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Abstract. The previous Part I of the paper (https://doi.org/10.33774/coe-2022-wlr02) discusses the 
option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due 
to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting 
them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) 
(and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition 
for granting the Gödel incompleteness statement to be a theorem just as the statement itself, to be an axiom. 
Then, the “completeness paper” can be interpreted as relevant to Hilbert mathematics, according to which 
mathematics and reality as well as arithmetic and set theory are rather entangled or complementary rather 
than mathematics to obey reality able only to create models of the latter. According to that, both papers 
(1930; 1931) can be seen as advocating Russell’s logicism or the intensional propositional logic versus both 
extensional arithmetic and set theory. Reconstructing history of philosophy, Aristotle’s logic and doctrine 
can be opposed to those of Plato or the pre-Socratic schools as establishing ontology or intensionality versus 
extensionality. Husserl’s phenomenology can be analogically realized including and particularly as 
philosophy of mathematics. One can identify propositional logic and set theory by virtue of Gödel’s 
completeness theorem (1930: “Satz VII”) and even both and arithmetic in the sense of the “compactness 
theorem” (1930: “Satz X”) therefore opposing the latter to the “incompleteness paper” (1931). An approach 
identifying homomorphically propositional logic and set theory as the same structure of Boolean algebra, 
and arithmetic as the “half” of it in a rigorous construction involving information and its unit of a bit. 
Propositional logic and set theory are correspondingly identified as the shared zero-order logic of the class 
of all first-order logics and the class at issue correspondingly. Then, quantum mechanics does not need any 
quantum logics, but only the relation of propositional logic, set theory, arithmetic, and information: rather 
a change of the attitude into more mathematical, philosophical, and speculative than physical, empirical 
and experimental. Hilbert’s epsilon calculus can be situated in the same framework of the relation of 
propositional logic and the class of all mathematical theories. The horizon of Part III investigating Hilbert 
mathematics (i.e. according to the Pythagorean viewpoint about the world as mathematical) versus Gödel 
mathematics (i.e. the usual understanding of mathematics as all mathematical models of the world external 
to it) is outlined.   
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I INSTEAD OF INTRODUCTION: HISTORY OF LOGICISM SINCE ARISTOTLE, OR 
LOGIC AS ONTOLOGY 

In fact, logic, or “mathematical logic” as the same discipline is called sometimes, has been 
assigned to mathematics only since the second half of the 19th century, but it had been formulated 
as a science of correct thought similar or in the framework of philosophy since Aristotle and his 
opposition to Plato and his ideas seeming only to double one-to-one all things (unlike the 
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propositions meant by logic) and in turn perhaps originating from the Pythagorean mystic and 
sacral “Numbers” (studied by the “profane” arithmetic out of their alleged “divinity”). So, one can 
trace back the ancient “wandering” of concepts between or within both contemporary philosophy 
(and even theology) and mathematics:  

The numbers of arithmetic able to be simultaneously the Pythagorean “Numbers” passed into 
Platonian “ideas” being only philosophical and then, into Aristotle “logic” being spontaneously 
“ontology”, that is: “what is” or at least the “speech of what is”. The conceptual wandering at issue 
can be realized from a contemporary viewpoint as a permanent problem about the relation of 
philosophy and mathematics in their foundations: maybe partly coinciding, but nonetheless being 
different sciences. So, arithmetic touching philosophy (and even theology) in Pythagoreanism was 
absolutely removed from philosophy by the newly introduced “ideas” of Platonism, but anyway 
partly restored in a quite unrecognizable form by means of Aristotle's logic (however recovered 
and rediscovered to be mathematical and thus relative to arithmetic though only in the 19th century 
as “Boolean algebra”1). 

That scheme about the relation of mathematics and philosophy in their shared ancient origin 
needs two doctrines more: Socrates by his “human turn” in philosophy and Euclid managed to 
include an empirical (at least then) science as geometry into mathematics by means of the invented 
by him logical method, now called “deductive-axiomatic”. Their influence to philosophy and 
mathematics assisted to be so far apart that their inherent link to seem not to exist (and even not to 
have ever existed).  

The effect of Socrates’s “problem of human” as the main one for philosophy (rather than that 
of Being meant eventually by Pythagoreanism as its sacral and mystic “Numbers” or rather by 
other pre-Socratic schools postulating ones or others “Elements” for it) can be rediscovered in 
Plato’s ideas already absolutely emancipated from arithmetic (and thus, from contemporary 
mathematics), but accessible to human mind able to resolve human problems by means of them 
and furthermore, to organize human life and society without any relation to arithmetic or 
mathematics, really and empirically accessible only to few “initiates” due to its sophistication. 

Euclid’s geometry, demonstrating the existence of a relevant logical way for an empirical 
science (literally referring to the measurement of earth according to its name) to be consistently 
built, moved mathematics away far, far from philosophy, but analogically establishing the human 
mind as its creator though obeying necessary logical rules. The warning (whether real or alleged) 
for no one “ignorant of geometry” to come under Plato’s “roof” (whether literal or metaphorical) 
would be natural and consistent with Socrates’s “turn” since both doctrines established human 
mind as the only link between philosophy and mathematics, and thus, as the supreme arbitrator 
about any problem touching their relation since any connection between them otherwise than 
through and by means of human mind did not exist. 

From a contemporary viewpoint, Euclid described or created geometry as a first-order logic, 
by which he managed to redirect geometry from physics (or empirical science) to mathematics as 

 
1 A dilemma of logic, considered by Hartimo (2006) in relation to Husserl and thus being relevant to the 
present paper.  



the realm of all first-order or higher order logics in relation to propositional logic heralded by 
Aristotle as foundation of thought2 and even, that of all the world as ontology. Of course, Euclid’s 
particular achievement, as to geometry properly, is remarkable. One may say that Einstein's 
general relativity interpreting the physical interaction of gravitation as a geometrical and thus 
mathematical doctrine follows the pathway pre-charted by Euclid. 

However, his invention of a general method (called “deductive-axiomatic” nowadays) for 
mathematics to be built as a homogeneous class of theories interpretable to be first or higher order 
logics3 is even much more essential. Then, a stingy tuple of axioms (unifying both “axioms” and 
“postulates” of Euclid’s geometry) serves to describe exhaustively the subject of the theory at issue 
and then, propositional logic shared by all mathematical theories is able to generate all relevant 
theorems in each of them. 

Cantor, only in the 19th century, suggested his set theory, which could be realized in the just 
sketched context as a general first-order logic referring to the class of all possible mathematical 
theories and thus first-order logics as a class of equivalence just meant by set theory by virtue of 
its fundamental concept of “set”. So, set theory can be all or any mathematical theories in virtue 
to be mathematical, i.e. being first-order logics.  

Following the same idea (by the by, accomplished by the group “Bourbaki” step by step and 
volume by volume), two fundamental problems concerning arithmetic and propositional logic 
appear correspondingly: what are those mathematical doctrines once the foundation of set theory 
is granted absolutely reasonable and provable in relation to all the rest mathematical theories? In 
other words, can (or how) each of both be relevantly interpreted as a first-order logic under the 
assumption that set theory describes thoroughly the class of equivalence of all first-order logics 
and thus both at issue after obviously being “degenerate cases” of first-order logic? Namely: 

 Propositional logic interpreted simultaneously as a first-order logic is involved ambiguously 
to itself, or “self-referential” coinciding as the unique general and omnipresent zero-order logic 
with itself as a mathematical theory built according to the rules of any first-order logic4.  The way 
of “degeneracy” of arithmetic to set theory is more sophisticated and not so obvious, at least in the 
framework of the mathematical tradition: a proof that the axiom of induction5 (e.g., in Peano 
arithmetic) is the logical negation6 of the axiom of infinity (e.g., in ZFC set theory) is necessary 
and rigorously justified in the previous Part I (Penchev 2022 October 21): 

Then, the relation of set theory to arithmetic can be realized as that of non-Euclidean geometry 
to Euclidean geometry distinguishable from each other by a single axiom in the same list, namely 
the famous “Fifth postulate of Euclid”, and following their shared formal scheme, now substituted 

 
2 For example, Oderberg (2002) discusses intensionality as intelligibility.  
3 For example, Benzmüller, Brown, and Kohlhase (2004) discuss “higher-order semantics and 
extensionality”.  
4 For example, Gaifman (1983) discusses “self-applications” in the context of paradoxes of infinity.  
5 The axiom of induction is available in various arithmetic systems (e.g., Maliaukiené 2000; 1997).  
6 In fact, set theory with the negation of the axiom of infinity is also possible (e.g., Baratella, Ferro 1993).  



by the pair of the axiom of induction versus the axiom of infinity7. The transition from an axiom 
to its negation is that special complicated way for arithmetic to originate by degeneration from set 
theory (just as Euclidean geometry can be seen as originating, though being counterfactual 
historically, from non-Euclidean geometry). 

The philosophical lesson learnt by the latter pair can be continued up to the former furthermore 
following Riemann’s ideas advocated in his dissertation allowing for both to be unified by a 
relevant mathematical quantity (“space curvature” or “tensor of space curvature”) so Euclidean 
geometry to be considered as a special and unique case among the class all possible non-Euclidean 
geometries: being featured by zero space curvature. Then and in particular, Euclidean geometry 
can be also interpreted to be relevant to any local neighborhood about any point in a manifold 
Riemannian in general or globally.  

Translated into the “language” of the pair of arithmetic and set theory, this would mean that 
arithmetic is relevant only locally to the global set theory: accordingly, the degeneration from the 
latter to the former should be understood as the substitution of the global description valid to all 
first-order logics (once set theory refers to their class of equivalence) to its local counterpart meant 
by arithmetic. 

In fact, Gödel’s completeness (1930) and incompleteness (1931) papers corresponds to the 
former and latter problems as they are formulated above8, however, of course, without sharing the 
present context, in which both can be accordingly interpreted as follows: 

The “completeness paper” elucidates that propositional logic can be equally interpreted as a 
first-order logic and thus in the framework of set theory as an absolutely legitime mathematical 
theory like all the rest. On the contrary, its incompleteness counterpart answers negatively as to 
arithmetic since the attempt to be interpreted as a usual first-order logic if set theory is able to 
describe exhaustively their class implies the Gödel-like dichotomy now realized so: either 
arithmetic is not a first-order logic (being contradictory to set theory literally) or if it anyway is 
interpreted to be that, something (though quite uncertain) misses, lacks to complement it to the 
standard class of all first-order logics meant by set theory.  

The previous Part I (Penchev 2022 October 21), however, reinterprets the Gödel 
incompleteness statement to be an axiom rather than a theorem9 consistently deducible from the 
standard axioms of arithmetic, set theory and propositional logic since the proof of the latter 
includes a true paradox (the famous Gödel insoluble statement) in the chain ending into the 
dichotomy at issue. So, it is hidden in its premises themselves and more precisely, in the direct 

 
7 Meaning also Quine’s viewpoint linking the axiom of infinity and ω-inconsistency (Quine 1953) or in 
relation to Carnap’s interpretation of the former (Lavers 2016).   
8 Von Plato (2018) investigates the way for Gödel to realize his specific area of problems starting from a 
“system of natural deductions”. 
9 If the impact of Gŏdel's incompleteness theorems on mathematics is huge (e.g., Macintyre 2011), the 
problem about the incompleteness statement, whether an axiom or a theorem, is very essential for 
mathematics and philosophy of mathematics. 



contradiction of the axiom of induction in arithmetic10 (implying for all natural numbers to be 
finite) and the axiom of infinity11 in set theory (implying for the set of all natural numbers to be 
infinite). Then, the finiteness of arithmetic either contradicts the infinity of set theory or it is a true 
part and thus incomplete to infinity (postulated by set theory) therefore demonstrating that the 
consideration here is consistent to (and furthermore is able to underlie and explain) the dichotomy.  

The pair of arithmetic and set theory likened to that of Euclidean and non-Euclidean geometries 
after Riemann's unification by “space curvature” can be in turn opposed to propositional logic 
inherently and initially distinguishable from any first-order logic and thus, from set theory (if it is 
granted to be their class of equivalence) by means of its intensionality. This means that the 
intensionality12 immаnent for propositional logic is opposed to the extensionality of any first-order 
logic13 and thus, to set theory being already exactly determined by the tuple of axioms relevant to 
any mathematical theory at issue. The approach implies that set theory, referring to any sets of any 
elements (e.g. in Cantor’s “naive” set theory), is extensional in definition14 just as propositional 
logic meaning only statements eventually relating to sets is intensional. 

A problem appears as to arithmetic once the opposition of extensionality15 versus 
intensionality16 is granted and represented by set theory and propositional logic accordingly: it 
seems to be extensional similar to set theory, but nonetheless, distinguished from it by virtue of 
the Gödel dichotomy therefore implying somehow or at first glance the existence of two kinds of 
extensionality17: the one is to be a finite extensionality featuring arithmetic unlike the alternative 
infinite extensionality of set theory (furthermore eventually able to include the former kind of finite 
extensionality as a particular case). 

 
10 For example, Ryll-Nardzewski (1952) discusses the “role of the axiom of induction in elementary 
arithmetic”. 
11 One of the first comparisons of the axiom of induction with the axiom of infinity is that of Keyser (1903).  
12 Intensionality is to be absolutely distinguished from intentionality (Jacquette, Sugden 1986; Kneale, Prior 
1968; Cornman 1962) as well as from identity (i.e., Jacquette 2000; Tomberlin 1984). 
13 Rheinwald (1994), Nuyen (1987), Heinaman (1984), or Lycan (1974) mean a much wider problem for 
naturalism originating from the opposition of intensionality to causation inherent from the physical world 
and thus, to any first-order logic or to their class as set theory respectively, on the one hand. On the other 
hand, extensionality and universality (as in Rimscha 1981) can generate a converse trouble also in the 
context of Tarski’s theorem or the extensionality of truth (Shapiro 2013). On the contrary, extensionality 
implies causal contexts (Rosenberg, Martin 1979), and it is consistent with infinity in various versions of 
set theory (Sato 2009). 
14 One can emphasize the “axiom of extensionality” in set theory (e.g., Gandy 1956; 1959; Ferrari, Longo 
1978; Esser 2003), where it is the “first one” in their list (though only in tradition): being only a conventional 
postulate, it can be rejected in set theory not less consistently (e.g., Andrews 1972). 
15 For example, as the opposition of extensionality to constructiveness (Valentini 2002), or extensionality 
as the restriction in naive set theory (Weber 2010), 
16 As well as “paradoxes of intensionality” (Tucker, Thomason 2011).  
17 Sylvan (2003) discusses the relation of nonexistent objects and extensionality; Quine’s “policy of 
extensionality” (Quine 1994; Thiers 1978) is not less relevant also in the context of his new foundations 
(Roser 1952). 



The same distinction can be realized in a quite different way as well. Both immanent, the 
extensionality of set theory and intensionality of propositional logic18 can be unified by the Gödel 
completeness (1930) paper or as two interpretations of Boolean algebra (as this follows below). 
Once they have been identified, the same of both can be opposed to arithmetic and its specific 
extensionality not being able to be absolutely identifiable with the intensionality of propositional 
logic19 and as a result, the Gödel incompleteness statement (1931) should be paraphrased already 
explicitly in relation to intensionality of propositional logic: the dichotomy is due the different 
relation of the extensionality of set theory versus that of arithmetic, both to the intensionality of 
propositional logic. Namely: the extensionality of set theory can be identified with the 
intensionality of propositional logic (at least in the sense of the Gödel completeness paper) unlike 
that of arithmetic not being identifiable with it in any sense20.   

Then, one can approach both Gödel papers reinterpreting them as an investigation which kind 
of extensionality (the finite extensionality of arithmetic or the infinite extensionality of set theory) 
is consistent with the inherent intensionality of propositional logic once both have been realized 
to be first-order logics to propositional logic as the shared “zero-order” logic of mathematics at 
all21.  

However, the answer, though following Gödel literally, would be partly paradoxical to the 
standard reading of his papers: both are consistent to the intensionality of propositional logic and 
thus they are reasonably interpreted to be first-order logics, and the only distinction between them 
opposing the finiteness of arithmetic to the infinity of set theory is irrelevant to extensionality, 
though it being granted admits only the infinite one, that of set theory, after the identification with 
it, for example in the sense of Gödel’s completeness paper (1930). 

That paradoxical reading can be quite discernibly illustrated if one borrows Husserl’s epoché 
from his phenomenology and dare paraphrase it from an attitude to reality (as it is originally 
formulated) into a newly invented attitude to infinity22 therefore refraining from, or withholding 
any judgment (mathematically, statement or conclusion) whether whatever mathematical entity is 
featured by finite or infinite extensionality. For example, if that entity is any set after set theory, 
the question whether it is a finite set or an infinite set is to be declared to be meaningless therefore 
erasing the distinction between arithmetic and set theory (respectively the idempotent opposition 
of the axiom of induction and that of infinity accordingly). 

