS['11'] = '0'

nr_cwe_tokens['0'] = '2'

nr_cwe_tokens['1'] = '1'

nr_cwe_tokens['2'] = '0'

nr_cwe_tokens['3'] = '0'

nr_cwe_keywords['0'] = '11'

nr_cwe_keywords['1'] = '13'

nr_cwe_keywords['2'] = '11'

nr_cwe_keywords['3'] = '0'

nr_cwe_keywords['4'] = '0'

nr_cwe_keywords['5'] = '0'

generic_identifiers['0'] = '1'

generic_identifiers['1'] = '2'

generic_identifiers['2'] = '3'

generic_identifiers['3'] = '4'

generic_identifiers['4'] = '5'

generic_identifiers['5'] = '6'

generic_identifiers['6'] = '5'

generic_identifiers['7'] = '7'

generic_identifiers['8'] = '3'

generic_identifiers['9'] = '8'

generic_identifiers['10'] = '9'

generic_identifiers['11'] = '0'

Generic identifiers are abstract representations of real identifiers,

whose position in the source code is maintained very loosely via an

empirical symbol table (only generic name and relative positions

are maintained). The ability of understanding and transforming

unknown programming languages to IR - based on lexical

similarities between programming languages - is core to this

research project.

The ML Based CWE Classification block identifies CWE

patterns in the IR, using machine learning algorithms for

classification of non-linear patterns (e.g. SVM). The algorithm

should be able to identify CWE classes for each source code

snippet, using an “one versus all” approach. Code snippets may

have more than one CWE vulnerability, consequently, the classifier

may identify more than one class per each code snippet.

3. APPROACH

Research is planned in three main phases, as defined below,

Phase I: to design and build the training set for the CWE Classifier,

starting from popular programming languages. The activities

consist of identifying source code known as being vulnerable and

the CWE-pattern relevant code snippets; designing the pre-

processing algorithm applied to IR data sets, for later use in ML

Based CWE classification algorithm; and finally, building the

training data set for one programming language (e.g. C) and one

vulnerability (e.g. CWE 23). We use NIST Juliet Test Suite [2] with

vulnerable C, Java, C# and PHP source code. For C/C++, the

repository consists of 8.67 million lines of code covering 118

CWEs. As today, the potential structure of IR has been designed

considering the relevant tokens for specific CWEs, generalization

of identifiers and relative positioning of tokens and identifiers, as a

light data flow remanence.

Phase II: to identify the best model for the machine learning

algorithm used for CWE pattern identification, using the training

data sets from Phase I, and to enrich the solution with one more

class (CWE pattern) and one more language (Java code snippets).

Phase III: to design and demonstrate the core concept of

identifying CWE pattern in any-language source code. Includes

Language Agnostic Scanner design for C and Java code translation

to IR, adding new programming languages to adjust the algorithm,

training the ML Based Translator to correctly represent the source

code snippets in the IR format, and adjusting the accuracy of CWE

pattern classification using the input resulted from the ML Based

Translator, for C, Java and new languages.

4. RELATED WORK

Studies for source code splitting in smaller pieces like code

snippets, logically mapped to vulnerabilities or code clone [4] do

focus on specific languages, the Language-Agnostic Scanner not

being in general addressed by previous work. One similar approach

[5] considers deep learning for source code vulnerability detection.

The authors use “code gadgets” to represent programs in a granular

way, then vectorized as input to deep learning. The authors declare

solution’s limitations to C/C++ programs and to vulnerabilities

dealing only with library/API calls.

Other studies [6][7][9][10][14][12] propose static analysis methods

strongly related to one or two programming languages, even when

the concept may be replicated for different languages. The

drawback comes from the cumulated time and from the required

expertise in both the new language scanner to be implemented and

the static analysis concept itself defined in the respective study.

As an exception, ReDeBug [11] identifies latent security

vulnerabilities in programs “written in different languages”, as

result of “a lightweight syntax-based code clone detection system”

but limited to languages used in OS distributions. A different

concept is implemented using signal processing techniques [13],

which maintains the method language-independent, with the

limitation that security vulnerabilities’ localization is not realized.