The approach can be also visualized by the pair of Euclidean and non-Euclidean geometries 
distinguishable only by the Fifth postulate, which now is to be “excluded” in the following sense. 
One considers the class of equivalence of those two kinds of geometries able to involve only the 
theorems in both, not needing either version of that axiom. However, the illustration can be very 

 
18 In the framework of the “intensionality of mathematics” as in Fefereman (1985). 
19 One may see arithmetic logically as a kind of general inscriptionalism by enumerating after comparing 
exceptionalism and intensionality (e.g., as Parsons 2013). 
20 For example, Auerbach (1985) investigates intensionality in the context of the Gödel theorems. 
21 For example, Malinowski (2004) deduces the concept of “inferential intensionality”. 
22 Infinity is a shared fundamental concept of both mathematics and philosophy: for example, Robinson 
and Harré (1964) trace it in the philosophical tradition. 



instructive if one reckons that (for any Riemannian manifold) Euclidean geometry is to be related 
to its local aspect, and non-Euclidean one correspondingly, to its global aspect.  

Then, the visualization implicitly paraphrases Husserl’s original “epoché” in one more way: 
the class of equivalence of both kinds of geometries withholds or refrains from any distinction 
between locality and globality: or in other words, it is “glocal” in definition. Immediately, two 
physical allusions are unavoidable as well as their unification in virtue of the shared “glocality”, 
otherwise seeming to be absolutely separate from each other: 

(1) The Standard model identifies the local and global physical space relevant to quantum 
mechanics so that both to be the same separable complex Hilbert space after distinguishing them 
initially: this is a fact since the meant separable complex Hilbert space is “flat” just as Euclidean 
space being also “flat” is able to be the same locally (the neighborhood about each point of it) and 
globally.   

On the contrary, gravitational interaction after Einstein’s general relativity is to be interpreted 
as a local “deformation” of the global “flat” Euclidean space23 directed to recover it in the initial, 
“normal” state of zero space curvature for “glocality” identifying local and global spaces needs it 
to be “flat”. So, one can visibly observe why and how much the Standard model (as far as it needs 
“flatness”) is inconsistent with any theory of quantum gravity if it has to be in turn consistent with 
general relativity (needing “curvature”). In other words, the quantity of quantum gravitation should 
be related to the mismatch of the local Hilbert space to the global one therefore necessarily 
transcending the framework of the Standard model postulating their coincidence.   

(2) Analogically, the phenomena of entanglement can be interpreted to be “glocal” inherently 
and necessarily. This can be illustrated by Einstein’s famous metaphor of “spooky action at a 
distance” referring to entanglement. Indeed, it makes sense only if local space is opposed to global 
space, which is the usual prejudice of common sense penetrating classical physics and passed in 
special and general relativity after the postulate of nor exceeding the speed of light in a vacuum 
therefore prohibiting the simultaneous consideration of global space once local space has been 
granted in advance. Namely then, entanglement implies the picture of “spooky action at a distance” 
particularly violating that postulate and thus ostensibly seeming to be physically inadmissible just 
as a “ghost” in physics, acting “spookily” at any distance.    

However, if one removes the hidden premises dominating implicitly due to common sense that 
local and global spaces are inconsistent to each other (realizing therefore otherwise the postulate 
of no exceeding the speed of light in a vacuum), any “spirits” can be naturally expelled from 
physics. For example and following the complementarity of quantum mechanics (furthermore 

 
23 The discussion can be linked to that about the global curvature of the universe (e.g., Yu, Wang 2016; 
Capozziello, De Laurentis 2015; Vardanyan, Trotta, Silk 2009; Buchert, Carfora 2008; Ichikawa, Takahashi 
2006; Wang, Gong, Su 2005; Masi et al 2002; Schmidt et al 1998; Sandage 1990). Indeed, if any curvature 
is to be defined as a relation of parts of a whole (being furthermore linkable to Husserl’s investigation e.g. 
as in: Sokolowski, 1968), this might imply for the global curvature of the universe being a single one in 
definition (i.e. beyond any relation valid only to true parts of it) to be zero in virtue of the fact that the global 
curvature would not be a relation at all and thus equivalent to zero identically.  



borrowed by the Standard model about the way local and global spaces to be able to be identified), 
they can be analogically granted to be complementary.  

Then, the boundary of light speed can be naturally reinterpreted to be relevant in fact and 
properly to the case of the orthogonality of local and global spaces, and involving (in general) 
gravitational interaction for describing the case of their eventual non-orthogonality however only 
in terms within local space limited by the boundary of light speed in definition: 

The following visualizing metaphor can be useful: if one attempts to stick surfaces or volumes 
in a place less than them being “unfolded” (that is: “flat”), they would be “folded” or “curved” just 
as Riemannian space is “folded” or “curved” to Euclidean space or respectively pseudo-
Riemannian space to Minkowski space. Einstein’s general relativity involving just pseudo-
Riemannian space to explain the nature of gravitation as being due to the “curvature” of Euclidean 
space assists for that metaphor of “stuffing” (i.e. meaning the “stuffing” of a greater subspace of 
Euclidean space into a less one because of the postulate of not exceeding the speed of light in a 
vacuum). 

According to the above illustration, one can state that all global space (figuratively as if out of 
the boundaries of local space outlined by the limit of light speed) is available within its “dual” 
local counterpart as its “folding”, “curvature” or “force of gravitation”. Thus, the real domain of 
Minkowski space is mapped into its imaginary area just as pseudo-Riemannian space24, or 
speaking more or less loosely, that the exceeding of light speed is physically represented in the 
local space of our empirical or experimental experience under the unrecognizable form of 
gravitation25. 

(3) Finally, the separated considerations of pseudo-Riemannian space (1) and entanglement (2) 
can be unified just in virtue of the shared and elucidated above structure to reconcile local and 
global spaces even in the case where the latter is “curved” rather than only in the trivial case for 
both to be “flat” though the nature of local and global spaces seems to be quite different in (1) in 
comparison to (2) 

Indeed, the former case means a finite-dimensional (whether Euclidean or Minkowski space, 
whether Riemannian or pseudo-Riemannian, as local and global spaces correspondingly), and the 
latter case refers to an infinite-dimensional space (such as that Hilbert space of quantum mechanics 
relating local and global spaces by entanglement).  

Furthermore, one can immediately notice that Fourier transform (respectively, its reverse 
counterpart) is able to connect both cases and then physically interpretable as the substitution of 
“time” (as to the case of a finite-dimensional space, or “finiteness” at all) by “frequency” (as to 

 
24 The transformations between Minkowski space, pseudo-Riemannian space, the separable complex 
Hilbert space of quantum mechanics or the qubit Hilbert space of quantum information are discussed in 
detail in another paper (Penchev 2022 February 4), 
25 One can discuss locality versus globality as a single one versus two dual directions, and then: general 
relativity as the representation of globality into locality. That is: the real domain of Minkowski space 
associable with speeds exceeding that of light in a vacuum is to be mapped onto the imaginary one 
associable with speeds less than that of light in a vacuum and that mapping is pseudo-Riemannian space 
meant by general relativity. The idea is suggested for the first time in another paper (Penchev 2013). 



the case of an infinite dimensional space, or “infinity” at all) therefore creating a general model 
for unifying finiteness and infinity applicable to the pair of arithmetic and set theory from the 
(shared by both) viewpoint of propositional logic26.    

The physical interpretation of Fourier transform by the pair of time and frequency can be 
complemented in the area of quantum mechanics as well as in ontology or in the history of 
philosophy. Indeed, quantum mechanics unifies the discrete description of quantum entities and 
systems “by themselves”, forced  to be discrete by the fundamental Planck constant, with their 
readings measured by the macroscopic apparatus obeying the smooth differential equations of 
classical physics: 

The discrete description corresponds to the member of “frequency” in the above pair of 
quantities, and the smooth description, to its counterpart of “time”. The unification of both 
descriptions, inherent for quantum mechanics, but opposing it to classical mechanics, can be in 
turn realized by one more “epoché” similar to Husserl’s one (“to reality” in original, and once 
paraphrased above to be “to infinity”): now “to time” and implying derivatively an independence 
of Fourier transform, or respectively the unification of the discrete and continuous (smooth): a 
unification definitive for quantum mechanics.  

As to ontology and history of philosophy, a kind of “destruction” or “deconstruction” (or 
“reconstruction”, in fact) in relation to Aristotle's logic and tracing it back as “ontology”27 to its 
origin: by revising Pythagoreanism or Platonism. Indeed, Plato himself opposes his “ideas” being 
out of time to the temporal “things” corresponding to them and changing themselves in the course 
of time.  

On the contrary, logic, moreover interpreted to be ontology, erases the opposition of “ideas” 
and “things”: it introduces that “epoché” to reality (as this will be articulated by Husserl much 
later) by its ability to identify things and ideas (in fact, also available in advance in any natural 
language). 

The “destruction”, ‘deconstruction”, or “reconstruction” can be continued still back, up to the 
origin of philosophy by Pythagoreanism: and its concept of both empirical numbers and sacral 
Numbers can be revealed in the Platonist doubling of things and ideas again identified by 
Aristototelian logic. Then, the contemporary opposition and unification of logic, set theory, and 
arithmetic in the foundations of mathematics can serve for the reconstruction at issue, on the one 
hand, but on the other hand, as the ground and pathway to Hilbert arithmetic as the basis of Hilbert 
mathematics (intended to be the proper subject of the next Part III of the paper).   

In other words, two aspects of the syncretic Numbers of Pythagoreanism can be seen separately 
realized and further developed in the doctrines of Plato and Aristotle: accordingly, the doubling of 
the same, and then, the identification over again of the same after its doubling by Plato. One might 
think of that reconstruction ostensibly doubling and identifying the same as a bad example of 

 
26 Väänänen and Wang (2015) suggest an alternative approach. 
27 Furthermore linking “ontological commitment” and intensionality (e.g., Jubien 1972) or arithmetic 
(Hodes 1984) in a way quite relevant to the context of the present paper; dually, “intensionality and 
epistemic justification” (Bondy 2013).  



metaphysical speculation, a meaningless wordplay absolutely rejected by and after Wittgenstein 
(etc.). Not at all and here is why (properly, only in the present context):   

The concept and quantity of information and especially its unit of a bit (as well as its 
generalization in quantum mechanics, correspondingly “quantum information” and “qubit”) can 
be interpreted as an analogical pair of successive identification and doubling. Indeed, “bit” means 
two complementary oppositions (though common sense’s prejudice suggests for it to be a single 
one), which can be naturally realized as: (1) identification versus doubling; (2) both alternatives 
after doubling.         

Philosophy questions about the being so that it is able to be the basis of itself by itself in a 
consistent way (i.e., without generating any contradiction after resolving that problem). In fact, 
Aristotle’s innovation of propositional logic as ontology and relevantly borrowed from both 
theology and science for millennia after him is a successful answer to that fundamental 
philosophical puzzle. Husserl’s phenomenology grounded on an “epoché to reality”, Russell’s 
logicism28 as to the foundations of mathematics29, both papers of Gödel (1930; 1931)30 reinvented 
more or less Aristotle’s ancient solution. 

Nonetheless, it can be deepened and for example illustrated as above by a reconstruction of its 
origin from the doctrines of Pythagoras and Plato. Furthermore, that new approach to the way of 
philosophy, by which it is able to be causa sui, can be grounded on the quite contemporary concept 
of information and its unit of a bit. Anyway, if one attempts to reconcile both considerations though 
historically gapped by more than two millennia, a bit of information can be identified as that 
fundamental philosophical problem together with its solution. It consists in the understanding of a 
bit of information “ontologically”: this means, as a “unit of question”: indeed, an elementary “yes 
- no” question. One may say rather loosely that the being by itself and causa sui is its own question, 
or questionability itself: speaking in a “bad speculative manner” borrowed from German classical 
philosophy, the “being answers the question of itself by what it is by itself”.    

Then and further, one can continue by suggesting an initial, fundamental and philosophical bit 
of information, eventually originating from scientific transcendentalism and revealable in 
Husssel’s phenomenology once it is realizable as a form of transcendentalism, or for example, in 
Husserl’s “epoché” (also comparable with Hegel’s synthesis31), paraphrased in the present paper 
in many ways. Indeed, phenomenological attitude opposed to natural one and proclaimed by 
Husserl can be thought in a Hegelian way to synthesize both “subject” and “object”, “idea” and 
“thing”, “mind” and “the world” corresponding to the Cartesian “mind” and “body”. Then, if one 
wishes to interpret “epoché” in a natural attitude (being inherent for science and passing from it to 

 
28 Russell’s logicism is a very widely discussed subject, and closer to the present context (e.g.) by Gandon 
(2012; 2008; 2008a), Ferreirós (2009), Gilmore (2005), Clark (1993), Byrd (1989), Grattan-Guinness 
(1984; 1974). 
29 For example, Walsh (2014) relates logicism to arithmetic as Hochberg (1956) up Peano, or McLarty 
(2011), to Emmy Noether’s contribution. 
30 Discussed (e.g.) by Weiermann (1998). 
31 For example, as in Lampert (1988). 



“scientific transcendentalism”), it would be transformed into the “philosophical bit of information” 
at issue (Penchev 2021 August 24).    

Then, the same “philosophical bit of information” can be discovered in the foundations of 
quantum mechanics, in Bohr’s complementarity, in wave - particle duality, in the choice of Hilbert 
space (as the basic mathematical formalism of quantum mechanics) and its inherent duality, etc. 
What is shared in all cases as supposedly originating from the philosophical bit of information is 
that elementary mathematical structure which a bit is able to represent.  

Once it has been extracted as an essence and lesson from them, Peano arithmetic can be 
analogically doubled in virtue of the same elementary mathematical structure to resolve Gödel’s 
original dichotomy about the relation of arithmetic to set theory: either incompleteness or 
contradiction.32 Indeed, any bit of information is either incomplete (to both alternatives) or 
contradictory (to the other alternative).  

The uncertainty embedded in the dichotomy is the ambiguity of set theory. It can be interpreted 
as a doctrine of actual infinity and then, it contradicts arithmetic because of the axiom of induction 
implying for all natural numbers to be finite. However, set theory can be not worse realized as a 
general doctrine about all sets whether finite or infinite. If the latter is the case, arithmetic is only 
an incomplete set theory as a true part of it, referring to finite sets alone.    

II HUSSERL’S PHENOMENOLOGY AS LOGICISM AND NEO-PYTHAGOREANISM 
The reading of Husserl’s phenomenology admits different interpretations, for example, by 

identifying it as a philosophy of mathematics33 able to be “first philosophy”34 and thus belonging 
to the classes of doctrines usually enumerated to be Pythagoreanism. The pathway of Husserl to 
the doctrine of phenomenology had started from his “Philosophy of arithmetic” (Husserl 1891) 
attempting an approach to arithmetic “in natural attitude”35 if one reinterprets it by his later ideas 
and therefore opposed to them (as Husserl himself did36). That radical change or exchange of his 
viewpoint to the foundation of arithmetic (being the natural basis of mathematics) corresponded 
chronologically and essentially to Whitehead and Russell’s “Principia mathematica” or to Gödel’s 

 
32 One can speak of “quantum incompleteness” (e.g. as Torza 2020; Gonzalez-Mestres, Bravina, Foka,  
Kabana 2017; Held 2012; Tucker, Thomason 2011; Hall 2004; Garola 1994; 1992; Barut, Božić, Marić 
1988; Redhead 1987; Koç 1980; Suppes, Zanotti 1974), or respectively “quantum completeness” (e.g. as 
Jurić 2018; Held 2015; 2012; Hofmann, Marc 2015; Lunin 2008; Garola, Sozzo 2004; Pulmanova 1996; 
Prugovečki 1991; Rastall 1981; Jones 1977; Fine 1974), or comparing them (Božić, Marić 1998; Andås, 
Gjøtterud 1993) in a more generalized sense after that dichotomy if the “contradiction” in it is interpreted 
as quantum complementarity as well as comparing extensionality with underdetermination or 
indeterminacy. (Solomon 1990). Penrose (2011) relates the philosophical essence of Gödel’s approach to 
the laws of physics at all.  
33 For example, Haddock (Hartimo 2012; 2006; 1997; 1987). 
34 For example, McCarthy (1972) discusses Husserl’s phenomenology as both philosophy of mathematics 
and ontology.  
35 For example, Hartimo, Okada (2016). 
36 For example, in Tieszen (1994) Tragesser (1984) or in Gödel’s way to Husserl (Livadas 2019; Atten 
2015; 2001; Tieszen 2012; Cassou-Noguès 2007; Hauser 2006; 1998a; 1992; Liu 2010), incl. in his 
unpublished papers on foundations of mathematics (Tatt 2001).  



papers elucidating both mathematical and meta-mathematical relations of set theory sequentially 
to propositional logic and arithmetic being the other two theories fundamental for mathematics. 

Sharing the same subject, one can utilize Husserl’s phenomenology, before that, being 
reinterpreted according to his personal pathway to it, as a doctrine within philosophy of 
mathematics37, to be the key for the decipherment, the “Rosetta stone” for Gödel’s papers: an 
intention rather extraordinary or even ridiculous at first glance since they are quite not esoteric; on 
the contrary, they claim to be supported by detailed proofs not admitting any hidden meaning or 
sense in definition. 

However, if one grants the main result of the Part I of the paper (Penchev 2022 October 21) 
for the Gödel incompleteness statement in his latter paper (“Satz VI”) to be an axiom only 
disguised as a theorem, this implies the necessity of its decipherment regardless of the seeming 
lack of any deeper meaning hidden behind the ostensibly quite clear one. The more general idea 
about the unraveling of deeper and quite different meanings penetrating seemingly absolutely 
comprehensible texts can be found in the philosophical doctrine of Marx, Freud’s psychoanalysis, 
hermeneutics or its philosophical extrapolations by Heidegger and Gadamer belonging to the same 
epoch as his studies.  

Of course, the investigation of mathematical theorems as cultural or psychological facts seems 
to be a rather extraordinary enterprise if one has not revealed and proved in advance that they 
should be realized rather or even first of all as the latter rather than as the former: now, the previous 
Part I of the paper calls to be understood justifying the utilization of Husserl’s phenomenology as 
a neo-Pythagorean kind of philosophy of mathematics sharing the ancient Aristotelian innovation 
of logic as ontology for deciphering Gödel’s papers. 

Nonetheless, nothing besides an only analogical “unraveling attitude” to ostensibly clear texts 
will be borrowed from Marx’s or Freud’s doctrines and even from Gadamer’s hermeneutics. 
Anyway, a similarity to Heidegger’s criticism in relation to European philosophy and culture can 
be shared, furthermore quite relevant in the context of Husserl’s phenomenology as its origin. 

In a sense, Husserl’s conceptual twist38 in “Logical investigations” after “Philosophy of 
arithmetic” can be partly interpreted as a repetition of Aristotle’s logical revision of Platonism 
directed to ontology after doubling the empirical world of temporal “things” by eternal “ideas”. 

Anyway, “Philosophy of arithmetic” once the opposition of things and ideas has been granted 
tries to reveal the origin of arithmetic among the empirical world of temporal things rather than 
following any form of Platonism in mathematics. Also later than the years of “Logical 
investigation”,  Husserl’s phenomenology would be featured by a special relation to time, quite 
different or even opposite to that of Platonism and approaching Bergson’s temporal reading of 
transcendentalism and his fundamental concept of “durée” seeming as an oxymoron in classical 

 
37 A viewpoint though more or less implicit in Willard’s paper (1980; 1984). 
38 For example, Centrone 2010 or semiotically, Byrn 2017; that “twist” corresponds to the period of 
Hussel’s lectures in 1896 (Hartimo 2012; Rollinger 2003) and Huuserl’s critique to psychologism (e.g., 
Hartimo 2013; Hopkins 2011; Meiland 1976); though Gotesky (1938) reveals psychologism in “Logical 
Investigations” as well. Anyway, Husserl’s logical and philosophical viewpoint is criticized by Russel (e.g., 
Roy 1995). 



Platonism such as the idea of time or temporality. So, Husserl accomplished the reconciliation of 
things and ideas in logic by means of that specific phenomenological (or purely psychological) 
time, which can be also schematically represented as a kind of “subjective” logic after a 
conventional transition from classical Platonism to the “subjective” Platonism of consciousness in 
advance so that phenomenological time to be quite relevant to it39. 

That special phenomenological attention to time can be found in both philosophy and 
psychology as “rigorous science”, in the “stream of consciousness”, “transcendentality of 
consciousness”, etc., rather than in Husserl’s explicit studies of time or in comparisons with 
Heidegger’s doctrine. Then, it can be traced back or projected into “Philosophy of arithmetic” after 
exchanging its “explained” and “explaining”: from arithmetic by psychology to psychology by 
arithmetic40. An analogue of it can be researched in Gödel’s concept of time, or its inherent 
incompleteness especially in the context of the similar incompleteness of arithmetic to set theory.  

As to its counterpart, the mutual completeness of logic and set theory according to his former 
paper (1930), Husserl’s conception of a few reductions, eidetic, phenomenological 
(psychological), and transcendental, may be more instructive. Indeed, his “eidetic reduction” can 
be understood to reveal the unambiguous intensional “correlate” of any extensional content or 
collection of entities granted to be given in advance. Particularly, it is able to represent any set of 
whether a finite cardinal number or an infinite cardinal number as a characteristic property 
definitive for the set, i.e. a proposition though composite and arbitrarily complicated. 

In fact, Husserl’s “eidetic reduction”, rather under the name of “abstraction”, or “method of 
abstraction” penetrates all branches of mathematics, relates them to “propositional logic” and 
finally allows for all mathematics to be relevantly interpreted as different “mathematical theories” 
rigorously defined to be first-order or higher-order logics and represented in the “deductive and 
axiomatic method” unifying all of them: even in its name, where “deductive” can be related to 
propositional logic, and “axiomatic”, to a specific tuple of axioms able to feature any given 
mathematical theory as a first-order logic. Furthermore, what is called “eidetic reduction” had 
allowed for Aristotle to reform Platonism by means of logic into ontology: an invention able to 
unify rather paradoxically theology, philosophy, mathematics, and even science in the Middle 
Ages. 

So, the sense of Husserl’s “eidetic reduction” is properly related to his concept of “epoché”, to 
“phenomenological reduction” (also “psychological reduction”), and then, to “transcendental 
reduction”41 in the final analysis, and interpreting philosophical transcendentalism: rather than in 
its definition because it existed and had applied in many areas a long time before him though under 
different names.  

Just “epoché” is crucial since it allows for articulating the Aristotelian approach to logic to 
underlie philosophy (especially after Platonism) as ontology. Epoché pioneers the pathway for 

 
39 For example, Hefferman (1989). 
40 One can also mean Frege’s criticism to “Philosophy of arithmetic” (e.g.  Hill 1994) or the comparison 
of Husserl and Frege (Føllesdal 1994; Haaparanta 1988)  
41 Or (alternatively) following the “logic of transcendental reduction” (Stapleton 1982). 



both Platonist counterparts of “things” and “ideas” to be indistinguishably unified as “phenomena” 
therefore embedding in Kantian “phenomena” another viewpoint and deepness to them along with 
the original one. The “phenomena” of transcendentalism also mean both Platonist “things” and 
corresponding to them “ideas”, but rather in relation to the subject’s sensual perceptions, and the 
analogical term of Husserl’s phenomenology relates their unity to logic after “Logical 
investigations” therefore repeating markedly and articulately a reconstructed way for Aristotle to 
achieve his fundamental discovery after Plato’s doctrine.      

If Husserl’s epoché is paraphrased as many times above (where that transfer is justified in 
detail) “to infinity” (from its original sense “to reality”), it is able to elucidate Russell’s logicism42 
as a literal interpretation or reinterpretation of Aristotle’s ideas to philosophy and the foundations 
of mathematics. Then, Husserl’s “phenomenon” can be also immediately reinterpreted in terms of 
set theory as abandoning the analogical “natural attitude” in set theory or respectively, in 
mathematics as a collection of first-order logics, and consisting in the explicit opposition of 
finiteness and infinity, for example, emphasized by the concept of actual infinity understood as 
the ultimate and unambiguous result of any finite process if it is granted to be continuable ad lib. 

One can describe “mathematical phenomenon”, relevant also to Husserl’s original 
“phenomenon”, after the newly introduced “epoché to infinity”43. It can be related to the “restored 
Eden” of Fermat arithmetic yet not known the “original sin of infinity”, and thus yet not “expelled 
from Paradise”. That kind of arithmetic, particularly, cannot be distinguished in any way from set 
theory since both concepts of finiteness and infinity opposing and contradicting each other are not 
available whether because they had not arisen yet as in Fermat’s age or because they are already 
unified by virtue of that “epoché to infinity”. 

Being inherently arithmetical, that “mathematical phenomenon” can be identified with the 
Numbers of Pythagoreanism, as the foundations of the world rather than those of mathematics 
alone. Anyway, it has been realized quite otherwise, by means of logic and ontology since 
Aristotle’s age, abandoning absolutely the initial extensionality of arithmetic and the numbers 
“pregnant” with the “original sin of infinity” though explicitly “consummated” only by Cantor’s 
set theory44, that is: more than two millennia later. 

Then, Russell’s logicism is that doctrine restoring Aristotle’s inceptive solution of the same 
problem in fact, though in relation only to mathematics nowadays45. Once Husserl’s “epoché” has 
been introduced as a hermeneutical key or “Rosetta stone”, the pair of Gödel’s papers (1930; 1931) 
can be unified in an inseparable whole in favor of Russell’s logicism in the thalweg of Aristotle’s 
track. However then one needs both Gödel completeness (1930) and incompleteness (1931) to be 

 
42 For example, Kraal (2014), Proops (2006), Radner (1975) investigate its philosophical foundations. 
43 If one relates mathematics to theology or ontology by infinity (as e.g., Cortese 2015; Tapp 2011; Bussotti, 
Tapp 2009; Drozdek 1995; Le Blanc 1993), various biblical metaphors could be linked. Morgan (2011) 
pays attention to the “significance of the mathematics of infinity for realism”.  The comparison of Kant’s 
and Husserl’s concepts about experience and infinity (Tengelyi 2005), Hegel’s logic and infinity (Houlgate 
2005), or Husserl’s pre-logical theory of experience (Lohmar 2002) would be also relevant.  
44 Following (e.g.) the viewpoint of Jahnke (2001). 
45 For example, Landini 2014. 



reinterpreted to be complementary to each other rather than valid simultaneously in the following 
rigorous meaning: 

They have to be related to each other as the two complementary oppositions of the same 
structure of a bit of information. Namely: the completeness paper (1930) is to be granted as 
referring to the choice itself of any elementary choice of a bit, but selecting the state of “no choice” 
or that in “Eden and before the original sin” though expressly meaning set theory, but interpreting 
it as a doctrine of sets at all, regardless of whether infinite or finite. On the contrary, the 
incompleteness paper means the state of the “eaten apple”, i.e., where the choice itself has been 
chosen as a necessary condition of its two alternatives, which are already explicitly indicated: 
arithmetic (finiteness strictly without infinity) versus set theory (including infinity though 
eventually along with finiteness). 

Then, the necessary complementarity of the two papers should be understood as follows. The 
alternative (i.e., the literal logical negation) of the former paper is the necessary condition of the 
latter paper. The “logical Eden” of the completeness paper, in which finiteness and infinity had 
not been opposed to each other, was abandoned after the initial choice of the choice itself. Once 
the “original sin has been consummated” in that way, only then, the peccable dichotomy heralded 
by Gödel is unavoidable: either incompleteness (“death” in a generalized biblical meaning) or 
contradiction. 

One might think that the permanent utilization of Old Testament metaphors as to mathematical 
theories or theorems or in the context of Gödel is absolutely inappropriate: not at all, it is 
intentionally emphasized and here is why. The arguments in favor of their utilization can be 
divided into two groups. The one refers to the suggestion that the Gödel incompleteness statement 
is an axiom grounded in the general organization of cognition in Modernity. Then, the basis of that 
organization is to correspond to Christianity, particularly to the biblical parable of cognition as the 
“original sin”, because of which the first people, Adam and Eve, and thus humankind have been 
expelled from Eden.  

The other group of possible tenets for the utilization of the Old Testament metaphors refers to 
the fact that Gödel (as well as Einstein meaning their shared residence and friendship in Princeton) 
and Husserl are Jews more or less penetrated by Jewish culture and religion. Judaism, though 
recognizing the Old Testament as Christianity, rejects the New Testament, respectively and 
particularly its ideas about the Redemption of the original sin by the Savior Jesus Christ (only 
according to the belief of Christianity). So, the research of whether “incompleteness” (to say, after 
the “original sin”) or “epoché” (to say, before it or in Paradise) would be natural for the attitude of 
the culture of Judaism, to which both Husserl and Gödel may be enumerated. Accordingly, 
philosophical or mathematical ideas relevant rather to the Redemption would be foreign to them.  

Aristotle’s original doctrine, Husserl’s phenomenology, and Russell’s logicism in mathematics 
as well as Gödel’s “legal protection” advocating it46 (if one adopts the viewpoint to both 
completeness and incompleteness papers as in the present Part II of the study), all of them can be 
unified and opposed to Hilbert mathematics based on Hilbert arithmetic (introduced in much more 

 
46 For example, Hellman (1981) discusses the relation of Gödel's incompleteness theorems and logicism. 



detail in other papers: e.g., Penchev 2021 August 24) if one distinguishes Pythagoreanism in a 
wide sense47 (i.e. being able to include logic and ontology within its scope) from Pythagoreanism 
in a more narrow sense, emphasizing just arithmetic (i.e. a certain first-order logic if one uses 
contemporary concepts)48. 

So, the former four doctrines or theories would be in the scope of Pythagoreanism in that wide 
sense at issue, in which it is related to logic rather than to arithmetic as the original Pythagoreanism 
did. Nonetheless, Hilbert arithmetic means rather to unify both wide and narrow senses of 
Pythagoreanism (as they are defined above) by adding a dual and anti-isometric counterpart of 
Peano arithmetic especially in order to complement it as a formal structure to that of set theory or 
propositional logic, particularly to overcome its “incompleteness” in the sense of Gödel. 

Though Hilbert arithmetic as the ground of Hilbert mathematics is intended to be the proper 
subject in the next Part III of the paper, its relation to logicism whether in Russell’s (Gödel’s) or 
Husserl’s version discussed in the present section can be rather impressively illustrated by the 
interpretation of the Schrödsinger equation, fundamental for quantum mechanics, in the framework 
of Hilbert arithmetic. It means a fact seeming to be trivial, namely isometry (though in the form of 
anti-isometry) of both dual Peano arithmetics if they are interpreted by Hilbert arithmetic in a wide 
sense as corresponding derivatives of the same wave function (e.g. Penchev 2021 April 12; 2021 
August 24). 

Then, the wide and logical understanding of Pythagoreanism to its generalized interpretation 
in Hilbert mathematics by Hilbert arithmetic can be reduced (even in an exact and rigorous 
meaning) to the “nonstandard bijection” (e.g. Penchev 2022 June 30): 𝑃𝑃+ ⊗ 𝑃𝑃− ↔ 𝑃𝑃0, in which 
can be distinguished two opposite directions and their corresponding structures corresponding to 
Hegel’s “dialectical synthesis”, on the one hand, or to a “bit” of information, on the other hand. If 
one interprets that “nonstandard bijection” to be anyway a bijection, this would correspond to the 
identification of logicism as a kind of Pythagoreanism49 called here “Pythagoreanism in a wide 
sense”. However, if one differs the “standard bijection” from the “nonstandard bijection” (in which 
the two directions are complementary to each other, in particular) thus emphasizing the mismatch 
of Pythagoreanism in a narrow sense from that in a wide sense, the former has to be differentiated 
from logicism. 

The generalizing and fundamental structure of a bit of information (above meant as the 
“philosophical bit of information”) can be realized as that relevant to philosophy of mathematics, 
and referable to the algebraic structure of propositional logic as Boolean algebra. Boolean algebra 
can be decomposed into two dual anti-isometric Peano arithmetics, each of which is a well-
ordering idempotently opposed to that of its dual counterpart. In the conventionally reverse (i.e. 
reverse to that described in the previous sentence) direction of the nonstandard bijection, the 

 
47 Even following Hilbert’s initial ideas about the foundations of logic and arithmetic (Hilbert 1905). 
48 Ulrich (1997), Majer (1997) as well as Da Silva (2016) suggest a comparison of the viewpoints of Husserl 
and Hilbert on completeness, Hartimo (2018; 2007) links Husserl’s completeness to the concept of 
manifold, and Da Silva (2000) considers Husserl’s “two notions of completeness”.  
49 For example, Kolman (2015) elucidates “logicism as making arithmetic explicit”. 



“Hegelian synthesis” of those two dual Peano arithmetics (therefore canceling the opposite well-
orderings of each of both) generates the structure of Boolean algebra traditionally interpreted to 
be identifiable with propositional logic. 

One can immediately notice that the usual understanding of both arithmetic and set theory to 
be two mathematical theories50, i.e., first-order logics to propositional logic along with any other 
mathematical theories though granted or only postulated to be the most fundamental ones, is 
substituted now to be algebraically derivative from Boolean algebra sharing the structure of a bit 
information:  

The conclusions of both Gödel papers (1930; 1931) turn out to be trivial corollaries of the 
structure of a bit of information after that substitution accordingly identifying a bit of information 
before and after choice (standardly distinguished as the Boolean structure of propositional logic, 
granted to be the shared zero-order logic for all mathematical theories in definition, from the 
isomorphic also Boolean structure of set theory but now related to the class of all mathematical 
theories as first-order logics) and meant by the completeness paper (1930) versus either the 
“incompleteness” of either alternative of a bit to both alternatives together or the contradiction of 
each of them to the other one, following the latter paper (1931). That approach will be developed 
in detail in relation to both papers (1930; 1931) in the next section. 