ACKNOWLEDGMENTS

The author acknowledges Prof. Dr. Ștefan Trausan-Matu and

Associate Professor, Dr. Traian Rebedea for their support and

creative ideas provided under this PhD exercise.

REFERENCES
[1] https://github.com/ten, April 2018

[2] https://samate.nist.gov/SARD/testsuite.php

[3] https://cwe.mitre.org/

[4] Pham, Nam Hoai, Detection of recurring software vulnerabilities (2010).

Graduate Theses and Dissertations, 11590, https://lib.dr.iastate.edu/etd/11590

[5] VulDeePecker: A Deep Learning-Based System for Vulnerability Detection, Z.

Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong, 5 Jan 2018

[6] Chucky: Exposing Missing Checks in Source Code for Vulnerability Discovery,

Nov. 2013, https://user.informatik.uni-goettingen.de/~krieck/docs/2013-ccs.pdf

[7] Understanding Bag-of-Words Model: A Statistical Framework, Yin Zhang, Rong

Jin, Zhi-Hua Zhou

[8] Generating robust parsers using island grammars, IEEE2001,

academia.edu/31982245/Generating_robust_parsers_using_island_grammars

[9] Automated software vulnerability detection with machine learning, J. Harer, L.Y.

Kim, R.L. Russell, O. Ozdemir, L.R. Kosta, K. Rangamani, Lei H. Hamilton,

Gabriel I. Centeno, Jonathan R. Key, Paul M. Ellingwood, Marc W. McConley,

Jeffrey M. Opper, Peter Chin, Tomo Lazovich, 14 February 2018.

[10] Automatic Inference of Search Patterns for Taint-Style Vulnerabilities,

F.Yamaguchi, A.Maier, H. Gascon, K. Rieck, Univ. of G¨ottingen, Germany

[11] J. Jang, A. Agrawal, and D. Brumley, ReDeBug: Finding unpatched code clones

in entire OS distributions, in Proceedings of the 33th IEEE Symposium on

Security and Privacy. IEEE, 2012, pp. 48–62.

[12] SourcererCC: Scaling Code Clone Detection to Big Code, H. Sajnani, V. Saini.

J. Svajlenkoy, C. K. Royy, C.V. Lopes, 2015, USA

[13] The use of machine learning with signal- and NLP processing of source code to

fingerprint, detect, and classify vulnerabilities and weaknesses with MARFCAT,

Serguei A. Mokhov, Nov 2011, https://arxiv.org/pdf/1010.2511.pdfConference

[14] R.L. Russell, L. Kim, L.H. Hamilton, T. Lazovich, J.A. Harer, O. Ozdemir, P.M.

Ellingwood, M.W. McConley, Automated Vulnerability Detection in Source

Code Using Deep Representation Learning

https://github.com/ten
https://samate.nist.gov/SARD/testsuite.php
https://cwe.mitre.org/
https://lib.dr.iastate.edu/etd/11590
https://arxiv.org/search?searchtype=author&query=Li%2C+Z
https://arxiv.org/search?searchtype=author&query=Li%2C+Z
https://arxiv.org/search?searchtype=author&query=Zou%2C+D
https://arxiv.org/search?searchtype=author&query=Xu%2C+S
https://arxiv.org/search?searchtype=author&query=Ou%2C+X
https://arxiv.org/search?searchtype=author&query=Jin%2C+H
https://arxiv.org/search?searchtype=author&query=Wang%2C+S
https://arxiv.org/search?searchtype=author&query=Deng%2C+Z
https://arxiv.org/search?searchtype=author&query=Zhong%2C+Y
https://user.informatik.uni-goettingen.de/~krieck/docs/2013-ccs.pdf
http://www.academia.edu/31982245/Generating_robust_parsers_using_island_grammars
https://arxiv.org/pdf/1010.2511.pdfConference