The Schrödinger equation can be interpreted thoroughly in the framework of Hilbert 
arithmetic, or more precisely by the equivalence (or complementarity) of it in a narrow sense and 
in a wide sense. Indeed, both anti-isometry Peano arithmetics in Hilbert arithmetic in a narrow 
sense share the same elementary step of a unit (“±1”) according to their isometry (even in the case 
of anti-isometry). If one substitutes the only one (either) of the two dual anti-isometry copies of 
Peano arithmetic by its counterpart in Hilbert arithmetic (i.e., by the qubit Hilbert space51), the 
step of one unit remains the same though now being between any two successive qubits. The 
discrete step of a unit corresponds to the first time derivative (“𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)

𝛿𝛿𝑡𝑡
”) in the case of Hilbert 

arithmetic in a narrow sense (Peano arithmetic), but to the second space derivative (" 𝛿𝛿
2𝛹𝛹(𝑥𝑥,𝑡𝑡)
𝛿𝛿𝑥𝑥2 ” or 

“𝛿𝛿
2𝛹𝛹(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)

𝛿𝛿𝑥𝑥2  + 𝛿𝛿
2𝛹𝛹(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)

𝛿𝛿𝑦𝑦2  + 𝛿𝛿
2𝛹𝛹(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)

𝛿𝛿𝑧𝑧2 ”, or 𝛻𝛻2𝛿𝛿(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)) in the case of Hilbert arithmetic in a wide 

sense (i.e. the qubit Hilbert space), which is the essence of the Schrödinger equation. That idea 
about the fundamental arithmetical core of the Schrödinger equation needs much more detail for 
its rigorous proof being far beyond the scope and subject of the present paper. However, if it is 
granted ready as a fact, it allows for elucidating the relation of logicism and Hilbert arithmetic both 
referring to the foundations of mathematics: 

As to any equation and thus to its particular case of the Schrödinger equation, logicism is able 
to erase (in virtue of its definition) the distinction between propositional logic (being the 
fundamental “zero-order” logic) and any first-order logic (i.e. any mathematical theory, including 

 
50 For example, as in the approach of Halbeisen, Saharon (1994) about the consequences of arithmetic for 
set theory, or Tzouvaras, A. (1992) about arithmetic and alternative set theories. 
51 The eventual extensionality of the qubit Hilbert space can be interpreted by the “generalized 
extensionality of fuzzy relations” suggested by Daňková (2004). 



any physical theory as a mathematical formalism, which is quantum mechanics in the case at 
issue). So, any equation possessing a certain content in terms of its interpretation as a first-order 
logic (i.e. quantum mechanics) degenerates trivially to identity in the framework of propositional 
logic since the difference between the “left and right sides” of it is concentrated thoroughly in the 
additional axioms featuring the first order-logic and thus absolutely vanishing after restricting to 
the core axioms of propositional logic. So, the aforementioned many times above fundamental 
structure of a bit of information is able to describe exhaustively the relation of trivial identity in 
propositional logic to any of its meaningful interpretations as a certain first-order logic due to the 
complementing specific axioms and thus to the class of all first-order logics meant by set theory52.  

The suggested a little above idea of how the Schrödinger equation can be in interpreted only 
arithmetically, though in the generalized sense of Hilbert arithmetic, originates from set theory, 
i.e. it is to be related to class of all first-order logics rather than to its specificity of a certain first-
order logic such as the mathematical formalism of quantum mechanics.  

Speaking quite loosely, it means that a unit (“±1”) is the same being whether finite (e.g. in 
“𝑛𝑛 + 1" where “𝑛𝑛” is a natural number or a finite ordinal number) or transfinite53 (for example, as 
in “𝜔𝜔 − 1” where “𝜔𝜔” is a transfinite ordinal number): the same unit in either finiteness 
(conventionally, the “left side” of the Schrödinger equation) or infinity (in its “right side”). 
Following the same identity of a unit in both finiteness and infinity, one can equivalently interpret 
infinity as a second or dual finiteness just as Hilbert arithmetic does, introducing a dual and anti-
isometric counterpart of Peano arithmetic. 

Then, the meaning of the Schrödinger equation generalized to set theory and thus to any first-
order logic (from where it originates supposedly) consists only in the identification of a unit  
(“±1”) referring to the class of all first-order logics in Peano arithmetic with the unit referring 
already to a certain first-order logic (whatever it be). So, the Schrödinger equation and the 
mathematical formalism of quantum mechanics, or quantum mechanics itself, to which it belongs, 
so meaning a certain first-order logic alone, but only at first glance, originates from (or can be 
generalized to) the class of all first-order logics meant by set theory. Indeed, the unit (”1”) of the 
usual arithmetic can be obtained from the qubit Hilbert space as an “empty qubit” or as the class 
of equivalence of all values which can be “recorded” in an “empty qubit” therefore once again 
confirming the set-theoretical interpretation of the Schrödinger equation.  

One might say more or less figuratively that the experiments of quantum mechanics can be 
related equally well to the fundamental mathematical and necessary properties or relation of the 
universe usually granted to be a physical entity rather than a mathematical one (as the present 
paper tends to conclude, though).             
  

 
52 For example, Boyer, Lusk, McCune, Overbeek, Stickel. Wos (1986). 
53 Especially, in the context of Gödel papers as in Woodin (2011) or Wigderson (2011). 



III REINTERPRETING GÖDEL’S PAPERS (1930; 1931) AS ADVOCATING LOGICISM 
The conceptual shift necessary for the interpretation Gödel’s papers (1930; 1931) as 

advocating logicism (for example, against finitism and formalism54 both understood rather in a 
strict or narrow sense) consists in realizing the negation of the conclusions of the former paper as 
a necessary condition for those of the latter paper therefore implying the mutual complementary 
of the Gödel completeness and incompleteness statements. The shift at issue is to be related to 
their usual interpretation of being simultaneously valid since both set theory and arithmetic are 
meant to be first-order logics and similar to any other mathematical theory also being first-order 
logic. 

On the contrary, the algebraic approach as above to the triple of propositional logic, set theory, 
and arithmetic allows for revealing the unifying and thus underlying them structure of a bit of 
information though initially abandoning the distinction between zero-order and first-order logic55, 
but immediately emphasizing that structure, and then secondarily and in its basis: restoring their 
distinction. Then, one can interpret the difference between “propositional logic” and “first-order 
logic” in an only formal way, which can be reduced to algebraic: 

Indeed, there exists a core tuple of axioms identifiable as those of propositional logic referring 
to any propositions regardless of their content. One can add specific axioms to that, determining 
the content of propositions therefore indicating a certain first-order logic. If the class of 
equivalence of all possible first-order logics should be considered, the statement that the class at 
issue coincides necessarily with propositional logic after it has been defined as a list of axioms 
valid to the propositions at all seems to be obvious only in virtue of the definition of “class of 
equivalence”. Nonetheless, the discussion is yet only intensional meaning all first-order logics and 
their class of equivalence. 

Just set theory by its fundamental concept of set involves the extensional viewpoint as to the 
elements of any set defined in advance intensionally by its characteristic property also 
representable as a conjunction of a relevant list of axioms, Then, actual infinity being definitive 
and inherent to set theory can be meant by the whole of a set or a list of axioms fundamentally 
excluding the option for any infinite set to be exhaustively described by the description of all 
elements of it one by one resulting again (as in the former case of a proper infinite set) in a finite 
conjunction of “axioms” though now each axiom refers to a certain element.  

So, one can notice that the distinction between extensionality and intensionality56 is rather 
conventional always resulting into a finite collection of entities in the final analysis (also in the 
case of an infinite set but necessarily represented by its finite characteristic property), which can 
be interpreted both as propositions in the case of propositional logic (i.e., intensionally) and as 

 
54 Logicism and formalism (as well as intuitionism) can be compared in relation to their ideas about the 
“three crises in mathematics” (e.g., Snapper 1979). On the contrary, Strauss (2011) reveals the convergence 
of Bernays’s viewpoint and Gödel’s reflections on the foundations of mathematics.  
55 It can be also revealed (or at least interpreted) about Husserl’s “pure logic” (Isaac 2016; Hart 2004; Hanna 
1984).  
56 For example, in the context of Widerker (1983) or Marcus (1960). 



elements in the case of set theory (i.e. extensionally57). Emphasizing that that ultimate collection 
of entities is always finite in the final analysis, the only arithmetical description of it is to be 
sufficient as if involving and deducing a direct contradiction to the Gödel incompleteness paper. 

Anyway, the following distinction between “finite set” and “infinite set” after logicism and 
starting from intensionality can be revealed58: the former can be defined both extensionally and 
intensionally as a “first-order logic” unlike the former, conserving the equivalence of 
extensionality and intensionality only as a second-order logic (to the tuple of axioms) being 
definable as a first-order logic only intensionally59. Then and as after logicism, the intentional 
description of any mathematical entity (including an actually infinite one) can be granted to be 
universal, only distinguishing first-order and second-order logics and postulating that there exist 
mathematical entities, to which the exhaustive or “complete” description in terms of any first-order 
logic is impossible and identifying them as being infinite or “actually” infinite according to the 
traditional notations and concepts of set theory. 

Of course, the last statement is an additional axiom and only ostensibly inferred to be a theorem 
after the Gödel incompleteness paper (1931) meaning that the description of those logics 
(postulated to be only second-order) is necessarily incomplete in any first-order logic. One can 
immediately notice that the fundamental structure of a bit of information is quite sufficient for the 
intensional approach of logicism to mathematics able to involve “actual infinity” as those entities 
which are second-order logics fundamentally irreducible to any first-order logic as the Gödel 
incompleteness statement can be equivalently reformulated.   

One can notice, that the incompleteness paper (1931) even reinterpreted as above only in terms 
of intensionality (after reducing extensionality to propositional logic, and infinity to second-order 
logics) contradicts Russell’s original logicism at least in its initial forms as well, due to his 
“vicious-circle principle” as far as (or if) it is inconsistent with any higher-order (including second-
order) logics60.  

Anyway, if logicism is understood in a wider sense, namely as reducing of the extensional 
viewpoints inherent to set theory to the intensionality of propositional logic, the Gödel 
incompleteness statement is consistent with it, needing only second-order logics, but not any 
higher-order logics by virtue of the Löwenheim-Skolem theorem and thus, in virtue of the axiom 
of choice in the final analysis.   

Then, the necessary (for set theory in the thalweg of the generalized logicism) second-order 
logic can be reinterpreted to be complementary (and thus idempotent) to first-order logic therefore 
involving a meta-structure relevant to propositional logic itself rather than to arithmetic (as the 
hierarchy of types, for example): only alternating first and second-order logics, but avoiding any 
logics of order higher than two.  

 
57 Hinnion (1986) investigates extensionality in the Zermelo-Fraenkel set theory, and Hinnion and Libert 
(2003) link it to intensionality. 
58 For example, Morrill (1990) though in the context of “boundedness”. 
59 Urmson and Cohen (1968) discuss criteria of intensionality. 
60 For example, Jung (1999). 



That approach corresponds to the pair of two dual Peano arithmetics in the framework of 
Hilbert arithmetic61 allowing in turn for the reinterpretation of arithmetic only within the 
generalized logicism: speaking loosely, Peano arithmetic as the “half” of propositional logic so 
that it complemented by the other “half” is able to constitute the “whole” of propositional logic 
from an arithmetic viewpoint, or more generally said, an extensional viewpoint to intensionality, 
in which set theory takes the intermediate position between the only extensional arithmetic and the 
only intensional propositional logic, being simultaneously both extensional (for the concept of  an 
“element of a set”) and intensional (for the concept of the characteristic property of a set, which is 
a proposition). Thus, the concept of “set” itself serves to reconcile or equate the extensional 
viewpoint of arithmetic and the intensional viewpoint of propositional logic further defining the 
actual infinity inherent for set theory by the postulated option of the absolute identification of the 
two viewpoints.  

Of course, the metaphor of arithmetic as the “half of propositional logic” so that one can obtain 
the whole of propositional logic (which one is to further identify with set theory) by adding the 
other half of arithmetics needs a rigorous definition. It can be achieved by the concept of a bit of 
information and the mediation of set theory (more precisely, by the concept of sets of bits and the 
axiom of choice62) as follows: 

Propositional logic can be interpreted on a set of bits by the bijection of any proposition to a 
certain single bit so that its meaning either “true” or “false” to be related unambiguously to the 
two alternatives of the corresponding bit, and the binary operations of propositions, by means of 
the relevantly defined binary operations of corresponding bits. Then, the set of all bits 
corresponding to all propositions can be well-ordered utilizing the axiom of choice and that well-
ordering to all bits divided into parts and also well-ordered, but separately already: the one well-
ordering refers to the all “true” alternatives of all propositions; respectively, the other well- 
ordering will mean only all “false” alternatives of all propositions. Each of those two well 
orderings is able to satisfy the axioms of Peano arithmetic (including the axiom of induction). 

Furthermore, the contradiction of the axiom of induction remaining valid to the so-defined two 
alternative Peano arithmetics to the axiom of infinity can be avoided: indeed, the axiom of infinity 
can refer only to the set of all bits (respectively, all propositions) consisting of two finite 
“halves”63: the one of all “true” alternatives constituting the one Peano arithmetics; and the other 
half of all “false” alternatives, or the dual counterpart of the former Peano arithmetic. Obviously, 
that definition of “natural number” can be thoroughly in the framework of logicism only by the 
mediation of set theory if the latter is identified with propositional logic in advance, for example: 

 
61 Thus, “infinity” is interpreted as a “second finiteness” or as “finiteness at infinity” (Firby 1971) or 
following the “interpretability of arithmetic in set theory” (Collins, Halpern 1970). D’Alessandro (2018) 
suggests a more contemporary viewpoint.  
62 Kanovei and Lyubetsky (2012) equate the axiom of choice to the “pantachy existence theorem”, relevant 
also to lattices, possibly Boolean in particular. 
63 One can compare that approach with the “logically simplest form of the infinity axiom” (Parlamento, 
Policriti 1988). 



by sharing the same structure of Boolean algebra, Then, the metaphor of arithmetic as the “half of 
propositional logic” would be rigorously defined64. 

That construction of “bisecting propositional logic into two Peano arithmetics” needs the 
mediation of the set theoretical axiom of choice for the well-ordering of the set of all propositions 
respectively that of all bits. However, after the halving of the bits into “true” and “false” 
alternatives, one obtains two classes of all natural numbers in which all natural numbers are finite 
according to the axiom of induction. If they would be considered as sets, they would be again 
infinite, but this is not to be done: 

So, one means an infinite set “before choice” (before the choice featuring any bit or the axiom 
of choice), but two finite Peano arithmetics “after choice”, each of which is incomplete to the initial 
infinite set due to its dual counterpart of one more Peano arithmetic embodying the Gödel 
incompleteness statement as an axiom. The construction demonstrates the “obviousness” featuring 
any axiom, but nothing more: the construction cannot prove it rather emphasizing that it is an 
axiom.       

The postulate of the nonstandard bijection of the two dual Peano arithmetics into a single one  
(𝑃𝑃+ ⊗ 𝑃𝑃− ↔ 𝑃𝑃0)  is equivalent to it. However both sides of it are finite and thus only in the 
framework of arithmetic, but the construction described above involves the set of all propositions 
or all bits postulated to be infinite in virtue of the axiom of infinite and this can be expressively 
emphasized by the following notation (𝑃𝑃+ ⊗ 𝑃𝑃− ↔ {𝑃𝑃0}) where the brackets “{𝑃𝑃0}” mean the set 
of all natural numbers or respectively, the Peano arithmetic “𝑃𝑃0”, but only as a set notated to be 
just “{𝑃𝑃0}”. 

Furthermore, the “nonstandard bijection” if “{𝑃𝑃0}” is interpreted to be an infinite set according 
to the axiom of infinity in the framework of set theory needs the axiom of choice65 in the same 
framework. However, the nonstandard bijection adds all Peano axioms as equivalent to any well-
ordering, among which the axiom of induction is to be featured since it is transformed into the 
axiom of infinity by the newly introduced notation of the brackets; that is: “𝑃𝑃0” means the axiom 
of induction, but its notation by brackets “{𝑃𝑃0}” replaces it with its negation, i.e. the axiom of 
infinity. All the rest of Peano axioms remain the same in both cases since they serve to be 
axiomatically defined what “well-ordering” means.  

One may use the visualization by the pair of Euclidean and non-Euclidean geometries as it is 
discussed in much more detail in the previous Part I of the paper just in relation to the pair at issue 
(that of arithmetic and set theory). Then, the notation by brackets now interpreted to some 
Riemannian manifold would correspond to the transition from a local (i.e. in an infinitesimally 
small neighborhood about any point) description, to which Euclidean geometry is relevant, into a 

 
64 The same metaphor in relation to infinity and in the context of Hegel’s dialectics or dialectical logic can 
be revealed in Usó-Doménech,. Selva, Antonio, M. B. Requena, Segura-Abad (2017); Usó-Doménech, 
Selva, Requena (2016), or even in Ushenko (1949); and Posy (2008) links infinity to Kant’s intuition. The 
logic of infinity is the subject of Sheppard (2011). On the contrary, Borkowski (1958) considers the 
“reduction of arithmetic to logic based on the theory of types without the axiom of infinity”.  
65 Germansky (1961) considers the axiom of induction (i.e., in the framework of arithmetic) and the axiom 
of choice (i.e., the framework of set theory) jointly. 



global description (i.e. in a finite neighborhood about any point), to which non-Euclidean geometry 
is relevant66:  

The identification of both states (speaking loosely that “before brackets” with that “after 
brackets”) features all “gauge” theories in physics and particularly the Standard model sharing 
with the nonstandard bijection (as here) the same conceptual origin from quantum mechanics. 
Then, one might say that only gauge theories would be relevant to the nonstandard bijection or to  
the eventual origin of arithmetic from propositional logic as its “half” where the concept of set and 
more generally, set theory is the necessary mediation able to introduce a relevant “gauge 
symmetry”.    

Further, the suggested construction of arithmetic by propositional logic can be equivalently 
inferred by the model of a Turing machine67: to the class of the interpretations of which any 
contemporary computer belongs; and the construction itself reflects the well-known fact that a 
Turing machine is able to accomplish both arithmetical and logical operations equally well, 
including mixed in any way within a correct algorithm.  

Quantum computer can be represented as a generalized Turing machine processing an actually 
infinite calculation so that it would not ever end, being accomplished in a Turing machine defined 
standardly (e.g., Penchev 2020 July 21). However, a quantum computer, following the ideas above, 
can be represented by two Turing machines. Of course, the couple of any two independent Turing 
machines cannot be thought to be a quantum computer: they need a relevant additional condition 
to be considerable as a quantum computer: 

For example, the other Turing machine (which can be conditionally notated as “TM2”) should 
fulfill a relevant meta-algorithm in relation to that realized by the former Turing machine (which 
can be conditionally notated as “TM1”). A visualization of that correlating processing by both 
TM1 and TM2 could be the following: TM2 calculates the probabilities corresponding to parallel 
branches of a certain quantum algorithm, and TM1 continues to calculate in that branch, the 
probability of which is currently maximal. If its probability as a result of the work of TM1 ceases 
to be the maximal probability, TM2 starts or continues the calculation according to the new branch 
with the maximal current probability, i.e.: within it. 

Anyway, that correlation of TM1 and TM2 (in fact implementable practically by a relevant 
architecture of a single real computer) is not sufficient theoretically for their pair to be a model of 
quantum computer rather than an approximation to it. TM1 and TM2, subordinated rigidly so that 
TM2 to be in a meta-position to TM1, would need a series of TM3, TM4, … TMn, …, each of 
which would be in a meta-position to the previous one, i.e., continuable ad lib. Restricting it to a 

 
66 One can compare this with the link suggested by Oleinik (1994): the “connection of the classical and 
quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds”. 
67 Makowsky (2008) discusses “logic for a computer scientist” in the context of Hilbert’s program. Lambda 
calculus suggests its own way for relating logic to extensionality (Intrigila, Statman 2005; Hindley, Longo 
1980). 



certain natural number, only an approximation68 of a quantum computer of an order “n” would be 
defined and thus more or less relevant for realizing the meant quantum algorithm.  

That series ad lib implying always to be not more than an approximation can be anyway 
avoided by complementing at least theoretically TM1 to be in a meta-position to the calculation of 
TM2 simultaneously (as well), so that they to be idempotent to each other in an exact similarity to 
any two conjugate quantities in quantum mechanics also representable by a relevant gauge 
symmetry. However, the problem about the implementation by the architecture of a real computer 
(and thus a Turing machine) seems to be very difficult, fortunately, out of the scope of the present 
paper.                         

Meaning the approach sketched above only as to the incompleteness paper (1931), one can 
continue it as to the former, completeness paper (1930) in a way to reinterpret it to advocate 
logicism regardless of Gödel’s real intention more or less close or far to that objective. Two 
theorems, “Satz VII” and “Satz X” would remain the key ones just as in the case of the standard 
interpretation. The former can be meant as the “completeness theorem”, and the latter, as the 
“compactness theorem”. 

The completeness theorem would refer to the relation of propositional logic to set theory in 
order to identify them as two interpretations of the same structure of Boolean algebra, and the 
compactness theorem means the relation of the structure at issue to arithmetic. The latter relation 
is elucidated above by the rigorous construction corresponding to the metaphor for arithmetic to 
be the “half of propositional logic” by the mediation of the concept of a bit of information and the 
axiom of choice (implying that of “set”, respectively set theory, in relation to all propositions or 
all bits) so that if arithmetic can be complemented by a dual counterpart of Peano arithmetic (as in 
Hilbert arithmetic), their pair can be isomorphic (or algebraically homomorphic) to set theory. 

The meaning of both completeness and compactness theorems can be easily represented by 
means of Hilbert arithmetic and quite relevantly to the intention of reinterpreting them as 
advocating logicism though in a rather generalized sense69. The former means homomorphism of 
propositional logic and set theory as the same structure of Boolean algebra. Thus, the mutual 
completeness of propositional logic and set theory to the other one is trivial since they are the same 
mathematically.  

Furthermore, both theorems are equivalent to each other, but the latter means the relation of 
set theory to arithmetic in a way opposite to its consideration in the incompleteness paper (1931). 
That approach would be absolutely consistent if the viewpoints of the completeness paper (1930) 
and the incompleteness paper are granted to be complementary to each other (as in the present 
study). This means: the latter paper is consistent with the negation of the conclusion of the former 
paper about the relation of arithmetic and set theory, but in a consistent way, i.e. elegantly avoiding 
any direct contradiction as in the case if they are meant anyway simultaneously.    

 
68 That inherently necessary approximation can be considered in the context of philosophical interpretations 
of the Gödel incompleteness theorems (e.g., as Benacerraf 1967).  
69 For example, as in Zach (2003). 



Indeed, the compactness theorem means all finite sets relevant to finite models rather than 
arithmetic directly. The difference consists in the context: the concept of “finite set” unlike that of 
a class of natural numbers admits infinite sets. The difference can be represented especially 
discernibly and distinctly by the two dual copies of Peano arithmetic, featuring Hilbert arithmetic. 
All finite sets in its framework consist of the Cartesian product of all finite sets in each of both 
dual Peano arithmetics. On the contrary, the class of all natural numbers in Peano arithmetic if it 
is considered as a set would mean only the one of them therefore being inherently incomplete to 
the Cartesian product at issue.  

In other words, or speaking loosely, all finite sets refer to both “halves of propositional logic” 
(a.k.a. “set theory” being homeomorphic to propositional logic according to the completeness 
theorem) unlike the class of all natural numbers meant in the incompleteness paper since it relates 
only to the “one half” of it. So, the direct contradiction between the conclusion of the compactness 
theorem to that of the incompleteness theorem is really avoided since they can be consistently 
distinguished as referencing to different mathematical entities though very similar, at least at first 
glance: 

The compactness theorem means both “halves” of propositional logic after the completeness 
theorem identifies it with set theory and thus to all finite sets relevant to finite models. On the 
contrary, the incompleteness theorem refers only to the one half since it indicates the class of all 
natural numbers being relevant to arithmetic. So, the set of all subsets of the set of all natural 
numbers relevant to the incompleteness theorem is a true subset of the set of all finite arithmetic 
sets. Thus, the compactness theorem means a certain set to which the set meant by the 
incompleteness theorem is a true subset. They refer to different mathematical entities, which 
allows for them to deduce a statement and its negation (correspondingly, completeness and 
incompleteness) to what each of them is to be related.   

If one considers the relation of the two theorems (ostensibly contradicting each other, but only 
at first glance) in terms of a bit of information, it can be visualized as follows. The incompleteness 
theorem refers to the relation of the chosen alternative to the bit as a whole: the incompleteness 
proved in it is due to the complement of the unselected alternative to the bit as a whole; or in other 
words, it refers to the state of a bit after the choice of either alternative. On the contrary, the 
compactness theorem means the state before the choice of either alternative, therefore being 
definitively complete.   

Furthermore, one can identify the opposition of the compactness and incompleteness theorems 
with the opposition of finiteness and infinity by virtue of the fundamental complementarity of the 
two oppositions of a bit of information: (1) “before choice” versus “after choice”; (2) the one 
alternative versus the other alternative in the latter case. Since those two oppositions are 
complementary, one can postulate them to be identical (as well as, not to be identical because the 
check of identity requires for them to be simultaneously available)70.   

As an interpretation of the above structure of a bit of information, the opposition of the 
compactness and incompleteness theorems can be postulated to be the same as that of infinity (for 

 
70 Hofstede and Weide (1998) derive “identity from extensionality”. 



the compactness theorem) versus finiteness (for the incompleteness theorem). After introducing 
their interpretation by the two dual Peano arithmetics of Hilbert arithmetic, the compactness 
theorem corresponds to the pair of the two Peano arithmetics, and the incompleteness theorem, to 
a single one, therefore exemplifying the nonstandard bijection by a homomorphism of Hilbert 
arithmetic and Peano arithmetic, on the one hand, as well as by means of the correspondence of 
the two alternatives of a bit “after choice” to their coherent and indistinguishable correlative state 
“before choice”, on the other hand.  

So, the nonstandard bijection itself may be considered to be an additional axiom corresponding 
to the identification of the two oppositions of a bit of information being consistent because of their 
complementarity. Indeed, anybody may alternatively reject it in a not less consistent way. The 
Gödel incompleteness statement (after the consideration to be an independent axiom or meta-
axiom in the previous Part I) corresponds unambiguously to accepting the postulate of the 
nonstandard bijection.  

Analogically, it can be refused not less consistently therefore postulating its negation, for 
example introducing the quantity of the “distance between finiteness and infinity” (as in Part I) 
including the extremal particular case of the absolute coincidence of finiteness and infinity 
furthermore identifiable with postulate of the nonstandard bijection (respectively, with that of the 
Gödel incompleteness statement) in the  a way similar to that for Euclidean geometry to be 
considered as a particular case of non-Euclidean geometry for the constant parameter of zero space 
curvature.  

 If one returns to the biblical metaphor for the “expulsion from Paradise”, it would correspond 
to the former opposition of a bit of information, namely that of the states “before choice” (within 
Paradise) versus “after choice” (out of Paradise). The state “after choice” consists only in the 
distinction of “evil” and “good” and can be granted to be identical with the former opposition 
where “good” would correspond to the state “within Paradise”, and accordingly “evil”, to that “out 
of Paradise”. 

One can again assure that the Gödel incompleteness statement corresponds exactly to the Old 
Testament myth in the interpretation of Judaism rejecting any option about the “Redemption of 
the original sin”: the good of being within Paradise is lost forever and thus irrecoverable in any 
way. On the contrary, granting the Gödel incompleteness statement to be an axiom and hence 
admitting the option of its negation, one moves in the thalweg of the New Testament and 
Christianity: one can atone for the original sin even after the expulsion of Paradise  though by 
virtue of God’s help by Christ, the Redeemer: the concept of Hilbert arithmetic (borrowed from 
quantum mechanics and its completeness, in fact) serves for that “redemption of the original sin” 
of arithmetic due to its inherent incompleteness71. 

Anyway, one can realize logicism as well as both papers of Gödel as its apology since 
arithmetic due to its incompleteness is an “expulsion” from the paradise of propositional logic, 

 
71 One can trace incompleteness even to “reason choice” (Sen 2004) in the same chain linking 
incompleteness, choice, the axiom of choice, and well-ordering to arithmetic in the final analysis.  



which did not know the “original sin” of the distinction between infinity and finiteness after 
Cantor’s set theory and Peano arithmetic72.               

IV THE PAIR OF ARITHMETIC AND SET THEORY COMPLEMENTED BY 
PROPOSITIONAL LOGIC; THE GÖDEL COMPLETENESS PAPER (1930) 

Two main statements to be demonstrated are the subject of the present section: 
(1) Both set theory and propositional logic can be exhaustively represented as two different 

interpretations of Boolean algebra as long as set theory deliberated from the hierarchy of infinities 
(established by Cantor rather in virtue of metaphysical considerations than because of any proper 
mathematical necessity) being equivalently substitutable by two idempotent (or dual, or 
complementary) entities such finiteness and infinity, which is also the most natural suggestion. 

Then, Gödel’s “completeness paper” (1930) can be rather reinterpreted as a pathway to the 
completeness of set theory to propositional logic (unlike it to arithmetic claimed to be either 
incomplete or inconsistent according to the next paper in 1931, being an almost trivial observation 
if both are equated to be different interpretations of the same mathematical structure (usually 
granted to be algebraic). Indeed, any two or more interpretations of the same structure are trivially 
complete to each other: otherwise, they might not share the same structure absolutely. 

There exists one more and very essential difference between propositional logic and set theory 
even sharing the same structure, but being two interpretations in different hierarchical levels since 
set theory is a first-order logic to which propositional logic itself can be qualified as a “zero-order” 
logic, i.e. referring to all propositions of set theory (whether true or false, or eventually insoluble 
if those can be proved to exist in set theory alone) only as propositions independent of their proper 
contain studied properly by set theory. That circumstance is to be related to the shared single 
structure of both: Boolean algebra.   

(2) Boolean algebra can be split into two dual anti-isometric Peano arithmetics and thus 
identifiable as a whole to be Hilbert arithmetic in a narrow sense. Peano arithmetic just as set 
theory is usually granted to be a first order-logic, however it unlike set theory is only a “half” of 
the structure shared by propositional logic as the relevant “zero-order logic” referring to all 
arithmetic propositions only as to abstract propositions independent of their proper arithmetic 
contain.  

Both statements, (1) and (2) above, involve implicitly the concept of information, on the one 
hand, as far as they mean the elementary structure of a bit of information though interpreted 
differently in virtue of the additional consideration in each of the two statements. On the other 
hand, one can claim not less relevantly that the aforementioned “nonstandard bijection” can link 
the two statements. A few notices can be useful to elucidate additionally the sense of both 
statements: 

The identification of the concepts of ‘proposition’ and ‘set’ is a necessary condition for the 
identification of set theory and propositional logic as two interpretations of Boolean algebra. It had 

 
72 The debates about infinity in mathematics at the end of the 19th century (Laugwitz 2002) can be 
instructive. 



been meant by Whitehead and Russell as a fundamental idea in the foundations of mathematics 
according to logicism or Principia mathematica.  In the final analysis, set theory seems to be a 
theory of propositions meant by their extensions of elements of sets to which they refer, but 
essentially complemented by the notion of actual infinity and Cantor’s hierarchy of infinities, 
which they (or least Russell 1908; 1907; etc.) intended to replace by the theory of types73 (also 
relatable to propositions) and furthermore, deliberated from the paradoxes of set theory just 
prohibiting self-predicativeness as their general reason.  

In other words and less formally, the concept of “set” can be understood in both ways: (1) as a 
whole by its characteristic property, which is a proposition and all elements of it obey (as well as 
all entities which are not elements of that set do not satisfy it), resulting furthermore in the 
interpretation of Boolean algebra as propositional logic74; (2) as all elements of it, which is the 
proper interpretation of set theory and can be distinguished from the former only by the additional 
opposition (Cantor’s proper innovation): infinity (i.e. the axiom of infinity in set theory75) versus 
finitenes (which is equivalent to the axiom of induction)76. 

Then, set theory is intuitively understood as a theory of both finite and infinite sets versus 
arithmetic traditionally understood to be the theory of all natural numbers which are not identified 
with all finite sets though the equivalence of arithmetic to the theory of all finite sets can be easily 
inferred since all finite ordinal numbers and all natural numbers are the same77. 

So, the two oppositions inherent for the definition of a bit, namely: (1) “before choice” versus 
“after choice” (of either alternative of a bit); (2) the explicit choice of the one alternative of a bit 
versus the other one, can be immediately revealed in the triple: propositional logic (before choice 
of “either arithmetic or set theory”) versus the other opposition after choice and consisting in the 
explicit opposition of “either arithmetic or set theory”.  

As far as set theory is usually and traditionally interpreted to be a theory of both finite and 
infinite sets, the fact that Boolean algebra is the shared structure of propositional logic and set 
theory means that the two alternatives, all finite sets (i.e. arithmetic) versus all infinite sets 
distinguishable only by the contradiction of the axiom of induction versus the axiom of infinity, 
as a whole and repeating the state “after choice” as in turn unifiable with the state “before choice” 
meant by propositional logic since any proposition suggests a kind of “epoché” whether it refers 
to an infinite or to a finite set as its characteristic property. 

 
73 Russell’s theory of types (e.g., Consuegra 1989; Cocchiarella 1980) met criticism including that by 
Wittgenstein (e.g. Han, DePaul 2013; Rufino 1994; Davant 1975), but a class of contemporary theories of 
types originated from it (e.g. Fox, Lappin 2015; Copi 1971). The theory of types was discussed by Gödel 
in 1939 (Cassou-Nogues 2009). 
74 For example, Faust (1982). 
75 Blass (1989) discusses the axiom of infinity linked to the category of set. Pambuccian and Struve (2020) 
investigate infinity in the foundations of geometry as well as Gordin (1919). Hilbert arithmetic discussed 
also in the present paper equates infinity in geometry (by the mediation of Hilbert space) and that meant by 
set theory and opposed to finiteness inherefent for arithmetic. 
76 For example, Hochberg (1977) links the axiom of infinity to properties and abstracts. 
77 The concept of finite ordinal numbers is consistent with extensionality, nonetheless Dzierzgowski (1998) 
suggests an intuitionist alternative “without extensionality”. 



In other words, propositional logic can be thoroughly identified with the concept of “Fermat 
arithmetic” introduced in another paper (Penchev 2021 March 9) in order to distinguish the 
inexperienced naivety of Fermat’s age from Peano arithmetic (particularly meant by Gödel) after 
the explicit Cantorian set theory in our own epoch. However, that identification can seem 
paradoxical as far as Fermat arithmetic should ostensibly mean a single Peano arithmetic 
contradicting directly the two dual Peano arithmetic able to constitute Hilbert arithmetic in a 
narrow sense: not at all,  Fermat arithmetic, residing in blissful ignorance in relation to infinity, 
therefore extends that ignorance to the problem “either a single or two dual Peano arithmetics” 
which in turn can result into the eventual indistinguishability of Fermat arithmetic from 
propositional logic in the final analysis. This means after translating it into the language of 
contemporary ideas that Fermat arithmetic as a first-order logic to propositional logic might be 
identifiable with the latter as Boolean algebra just as set theory nowadays.         

However, Peano arithmetic being already “expelled from Eden” after humankind “knew the 
sin of actual infinity” by Cantor’s set theory cannot be more identified with propositional logic as 
the same structure of Boolean algebra (now admissible only for set theory itself) being incomplete 
(more precisely, either incomplete or contradictory) to it just as a corollary from the literal Gödel 
dichotomy of the relation of arithmetic to set theory and shared by contemporary mathematics at 
all since it knew the same “sin of actual infinity” and called “Gödel mathematics” to be 
distinguished from the “happy” mathematics in Eden (i.e. which “did not yet know the original 
sin”) and called “Hilbert mathematics”. 

Another necessary condition for the identification of set theory and propositional logic as two 
interpretations of Boolean algebra consists in the equivalence of Cantor’s hierarchy of infinities 
and their duality (or idempotency, or complementarity) reducing it to two options similar to those 
of logical negation. The basis is the axiom of choice implying further the Löwenheim - Skolem 
theorem discussed already above in the present context. Anyway, it does not mean literally the 
same kind of idempotency as logical negation but the reduction of Cantor’s hierarchy of infinities 
to a single kind of infinity: countable infinity.  

Then, the difference in comparison with idempotency interpreted literally would consist in the 
fact that (for example) continuum should be identified with countable infinity rather than with 
finiteness as idempotency needs. So, the Löwenheim - Skolem theorem is to be essentially 
complemented by Skolem’s “relativity of the concept of ‘set’” including even finite sets as he 
expressly emphasized in his presentation in 1922 and inferred in the present paper as an explicit 
construction relying on the Dedekind-like (proper set-theoretical finiteness) and the 
correspondence between Hilbert arithmetic in a wide sense and Hilbert arithmetic in a narrow 
sense: 

That approach can be featured by a few main stages or properties: (1) the understanding of two 
successive infinities belonging to Cantor’s hierarchy by means of their relation similar to that 
between finiteness and infinity; (2) the equivalence of that uniform relation to a gap between two 
successive dimensions (particularly that between two successive dimensions of Hilbert space), but 
not less relevantly, between it and its dual space being inherently idempotent to each other; one 



has to emphasize that the equivalence at issue identifies the hierarchical gap between two 
successive dimensions of Hilbert space with that between its two dual spaces therefore needing a 
relevant Hilbert space, for example the qubit Hilbert space of Hilbert arithmetic, as a carrier of the 
fundamental equivalence of hierarchy and idempotency (duality); (3) the understanding of the 
transition from infinity to finiteness as a kind of projection corresponding to  the gradual 
“narrowing” of the corresponding probability density distribution shared also by the “collapse of 
wave function’ in the process of decoherence due to quantum measurement (e.g. Penchev 2022 
August 3); (4) the interpretation of the relation between any two successive Cantorian infinities 
uniformly by the same idempotent structure, in fact, borrowed from Hilbert space (particularly 
from the qubit Hilbert space). 

Finally, one can notice that the necessary equivalence of idempotency and hierarchy is 
exhaustively represented in Hilbert arithmetic in a narrow sense though its deduction and 
justification turn out to be hidden in Hilbert arthritic in a wide sense (as above). Thus,  the way of 
Whitehead and Russell in Principia mathematica to “get rid” of Cantor’s hierarchy of infinities in 
favor of logicism only by means of the theory of types and not utilizing any elements of Hilbert 
arithmetic whether in a wide or in a narrow sense is especially interesting. 

In fact, they restricted themselves to replace the sense of hierarchy substituting Cantor’s initial 
hierarchy of infinities being inherently extensional, i.e., referring to all elements of infinite sets, 
with the propositional hierarchy of types being, on the contrary, intensional since it means the 
corresponding propositions, which all elements of the infinite sets obey.  

Consequently, the link between hierarchy and idempotency, being an explicit subject of 
research after Hilbert arithmetic has been involved, remains implicit and unarticulated in their 
approach hidden in the concept of “proposition”: on the one hand, it can obey the structure of 
Boolean algebra (being idempotent due to the operation of logical negation); on the other hand, 
the collection of propositions can obey Russell’s hierarchy of types postulating an analogical 
dimensional gap by virtue of Russell’s rule of “vicious circle”. 

Anyway, the inherently probabilistic essence of the transition over the gap, furthermore 
absolutely necessary for justifying the equivalency of idempotency and hierarchy in detail, cannot 
be reached so: because it needs the fundamentally newly worldview of quantum mechanics, by the 
by, appeared and, first of all, established a few decades later than the initial publication of Principia 
mathematica.  

As a general though rather technical conclusion, Hilbert arithmetic in a wide sense can remain 
thoroughly hidden for the former of the two statements (which are the subject of the present 
section) to be inferred since its narrow sense is absolutely sufficient for that objective. 

The premises are borrowed from Whitehead and Russell’s “logicism”: (1) any set is equivalent 
and thus can be equivalently substituted by a certain proposition, which is the characteristic 
property of the set and able to distinguish unambiguously its elements from any other entities; 
then, set theory can be thoroughly investigated as an interpretation of propositional logic therefore 
sharing the same structure of Boolean algebra; (2) the type theory utilized in Russell’s type theory 



also is necessary to be involved in order to justify the equivalence of idempotence valid as to all 
propositions in the following sense:   

Any proposition implies its unambiguous and idempotent counterpart in virtue of the operation 
of logical negation. The theory of types establishes a well-ordering to the order of all propositions 
prohibiting any self-predictability by a special postulate known as Russell’s “vicious circle 
principle”78. Then, both Cantor’s hierarchy of infinities (also known as the hierarchy of “alefs” 
notating types of cardinal numbers of infinite sets) and Russell’s type of propositions are underlain 
by the same fundamental structure of all natural numbers.  

This gives the option that one can consider a special kind of type propositions defined by the 
condition that any “alef’ is to correspond unambiguously to a certain level of type. That bijection 
of types and alefs being unambiguously and arithmetically enumerated by all natural numbers does 
not need either the “set of all types” or the “set of all alefs” both being compromised by paradoxes 
similar to the initial one suggested by Russell (1902) in a letter to Frege79. For example, the 
bijection at issue can be built as follows: 

The proposition of any level means an infinite set of elements and then, the proposition relevant 
to any next level means the set of all subsets of the set of the previous level. An axiom of (ZFC) 
set theory guarantees that the set of the next level being so defined always exists. Furthermore, the 
Löwenheim - Skolem theorem allows for all infinite “alefs” to be identified in virtue of its 
premises, and now, that identification to be extended to all corresponding “type propositions” due 
to the bijection at issue. 

Anyway, the abyss between any finite sets and their derivative sets consisting of all sets of the 
former sets being necessarily also finite, on the one hand, and any infinite set, on the other hand, 
is insurmountable in the framework of the suggested construction: finiteness and infinity, 
respectively, the classes of infinite sets versus those finite sets80, are to be declared as idempotent 
similar to the pair of corresponding propositions (that a certain set is finite and its negation, that 
the same set is infinite, i.e. it is not finite). In the present context based on the opposition of 
intensional and extensional aspects, the same structure initially borrowed from the interpretation 
of Boolean algebra as propositional logic allows for any individualization of elements belonging 
to the set meant by the proposition being its characteristic property.     

Therefore, though Hilbert arithmetic is much richer theory able to describe explicitly and 
constructively, however probabilistically, the mutual transition between finiteness and infinity, 
that description can be “bracketed” so that one needs only the fact that all “infinities of Cantor” 
can be effectively reduced to a single infinity, and then, opposed to finiteness in turn being 
irreducible to infinity in that way therefore implicitly suggesting their idempotency, duality, or 
complementarity (according to) the area of interpretation. 

 
78 For example, Rouilhan (1992), Hilton (1992), Fleischhacker 1979), or linked to the “linguistic hierarchy” 
(Pap 1954), and Chihara (1978), discuss the vicious circle principle in relation to ontology.  
79 Also in relation to the present context: Hale (2005). 
80 Or the general relation of “extensionality, attributes, and classes” (Pap 1958).  



Further, propositional logic and set theory as a first-order logic though both eventually sharing 
the same structure of Boolean algebra should be distinguished according to the kind or scope of 
propositions admissible in each of them and thus what follows if one applies Boolean algebra as 
set theory unlike its application as propositional logic.    

In other words, adding the general concept of elements, set theory as a first-order logic is 
already able to discuss and consistently introduce new concepts irrelevant in the framework of 
propositional logic such as quantifiers or relations referring to certain elements meant by the 
corresponding set only as all elements. Obviously, the newly determined elements by quantifiers 
or relation can be individualized in turn as a set and characteristic property by a corresponding 
proposition also but indistinguishably obeying Boolean algebra.  

Thus rigorously and mathematically, propositional logic and set theory (after they have been 
identified to be both Boolean algebra) can be anyway distinguished as the class of all structures of 
Boolean algebra versus the case to be distinguished from each other because of their different 
interpretations of the same Boolean algebra. That is: set theory means the class of interpretations 
of Boolean algebra versus the class of all structures of Boolean algebra. 

If one utilizes the metaphor of the opposition of mathematics versus the world, the pair of 
propositional logic and set theory builds an image of the same opposition, but now within the 
proper framework of mathematics itself so that propositional logic is to be doubled by set theory 
distinguished from the former only postulating for it to be a first-order logic unlike propositional 
logic not being a first-order logic since it does not admit any extensional consideration. Then, one 
can conclude that set theory means the class of all first-order logics versus propositional logic 
generalizing their corresponding mathematical structures of Boolean algebra as a class.  

A similar argument elucidates that the way of doubling propositional logic by set theory 
implies immediately and obviously for the former to be complete to the latter: what a looser 
interpretation of the one (“Satz VII”)81 of the main results of Gödel’s PhD thesis or paper (1930) 
might be. Following the fundamental distinction between propositional logic and set theory 
interpreted as the class of equivalence of all first-order logics (loosely speaking, each of which 
refers to a certain set additionally specified as a relevant compose proposition being the subject of 
the theory at issue82), that theorem states that any formula belonging to propositional logic is 
provable in set theory (as well as there does not exist any statement provable in set theory, which 
is not simultaneously a valid formula of propositional logic). 

If both propositional logic and set theory are two interpretations of Boolean algebra 
furthermore not possessing any additional features able to distinguish them from each other, that 
theorem of Gödel (1930, “Satz VII”) seems to be an obvious and even trivial statement. 
Propositional logic and set theory differ from each other only by the assignability of a certain (i.e. 

 
81 The other main result is the compactness theorem (“Satz X”) also relevant in the present context, 
discussed above and equivalent to the completeness theorem in Gödel’s paper (1930) itself as well as after 
the consideration here. 
82 Following the same idea, set theory can be simultaneously considered to be a certain theory among the 
class serving for its definition postulating the absence of any additional specifications as its “relevant 
compose proposition”.  



unambiguous) relevant extension called “set” of “elements” to any proposition available in both 
cases. So, propositional logic means all propositions thus obeying Boolean algebra, and set theory 
means just the same propositions only doubled by relevant sets therefore also obeying Boolean 
algebra and nothing else since any proposition is equivalent to the pair of itself and its relevant set, 
to which the proposition at issue is the characteristic property.  

A relevant transition to the latter statement, which is the other subject of the present section 
(namely, the following statement above: “Boolean algebra can be split into ywo dual anti-isometric 
Peano arithmetics and thus identifiable as Hilbert arithmetic in a narrow sense”), is the 
compactness theorem in Gödel’s paper (1930, “Satz X”). It states that the necessary and sufficient 
condition for any infinite set of formulas of propositional logic to be valid is any finite subset of it 
to be valid.  

One should analyze that statement meaning specific restrictions of the present context: only 
after “Satz VII” has established the equivalent mutual changeability of formulas of propositional 
logics and their unambiguous counterparts referring to sets and eventually, to their elements, “Satz 
X” suggests the formulas of propositional logic to be investigated as elements of relevant sets in 
virtue of the already proved “Satz VII”. Meaning just that research, one is to emphasize expressly 
that the pair of “finiteness” and “infinity” can be related only to sets and extensions, but not to 
propositions directly. 

Returning to the discussed structure of a bit of information being formed by two 
complementary oppositions, “Satz VII” and “Satz X” in question can be also situated in an 
analogical framework of two complementary oppositions. Then, “Satz VII” means the initial 
opposition (notated above to be “before choice” and “after choice” between the two alternatives 
of any bit) where the theorem establishes the fundamental equivalence of “intensionality” (meant 
by the class of all propositions83 relevant to propositional logic) and itself, but already 
unambiguously doubled by “extensionality” (i.e. any proposition relevant to “intensionality” is 
doubled by its counterpart of a certain set consisting of elements even being zero as in an empty 
set, such that the proposition at issue is its characteristic property). Then and once “extensionality” 
has been involved in “Satz VI”, itself in turn can be divided into “finiteness” and “infinity” 
therefore constituting the latter complementary opposition to the former opposition. Properly, 
“Satz X” states that the distinction meant by the latter opposition is irrelevant to the former 
opposition: a theorem proved by Gödel just to the particular case meant in his paper, but in fact 
originating and inferable from the general structure of a bit of information. 

Furthermore, one can add to the above observation also the distinction of the multiplicative 
axiom (utilized by Whitehead and Russell in Principia mathematica) and the axiom of choice 
granted to be an exact equivalent (i.e.: neither weaker, nor stronger) of the latter, especially in 
relation to the equivalence to the well-ordering “theorem”. The distinction consists in the 
opposition of the directions of their statements in a sense: 

The axiom of choice suggests as its premise that any infinite set (since the choice from any 
finite set can be made without its assistance), from which a binary choice between the set consisting 

 
83 Marti (1993) researches for the source of intensionality. 



of any element and its set-theoretical complement is always possible. In other words, any subset 
of an infinite set and its complement to the infinite set in question does not contain any shared 
element as well as no element of the infinite set belonging either to the subset or to its complement 
therefore literally generalizing the analogical statements to finite sets: 

Then, one can see the axiom of choice otherwise before that, noticing that it makes sense only 
extensionally, only to elements of any (infinite) set, only to any first-order logic, the class of which 
is identified with set theory itself rather than to propositional logic thus being acceptable as to 
Russell and Whitehead’s logicism, for which extensionality including that of any infinite set has 
to be derivative from propositional logic and thus secondary to it.  

Meaning that attitude of logicism, one can notice that the axiom of choice as to all propositions 
properly (i.e. regardless of any set of elements assignable to it in set theory unambiguously) 
establishes that any proposition is the same regardless of whether determines a finite or an infinite 
set consequently restricting the opposition of finiteness versus infinity to make sense only to 
extensionaly being indistinguishable in the framework of intensionality, which in turn is only 
meant by propositional logic84. 

If one utilizes again the metaphor that set theory as the class of all first-order logics serves to 
build (or even only to transfer) the world external to mathematics within itself, the sense of axiom 
of choice can be interpreted as the relevance of the concept of infinity (or more precisely, that of 
an infinite set only to the world and the derivatively and secondarily to mathematics itself in the 
area of set theory where an image of the external world is to be built).  

The idea of logicism can be seen to be opposite to that of an image of the world external to it 
to be defined only within itself by set theory: namely set theory to be inferred from propositional 
logic; at that, rigorously formally and mathematically. Of course, that eventual deduction of set 
theory inferable from propositional logic alone means a further objective: a proposal of how the 
world can be inferred from mathematics at least in a looser manner acceptable for philosophy.  

One of the main obstacles (if not the single one) is the concept of “actual infinity” (respectively, 
“infinite set” following formally and logically the axioms of set theory). The problem is that: 
infinity to be now inferred from propositional logic avoiding its postulation in set theory after 
Russell’s paradox85 (and many others after it) can demonstrate serious troubles about “set” or 
“infinite set”. 

Needless to say that common sense’s philosophy embodied in the modern organization of 
cognition felt itself challenged by the wider philosophical ideas of Principia mathematica tending 
to be the “principles of the world” therefore rebelling to the episteme. Common sense’s philosophy 
needs set theory and actual infinity in particular to be inconclusive from propositional logic and 
accordingly, Whitehead and Russell’s undertaking to failure. 

On the contrary and in relation to the particular problem about the axiom of choice, Russell 
suggested that the “multiplicative axiom” is able to replace the former, furthermore elementarily 
deducing the multiplicative axiom from the well-ordering theorem usually interpreted as a proof 

 
84 For example, Lithown and Marras (1974) discuss propositions “without extensionality”. 
85 For example, in relation to Russell’s “vicious-circle principle” (Vardy 1979). 



of the equivalence of the axiom of choice and well-ordering theorem (in fact, only by the mediation 
of the multiplicative axiom). 

Meaning the general intention of logicism, one can reinterpret the multiplicative axiom as 
follows. Any two propositions can be synthesized meaningfully (or formally consistently) so that 
the Cartesian product of their corresponding sets (to which each of them is the characteristic 
property) is not an empty set (as far as an empty set is the extensional correspondence of both 
inconsistency and nonsense). In other words, the multiplicative axiom literally formulated is the 
extensional counterpart of an intensional statement (thus referring to propositions regardless of 
their extension or sets whether finite or infinite in set theory) penetrating Western philosophy and 
expressly discussed a long time ago e.g. by Hegel86 or even still by the philosophers of Hellas, by 
medieval logicians up to the present day again and again though embedded in new forms: so, that 
is quite not a newly introduced invention of logicism. 

That “any two propositions can be synthesized meaningfully” can be generalized but 
simultaneously specified additionally if one states that ‘any two propositions are able to constitute 
a joint metaphor, i.e. to be linked metaphorically’. Then, the former statement (being furthermore 
the intensional counterpart of the multiplicative axiom) can be formally inferred from the latter by 
Gentzen’s cut rule allowing for any metaphor87 to be reduced to a single proposition (demonstrated 
for example in: Penchev 2022 August 3), otherwise crystallizing or appearing as a residue in the 
prolonged use of any metaphor.  

Now, one can notice that the axiom of choice being properly and only extensional since it 
refers to the elements of any infinite set can be both identified with the multiplicative axiom and 
distinguished from it, first of all, in virtue of its intensional counterpart, with which it is equipped 
unlike the axiom of choice itself. The difference consists in the distinction of propositional logic 
from the class of all first-order logics (as set theory can be interpreted). Then the axiom of choice 
is to be related only to set theory and by it, to any first-order logic further (even to propositional 
logic if it is interpreted, by the by, in a quite admissible way, as a first-order logic: e.g., in the 
compactness theorem translating the universality of propositional logic in terms of finite or infinite 
sets featuring set theory or any first-order logic), and the multiplicative axiom, to both 
propositional logic and set theory. 

Thus, the “multiplicative axiom” is designed to propagate the intention and conception of 
logicism that set theory is reducible to propositional logic after any set is reducible to its intensional 
counterpart of a corresponding proposition since the distinction between finiteness and infinity, 
though being fundamental for set theory itself, is, in fact, insignificant to its foundations and 
justification. One is to emphasize that closeness to finitism, constructivism or Hilbert program 
especially in the context of both papers of Gödel (1930; 1931) rather advocated the completeness 
of logicism versus the incompleteness of the enumerated schools originating from arithmetic or at 
least inherently linked to it:  

 
86 For example, Masciarelli (2000) means the shared context of Russell and Hegel.  
87 “Metaphor” can be interpreted as ‘context change’ or ‘indexicals’ and then, they can be linked to 
intensionality as Chierchia (1994) or Forbes (1987) do. 



Those schools grant the extensional viewpoint of set theory and then, the fundamental 
distinction between finiteness and infinity emanating from it. On the contrary, logicism abandons 
the distinction between infinity and finiteness88 (being relevant only to the extensional viewpoint 
of set theory or arithmetic rather than to the proper viewpoint of propositional logic), heralding the 
unification of it with the intensional viewpoint of logicism and thus, the insignificance of the 
distinction between finiteness and infinity in the final analysis. Husserl’s “epoché” now transferred 
“to infinity” (from its original meaning and philosophical sense inherent for phenomenology to be 
“to reality”89) can synthesize the attitude of logicism to the troubles about the foundations of 
mathematics.   

Then and as a result, the multiplicative axiom and the axiom of choice cannot be absolutely 
identified with each other in the following sense. The multiplicative axiom is not able to distinguish 
finiteness from infinity initially and intentionally due to the leading idea of logicism unlike the 
axiom of choice literally referring only to infinite sets and thus distinguishing them in definition. 
That maybe scholastic (at first glance only) difference can be demonstrated by their opposite 
directions even in relation to the well-ordering theorem, namely:  

Zermelo inferred (even in two different ways and papers: Zermelo 1904; 1907) the well-
ordering theorem from the axiom of choice (in fact, newly introduced by him just for that purpose 
and seeming to him to be obvious unlike the well-ordering theorem itself). On the contrary, 
Whitehead and Russell deduced quite elementarily the multiplicative axiom from the well-ordering 
theorem. This means: the (eventual) equivalence of the axiom and choice and the well-ordering 
theorem or “theorem” (i.e. with or without quotation marks) relies on the (also eventual) 
equivalence of the multiplicative axiom and the axiom of choice acquitted by default by common 
sense, but rather doubtfully or ambiguous as this is shown above. Indeed, one can trace the same 
mismatch in detail and explicitly in relation to the well-ordering theorem in order to interpret it as 
their mutual duality, complementarity or even idempotency, as a result of which the one is a 
corollary from the well-ordering “theorem”, but the other implies it (i.e. as a theorem without 
quotation marks).  

Meaning that objective, the eventual interpretation of the well-ordering theorem or “theorem” 
as a true paradox as this is demonstrated above or in another paper (Penchev 2022 October 21) to 
the Gödel insoluble statement mediating between arithmetic and set theory in order to generate the 
Gödel dichotomy about their relation (“either incompleteness or contradiction”). The well-
ordering (“)theorem(”) as a true paradox in the context at issue might mean the following: its finite, 
arithmetic interpretation implies its infinite, set-theoretical interpretation as well as vice versa:  its 
infinite, set-theoretical interpretation implies its finite, arithmetic interpretation. Both can be 
anyhow consistent to each other, but only from the viewpoint of logicism and the multiplicative 

 
88 On the contrary, their distinction implies a “critical view of logic” (Parsons 2015) as well as an alternative 
viewpoint to arithmetic (Parsons 2013). 
89 One can link Husserl's original epoché to reality to the newly introduced epoché to infinity also e.g., by 
means of the “concept of evidence” (Snyder 1981). 



axiom; on the contrary, they constitute a true paradox from the alternative viewpoint of set theory 
and the axiom of choice.  

Thus, the conclusion about the relation of the axiom of choice and the multiplicative axiom 
turns out to be rather extraordinary: they are indeed equivalent, but only from the viewpoint of 
multiplicative axiom for the missing distinction of finiteness and infinity; on the contrary, they are 
dual or complementary from the viewpoint of the axiom of choice, because of the explicit 
distinction of infinity from finiteness. Thus, stating their equivalence (as usual), the viewpoint of 
logicism is granted in fact though implicitly90.  

Just the same ambiguity can be traced in the “nonstandard bijection” really being a bijection 
only from the viewpoint of logicism (or “intensionally”, speaking loosely, i.e. if one has not 
defined before that what means the “bijection of two propositions”), but not being any bijection 
from the viewpoint whether set theory or arithmetic (or “extensionally”, i.e. properly as far as the 
usual “bijection of sets” is inherently extensional). Then, the main idea of Hilbert arithmetic in a 
narrow sense for doubling Peano arithmetic by a dual and anti-isometric counterpart can be 
interpreted as a formal and rigorous translation of the viewpoint of logicism into the inherently 
extensional viewpoint of both arithmetic and set theory though opposed to each other by the axiom 
of induction versus that of infinity accordingly.   

The axioms of set theory can be divided in a few groups according to the viewpoint of the 
present paper: (1) “Boolean axioms” defining algebraic operations for Boolean algebra; (2) 
“axioms for infinity”: the axiom of infinity versus the axiom of induction in arithmetic as well as 
axioms for the Cantorian hierarchy of infinities; (3) the axiom of choice91. The effects of (2) and 
(3) can be interpreted as opposite to each other. The hierarchy of infinities assists to differentiate 
many kinds of infinities from each other according to their cardinal numbers: so-called “alefs”. On 

 
90 Sometimes, the “problem of infinity” is alleged in relation to logicism (e.g. Landini 2011; also Landini 
2020). In fact, logicism does not suggest the distinction of infinity versus infinity. It abstains from that 
distinction or from the extensional viewpoint in general, at least in the interpretation of the present paper.  
91 That statement is quite not obvious and needs a relevant detailed proof postponed for a future paper about 
Russell’s paradox in Hilbert arithmetic and intended to be published in the next year (2023). Speaking 
loosely, set theory establishes two specific concepts relevant to extensionality: sets and elements. Then, all 
“Boolean axioms” postulate the properties of sets and elements to propositional logic so that “set” and 
“proposition” are identifiable. If one speaks of the axioms of ZFC set theory (only for certainty since it is 
equivalent to the other standard axiomatics of set theory), both rest groups of axioms, (2) and (3) above, 
introduce specific properties of extensionality without any analogue in propositional logic and refers 
correspondingly to infinity (and to the hierarchy of infinities) and well-ordering: i.e. to arithmetic though 
indirectly rather than to propositional logic. Arithmetic is thoroughly finite due to the axiom of induction 
and thus, a true subclass of set theory admitting infinity and its hierarchies as well as inaccessible cardinal 
numbers (whether uncountable or countable) corresponding to the Gödel incompleteness statement; e.g. 
Corazza (2010) relates the axiom of infinity to them; Belyakin and Ganov (2002) mean “large cardinal 
numbers” in relation to intensionality. The axiom of choice supplies a countable well-ordering of any set 
(correspondingly finite or infinite), and arithmetic is a mathematical theory of all finite well-orderings. 
Thus, if “Boolean axioms” relate set theory to propositional logic (both being the same structure of Boolean 
algebra), all the rest, i.e. “non-Boolean axioms” refer to the relation of set theory to arithmetic. That is: the 
Boolean axioms elucidate that “set” and “proposition” are the same, after which the non-Boolean axioms 
specify what “elements” mean, implicitly relating set theory to arithmetic as a theory of all finite sets.        



the contrary, the axiom of choice is able to reduce all infinities regardless of their cardinal numbers 
to a single one, countability in the sense of the Löwenheim - Skolem theorem or respectively, 
Skolem’s “relativity of the concept of set”. 

Furthermore, the axiom of choice is able to generate one or two well-orderings for any infinite 
set unlike the single one well-ordering relevant to a finite set and utilized by the concept of natural 
numbers or the axiom of induction also excluding any alternative well-ordering featuring the well-
ordering of any infinite set, in virtue of the axiom of choice92. The identification (whether absolute 
or partial) of the axiom of choice and the multiplicative axiom as above allows for the distinction 
of two well-orderings versus a single one as relevant to any infinite set, for example representable 
also by the non-standard bijection.      

One can immediately visualize how the necessary utilization of the axiom of choice for any 
infinite set to be well-ordered generates one or two well-orderings equally well. The standard 
consideration relevant to a single one is the following. Some element of the infinite set at issue is 
chosen in virtue of the axiom of choice. The procedure is repeated to the set-theoretical 
complement of the chosen element or elements as a subset of the initial infinite set to the later itself 
iteratively. The procedure can be continued ad lib. Then, a countable set of elements (the initial 
infinite set, which is to be well-ordered) is mapped by a bijection into another countable set of 
choices. Finally, the procedure of well-ordering has to finish in virtue of that bijection.    

However, one can admit the following alternative consideration: one doubles the afore-
described procedure also in relation to the unchosen alternative, which can be identified with the 
complement of the chosen alternative to the initial set and it is continued analogically and 
iteratively ad lib. The process of doubling can be visualized as follows: 

1                                                                         C (1) 
1, 2                                                                    C (1,2) 
1, 2, 3                                                                 C (1,2,3) 
…                                                                          … 
1, 2, 3, …, n                                                       C (1,2,3, …, n)  
…                                                                        …  
So, the axiom of choice is able also to generate two isomorphic well-orderings, or more 

precisely: two dual anti-isometric Peano arithmetics. Any finite set can be well-ordered only so 
that a single one ordinal number corresponds unambiguously to it. On the contrary, the well-
ordering by virtue of the axiom of choice is able to offer also two different ordinal numbers, each 
of which refers either to the chosen alternatives or to the unchosen alternatives. Nonetheless those 
two dual ordinal numbers relevant to any infinite set can be identified to be the same in the final 
analysis. So, the distinction between only a single one ordinal number versus two dual ones can 
furthermore to differentiate finiteness form infinity (speaking loosely) just any finite set, from any 
infinite set (speaking precisely) 

The so-described construction by the axiom of choice is homomorphic to the previous one 
considering arithmetic to be the one “half of propositional logic”, however without involving the 

 
92 Streicher (1992) investigates the relation of the axiom of choice and induction in a specific context. 



axiom of choice since it is relevant to set theory rather than to propositional logic. The 
homomorphism of both corresponds to Boolean algebra underlying both.   

V WHY QUANTUM MECHANICS DOES NOT NEED ANY “QUANTUM LOGIC” 
As this is well known, the conclusions of quantum mechanics are so extraordinary that a 

relevant change of scientific thought seemed to be necessary initially, respectively a special 
quantum logic (or logics) corresponding to quantum revolution. When quantum mechanics 
appeared in the beginning of the 20th century, many non-classical logics, or logics of certain 
subjects, directed to describe such a way of thinking that fits very well only to a single scientific 
area, thrived. The basis (as in the case of non-Euclidean geometry) was the same deductive and 
axiomatic approach after complementing or modifying one or more axioms of classical logic in 
order to agree with the domain meant at issue.  

According to classical logic, any mathematical theory shares the same list of the axioms of 
propositional logic, to which are added independent axioms describing its specific subject and 
transforming the corresponding complete tuple of axioms into a first-order (or eventually higher 
order) logic, properly. One can think of the distinction between the axioms of propositional logic 
and those of the first-order logic at issue to be conventional therefore admitting to be moved so 
that axioms specific for a certain mathematical theory (respectively, a first-order logic) to be 
included in the core, to which only those of propositional logic belonged initially (i.e., before that).  

Furthermore, the newly added axioms to the core list can be absolutely or partly equivalent to 
negations or modifications of certain axioms of propositional logic. Since Boolean algebra is a 
lattice, different generalized lattices can correspond to the various lists of core axioms featuring 
one or another non-classical logic relevant to a corresponding area of cognition, respectively a 
mathematical theory interpreted to be a model of the area at issue93.   

The same mechanism of occurrence is shared by the class of quantum logics94 and thus it can 
be traced back into their origin95. All of them can be featured by the propositions about conjugate 
quantities obeying the rules of complementarity or respectively and equivalently, the non-

 
93 For example, Mittelstaedt (2012; 2004); quantum logic and classical logic admit a unified interpretation 
(Tokuo 2014; Malhas 1987), or the “classical foundations of quantum logic” to be researched (Garola 
1991).  
94 For example, Beltrametti, Mączyński (1995); Lock, Hardegree (1985);  Birkhoff, Neumann (1936); or as 
a problem, by Gardner (1971). 
95 Many papers relate quantum logic(s) to different specific subjects (e.g. Matvejchuk, Vladova 2019; 
Baltag, Smets 2011; 2008; Pykacz 2010; 1998; 1992; Harding 2009; Engesser, Gabbay 2002; Bigaj 2001; 
Pulmanová 1998; 1996; 1994; 1983; 1981; 1977; 1973; Dalla Chiara 1995; Friedman 1994; Bell 1986; 
1985; Brabec, Pták 1982; Dvurečenskij 1992; Grib, Zapatrin 1992; Finkelstein 1992; Cohen 1989; Cohen, 
Svetlichny 1987; Gibbins 1987; Kallus, Trnková 1987; Bunce, Wright 1985; Cook, Rüttimann 1985; 
Hughes 1985; Abbati, Manià 1984; Gudder 1982; Cook 1978; Cirelli, Cotta-Ramusino,  Novati 1974; 
Cirelli, Cotta-Ramusino 1973) or to philosophy (Ashcroft 2010; Barnum 2003; Resconi, Klir, Pessa 1999; 
Pitowsky 1989; Mittelstaedt 1986; Bell, Hallett 1982; Hardegree 1977; Nilson 1977; Putnam 1974), 
especially in the second half of the 20th century where its pеаk is. However, all quantum logics are rather 
“exercises” and variations within logic, not contributing anything in quantum mechanics, physics, or 
science.  



commutativity of Hermitian operators in the separable complex Hilbert space after the definition 
of ‘quantity’ in quantum mechanics to be that operator96. Then, that special class of propositions 
is regulated by relevant axioms97. Quantum logic can be furthermore extended to quantum 
information (e.g., Hyttinen, Paolini, Väänänen 2015; Barnum 2003; Santos 2003; Pulmanova 
2002), which can be also “analyzed by ordinary mathematical logic” (Nisticò 2014).  

Howcwer, the approach of quantum logic has not been accepted by the physicists in the area 
of quantum mechanics98. They continued and continue to use classical logic99: i.e. propositional 
logic to a special mathematical theory referring to operators in Hilbert space as a model of the 
physical and experimental discipline of quantum mechanics100. Nonetheless, the theorems about 
the absence of hidden variables are deduced though being overly surprising to classical science or 
classical logic. 

They can be also interpreted as the redundancy of quantum logic thus cut by Occam’s razor. 
Indeed, the propositions about conjugate quantities cannot contain any additional information in 
comparison with the propositions obeying classical logic since that eventual additional information 
can be related to some “hidden variables”, which cannot exist according to the theorems cited 
above and hence implying the equivalence of quantum and classical logic or the redundancy of the 
former.  

The same redundancy of quantum logic to classical propositional logic can be simply 
illustrated by means of Hilbert arithmetic after using the two dual Peano arithmetics101 for 
enumerating all pairs of conjugate quantities. Then, the equivalence of quantum logic and classical 
propositional logic can be reduced to granting the nonstandard bijection (and consequently, to the 
Gödel incompleteness statement in the final analysis, however only in its interpretation above, by 
means of Hilbert arithmetic). Accordingly, the redundancy of quantum logic corresponds to the 
completeness theorem after proving its equivalence to the compactness theorem.  

So, quantum logic (respectively, the class of quantum logics) turns out to be an extremal, but 
very instructive case of non-classical logic generating a series of ambiguous interpretations and 
linked problems. It can be realized as a logic of arithmetic after emphasizing that the theorems 
about the absence of hidden variables imply the identification of it with propositional logic in the 

 
96 For example, in Ross (1974), Lahti (1980); also, Torza (2020) or Tomé, Gudder (1990) as well as in the 
context of symmetries of quantum logics (as in: Trnková 1989; 1984) or in Schindler (1992), by the 
“existence property”. 
97 For example, in Zecca (1981); Gudder, Michel (1979); Gudder (1969).  
98 For example, Foulis, Randall 1974; Strauss (1973) considers the problem about “logics for quantum 
mechanics”; Renauld and Joachim (2011) discuss the application of classical Boolean logic to quantum 
systems; Dieks (2014) compares classical and quantum physics in relation to identity (being fundamental 
for logic), distinguishability and indistinguishability, and Faggian, Sambin (1998), to cut-elimination. 
99 This can be demonstrated rather elegantly following Calabrese (2005) and the interpretation of quantum 
logic by “Boolean fractions”: then they may be re-enumerated into Boolean “integers” relevant to classical 
propositional logic. 
100 Described (e.g.) by Hooft (2012); Deutsch, Ekert, Lupacchini (2000); or Zapatrin (1994). El Nascie 
(2007) links infinity and the physical theory of E-infinity by Hilbert space. The logic of quantum mechanics 
derives from “classical general relativity” according to Haddley (1997).  
101 For example, Dacey (1990) discusses “arithmetic tools for quantum logic”. 



final analysis. Indeed, arithmetic as any other mathematical theory is a first-order (or eventually 
higher-order) logic, consequently granting all axioms of propositional logic in advance. Then, if 
quantum logic is accepted to be the non-classical logic of a special area, namely arithmetic, it 
possesses the particular (or even maybe unique) property to coincide with propositional logic so 
that arithmetic whether as a non-classical logic called quantum logic or as a first-order logic is the 
same.   

Another viewpoint is that quantum logic is to be interpreted as the relation of propositional 
logic to its “half” as arithmetic (following the construction above). For example, if propositional 
logic and quantum logic coincide according to the theorems about the absence of hidden variables, 
this implies a whole and its half to coincide, which is quite natural if both are actually infinite sets 
being also absolutely consistent with the identification of set theory and propositional logic as 
Boolean algebra102.    

 A third interpretation is possible as well, furthermore being the most relevant one in the 
present context about logic as ontology. Quantum logic can be realized as the class of all non-
classical logics of any extensional “something” (whatever it be103) analogically to set theory if it 
is granted to be a class of all first-order logics. Then, the relation of propositional logic to quantum 
logic can be proved to be isomorphic to that of it to set theory104 and in the final analysis, again 
identifying quantum logic and propositional logic, but now by the mediation of set theory equated 
to both in advance.  

What is to be added to propositional logic (respectively, to the list of its axioms) is one more 
bit of information consisting of the following two oppositions: (1) intensionality for propositional 
logic versus extensionality for quantum logic; (2) finite extensionality for arithmetic versus infinite 
extensionality for set theory (or the corresponding pair of two dual Peano arithmetics according to 
Hilbert arithmetic). So, quantum logic can be thought to be propositional logic, though being 
inherently intensional, now related to extensionality: or speaking loosely, the equivalent 
extensional counterpart of propositional logic.  

On the other hand, ontology being the logic of the world can be identified as the extensional 
counterpart of propositional logic being intensional by itself, and thus, with quantum logic in the 
final analysis. The world needs conjugate quantities, noncommutative Hermitian operators in 
quantum mechanics to be described. Quantum logic corresponds to that description as well as to 
propositional logic linking the former to the latter by the nonstandard bijection. 

So, quantum mechanics does not need any quantum logic since classical propositional logic 
only reinterpreted ontologically is absolutely sufficient for it also in virtue of their fundamental 
coincidence as above.     
  

 
102 The problem about “completeness of quantum logic” (Stachow 1976) can be considered in the same 
context. 
103 For example, meant by a physical theory, i.e. being in the framework of physics (as in: Svetlichny 1992). 
104 Stout (1979) demonstrates a “quantum-logic-valued model of set theory”. 



VI HILBERT’S “EPSILON CALCULUS” AFTER HILBERT ARITHMETIC IN A WIDE 
SENSE AND LOGICISM 

The epsilon operator, “𝜀𝜀”, distinguishing between propositional logic and any first-order logic 
(and thus between propositional logic and set theory as the class of all first-order logics) unifying 
both quantifiers (“∀” and “∃”) is crucial in Hilbert’s idea for a mathematical theory105 able to prove 
that mathematics is complete (e.g. Slater 1994; 1991). In fact, it does not add any essentially new 
concepts in mathematics, its foundations or philosophy, however emphasizes both quantifiers 
reducible to the single operator at issue as necessary and sufficient to justify completeness, or 
particularly, to overcome the Gödel incompleteness statement106. 

Hilbert’s 𝜀𝜀-operator serves only to notate the well-known mathematical idea of “pure” or non-
constructive existence provable107, for example, by reductio ad absurdum. So, it being related to 
the problem about completeness hints or suggests that eventual incompleteness is due only to the 
restriction of constructiveness108: accordingly, if one removes it by admitting the option for 
mathematical entities to exist regardless of the eventual fact that any constructive proof is 
impossible, the completeness of mathematics can be proved. One can immediately assure that the 
Gödel incompleteness statement is not valid to non-constructive proofs about pure existence since 
the involvement of arithmetic (for example in virtue of the Gödel enumeration) implies 
constructiveness. 

An illustration of the distinction between propositional logic and first-order logic (even in the 
case of set theory as the class of all first-order logics being equivalent to propositional logic in the 
sense of the completeness theorem) as inherent and definitive for the 𝜀𝜀-operator can be the 
“paradox of material implication” especially after its utilization to demonstrate the eventual non-
constructiveness of the Gödel incompleteness statement as in Part I of the present paper. Indeed, 
the ostensible “paradox of material implication” is due to the incorrect identification of implication 
in propositional logic (i.e., without any additional axioms and without quantifiers) and implication 
in any first-order logic, sometimes called “material implication” for being distinguishable (i.e. 
after additional axioms in the first-order logic or admitting quantifiers). 

The paradox consists in the possible absurdity of true implications according to propositional 
logic where the link between their interpretations in terms of first-order logic is meaningless. If 
one involves 𝜀𝜀-operator, which is quite relevant after interpreting the paradox of material 
implication by the relation of propositional logic and first-order logic, the paradox can be resolved 
admitting in an absolutely non-constructive way that there exists some meaningful premise to 

 
105 Gauthier (1994) discusses Hilbert’s “internal logic of mathematics”. 
106 For example, as in Zach (2003). 
107 For example, Mints (2008) demonstrates cut-elimination for epsilon calculus Moser and Zach (2006) 
links it with Herbrand complexity. Koslow (2019) considers the “modality and non-extensionality of the 
quantifiers.” 
108 Constructiveness is always consistent with finiteness, but not always with infinity (e.g., Rowbottom 
1971). 



justify the conclusion also in the framework of the first-order logic rather than only abstractly, in 
propositional logic109.   

As to logicism, Hilbert’s epsilon calculus reduces the problem of completeness110 to the 
relation of propositional logic and all first-order logics featured by both quantifiers. After set 
theory has been identified as a special mathematical theory about the class of all first logics and 
the completeness theorem has been proved, the pathway to Hilbert’s epsilon calculus is pioneered: 
its contribution consists only in the definitive distinction of propositional logic to set theory or to 
any first-order logic by means of 𝜀𝜀-operator.  

Speaking loosely, propositional logic complemented by 𝜀𝜀-operator can be interpreted as a first-
order logic or as the class of all first-order logics, i.e as set theory. However, that 𝜀𝜀-operator 
vanishes (or respectively cannot be defined) in the framework of the completeness theorem (1930) 
since the distinction between constructiveness and non-constructiveness or the 𝜀𝜀-operator relying 
on their relation cannot be formulated. Utilizing again the biblical metaphor about the “expulsion 
from Paradise”, one may say that there is no 𝜀𝜀-operator “in Eden”; it can be defined only after 
“expelling” from there.  

If one interprets the 𝜀𝜀-operator in terms of Hilbert arithmetic, it should be related to the 
complementary or dual Peano arithmetic (notated for example as PA2) if all constructive proofs 
are referred to its counterpart (naturally notated to be PA1). PM2 admits only uncertain statements 
about existence (which can be identified to be “pure existence” as in mathematics) just due to its 
duality or complementarity to PM1. For example, PM2 can be related also to the Gödel insoluble 
statements thus equating them to the area of pure existence or to the domain where the 𝜀𝜀-operator 
can be defined by mediation of PA2.  

One can reveal some ostensible inconsistency between the Gödel insoluble statements and the 
area of statements about pure existence of mathematics, since the latter are not insoluble. In fact, 
the former, the Gödel insoluble statements are to be called more precisely “constructive insoluble 
statements” since their insolubility relies only on their Gödel numbers being inherently 
constructive. On the contrary, the statements for which neither constructive nor pure existence is 
provable are false rather than belonging to the area of Gödel insoluble statements. 

The correspondence of 𝜀𝜀-operator and the dual counterpart of Peano arithmetic can be made 
clearer by means of Hilbert arithmetic in a wide sense, which includes both dual qubit Hilbert 
spaces so that the dual counterpart of Peano arithmetic can be identified to be the one qubit Hilbert 
space. Then, the pure existence suggested by 𝜀𝜀-operator can be identified with a probability 
(density) distribution being uncertain in comparison with any constructive unambiguous 
procedure111. That probability distribution corresponds to a wave function and then to one or more 
qubits according to the mathematical formalism of quantum mechanics and information112.  

 
109 The quantifiers can be related to intensionality (e.g., Dalrymple, Lamping, Pereira, Saraswat 1997). 
110 Epsilon calculus is to be thought in the framework of Hilbert’s program (e.g.  Franks 2009; Detlefsen 
1986).  
111 Bugajski (1978) compares the logics of classical and quantum mechanics to probability.  
112 For example, Horgan (2000) investigates the “intensionality of probability” though in a specific context. 



The proper idea of the 𝜀𝜀-operator being uncertain in definition is now translated more or less 
successfully into the language of possibility or even into the rigorous mathematical language of 
probability acquiring partly the certainty of some probability distribution distinguishable from any 
other referring to probabilities of the same option. So, Hilbert’s proper idea of 𝜀𝜀-operator can be 
now defined as the class of all possible probability distribution or respectively, as an “empty qubit” 
being exactly so uncertain as the 𝜀𝜀-operator. Then, an “empty qubit” can be interpreted as 
equivalent to the set of all natural numbers relevant to the dual counterpart of Peano arithmetic 
therefore restricting the description only to Hilbert arithmetic in a narrow sense in the final 
analysis, but necessarily involving the concept of set.   

Returning to logicism, the 𝜀𝜀-operator referring only to both quantifiers can be equivalently 
related to the relation of propositional logic and first-order logic thus remaining only in the 
framework of logicism and thus of the completeness theorem not needing even the compactness 
theorem. Indeed, the latter means rather the relation of the two dual Peano arithmetics of Hilbert 
arithmetic; and the 𝜀𝜀-operator: only relevant properties of the dual counterpart of Peano arithmetic 
rather than any relations of them.      

VII INTERIM CONCLUSION: HILBERT MATHEMATICS AS THE LOGICIST 
FOUNDATIONS OF MATHEMATICS  

The next Part III of the paper will consider Hilbert mathematics opposed to Gödel 
mathematics113 in detail. It relies on Hilbert arithmetic in both narrow and wide senses and 
corresponds to a kind of Pythagorean philosophy called “quantum neo-Pythagoreanism”, 
according to which the essence of the world is mathematical and it exists by virtue of mathematical 
necessity.  

Common sense’s viewpoint that mathematics can only create models of the world, which more 
or less correspond to the world “by itself” is only a meta-metamathematical axiom, the proper 
mathematical counterpart of which (also an axiom) is the Gödel incompleteness statement and 
which can be accepted or not equally well just as the Fifth postulate of Euclid can be accepted or 
not. The previous Part I of the paper contains enough arguments and tenets demonstrating that it 
is an axiom rather than a theorem regardless of Gödel’s proof or the corresponding common 
opinion. 

However, a modified Pythagorean philosophy, in which the fundamental and even sacral 
arithmetic of original Pythagoreanism is replaced by logic, therefore granting for the world to be 
ontology, is quite usual for philosophy since Aristotle's age. Unlike geometry or arithmetic, logic 
is related to language114 or human thought rather than, to mathematics during more than two 
millennia: only since the second half of the 19th century, propositional logic has been identified as 
a mathematical discipline after Boolean logic and algebra. Then, ontology as a class of 

 
113 One can speak of “Gödel mathematics” also in virtue of his viewpoint to philosophy of mathematics 
usually qualified to be Platonist (e.g. Fuchino 2012; Tieszen 2011; 2006; 1998; Taotao 2011; Odifreddi 
2011; Pleitz 2010; Tymoczko 1998; Headley 1997; Sapojnikoff, Sapojnikoff 1973; Silvers 1966).  
114 For example, extensionality is frequently considered as a linguistic concept (or both linguistic and 
logical) as e.g. by Humberstone (1986) or by Lambert (2005; 1974). 



philosophical doctrines can be understood as a form of Pythagoreanism: where arithmetic as a 
mathematical structure is replaced by another mathematical structure, that of propositional logic 
after it has been identified as Boolean algebra. 

Russell’s logicism, being a school for the foundations of mathematics after Cantor’s set theory 
and its paradoxes, can be also understood as a form of Pythagoreanism in an analogical way though 
in a quite narrow sense, relevant to philosophy of mathematics regardless of being only an 
application of the fundamental conception of ontology. Gödel’s two papers (1930; 1931) can be 
interpreted as advocating logicism, but also in a wide sense, according to which logicism can be 
understood ontologically, i.e. as a form of Pythagoreanism, as the present Part II of the paper 
demonstrates.  

However, logicism or ontology interpreted as relevant to Pythagoreanism are justified whether 
only intensionally or by Husserl’s “epoché” to reality correspondingly, thus being a too restricted 
version of Pythagoreanism or its original ambitions. On the contrary, both quantum neo-
Pythagoreanism and Hilbert mathematics claim to expand Pythagoreanism according to its ancient 
ambitions and initial intentions: also, to extensionality being inherent for arithmetic and set theory 
or to reality by itself revealing its mathematical basis.  

The final Part III intends to investigate Hilbert mathematics both fundamentally and 
philosophically, on the one hand, and as philosophy of mathematics, on the other hand. 
Furthermore, the viewpoint of Hilbert arithmetic allows for a series of the most fundamental 
problems to be resolved: for example, the “four-color theorem”; Poincaré’s conjecture proved by 
G. Perelman, proclaimed by CMI to be one of the Seven Problems of the Third Millennium; 
Fermat’s last theorem proved by A. Wiles.  

The following hypothesis can generalize the approach only illustrated by those three 
fundamental mathematical problems: many of the most fundamental unsolved mathematical 
problems nowadays are to refer to the foundations of mathematics, to its philosophy and relation 
to the world, and even to the “first philosophy” itself.              
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