
EasyChair Preprint
№ 7632

Wirom2.0: an Extensible System for Mission
Planning of Heterogeneous Multi-Robot Teams

Gunnar Kleiven

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 28, 2022

Wirom2.0: An Extensible System for Mission Planning of

Heterogeneous Multi-Robot Teams

Gunnar Fimreite Kleiven

Western Norway University of Applied Sciences, Bergen, Norway
gkl004@uib.no

Abstract

Robotics software systems are becoming increasingly more complex, which makes the
development progressively more challenging. Different robots have different requirements,
and they often require to cooperate together to achieve a common goal. This thesis presents
Wirom2.0, an extensible system for mission planning of heterogeneous Multi-Robot Teams.
By using the principles of Model Driven Software Engineering Wirom2.0 simplifies the
mission planning of multi-robot teams by creating useful abstractions and facilitate for
great extensibility.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Contributions . 2
1.4 Research Questions and Methodology . 3

2 Background 3
2.1 Robotics . 3
2.2 Model Driven Software Engineering . 4

3 Wirom2.0 Implementation 5
3.1 Brief Overview . 5
3.2 Simpleactions . 6
3.3 Frontend: Web Interface . 6
3.4 Backend: Python Server . 6
3.5 Backend: Simulation . 7
3.6 Robotgenerator - A Domain Specific Language and its implementation 8
3.7 Method . 9
3.8 Further planned work . 9

4 Results and Conclusions 9

1 Introduction

1.1 Background

Robotics systems is a field in software development which is becoming increasingly more com-
plex, and therefore makes the development progressively more challenging. Historically, robotics
development is a field which has struggled with defining strong development methods. The in-
dustry and research have been influenced by ”ad hoc” solutions, where the demanding needs
has made it difficult for common solutions to emerge. This is slowing down the evolvement of

Wirom2.0 Kleiven

industry standards, as the developers are more likely to write their own architecture and code
[4]. The slow progression is lacking behind the progression of traditional software development
in general. However, researchers and engineers in the robotics community has become more
aware that it makes sense to spend time developing reusable software.

The robots themselves has seen great development in since their early days. Previously,
robots were mostly found in an industrial setting, doing repetitive work with minimal human
interaction. Nowadays, robots have become much more versatile and are used in many other
fields with countless applications. This creates a lot of new challenges, with roots in several
different domains. Software for autonomous is created to function in varying and challenging
environments, and this generates new levels of requirements for reliability, fault tolerance and
safety. Furthermore, these systems often need to process data asynchronously, as well as having
a demanding need for communication solutions in the vast collection of different components.
Adding to all of this, the software often needs to be able to change system configurations and
goals at run-time, without the possibility to redeploy code.

To manage the complexity of robot software systems, there is a need for engineering of better
modeling languages and simulation tools. Achieving code which can be reused on different
platforms generates the need for creating abstractions for the robotic behavior. This thesis will
focus on creating some of these abstractions in the robotics domain. In Wirom2.0, one of the
goals is to simplify a mission planning system, featuring a set of heterogeneous robots.

1.2 Motivation

The main motivation for this thesis is to contribute to some of the challenges in robotics software
development by further developing a mission planning system for multi-robot teams. One of the
ideas is to enhance the system by automating some of the expendabilities for the program, to
make it more sustainable to change and raising its abstraction levels. Another motivation is to
look more into how we can use Model Driven Software Engineering approaches, and especially
Domain Specific Languages, to automate some of the functionalities of the system.

The resulting prototype in this thesis should be usable for users with different knowledge
of both programming in general and the robotics domain. Novice users should be able to
intuitively generate missions for the given robots, even without prior programming knowledge
at all. Users experienced in the robotics domain should be able to further expand some of the
content functionalities for the robots in the system, and the system should facilitate this by
providing code generation and extensibility.

1.3 Contributions

The foundations for this thesis was created by Joakim Grutle [6]. In his Master Thesis he
developed a mission planning system for a heterogeneous multi-robot setup, using the concepts
of Model Driven Software Engineering and low-code development. The result is Wirom, with
a web-based interface where the user can generate robot missions, task allocation and task
development. One of the core ideas of his thesis is to use abstractions to help the users utilize
these functionalities.

This thesis will use his project and code as a starting basis, and will both improve upon
some of his functionalities as well as adding new features based on the motivation and research
questions explained in these sections. As with most technologie development moves with a
rapid pace, which will make some of the currently used technologies and solutions outdated.
This means that while the main goal will be to add functionalities, some parts of the previous
project is subject to change as well.

2

Wirom2.0 Kleiven

1.4 Research Questions and Methodology

To achieve what has been set out in the background and motivation section, the main research
question for this master thesis will be:

• RQ1: How can we use Model Driven Software Engineering Principles to simplify and
enhance the abstraction levels and the extensibility of a multi-robot mission planning sys-
tem?

Furthermore, this thesis will look at the following sub-questions:

• RQ2: How can the users experiment with different task allocation algorithms to increase
the efficiency of the missions?

• RQ3: How can the communication approach enhance the robot communication and coor-
dination?

The research method followed in this thesis will be a case study. In [9] Runeson and
Höst looks at several definitions of case studies in software engineering and how the common
consensus is how case studies investigates ”contemporary phenomena in their context”. With
the focus on studying phenomenon in its context, conducting the research as a case study will
align well with what this thesis is trying to achieve through the development of Wirom2.0.

The data collection can be either quantitative or qualitative. Quantitative data is measured
in numbers, while qualitative data is not numerical data but rather text derived from human
interaction and perception. Although the most common form of data in case studies is the
use of qualitative data [9], they can be combined together to utilize the advantages from both
methods [10]. In the case of this thesis, the data will be collected through developing useful
mission examples and use cases of the extensibility of the system.

2 Background

To get a better understanding of both the introduction and motivation, as well as the next
chapter about the implementation, it will be useful to get a short overview of some of the
theoretical background. In the following sections there will be some brief walk-through of some
of the most important concepts.

2.1 Robotics

2.1.1 Taxonomy for Multi-Robot Task Allocation

In [5], Gerkey and Matarić defines a formal taxonomy for task allocation in multi-robot systems,
which they refer to as Multi-Robot Task Allocation (MRTA). In MRTA the tasks, robots and
their assignments are categorized, each with two categories:

• The tasks can either be a Single-robot (SR) task, which are assignments where only
one robot is required, or it can be a Multirobot (MR) task, which are tasks where
several robots are required for it to be executed.

• The robots can be either Single-task (ST) robots, which are robots capable of handling
only a single task at a time, or Multitask (MT) robots, which means robots capable
of executing multiple tasks in parallel.

3

Wirom2.0 Kleiven

• Lastly, the task assignment methods are separated as Instantaneous allocation (IA)
and Time-extended assignment(TA). These are tasks that are assigned to be exe-
cuted right away with no regards to the planning or future tasks, and an assignment of
tasks where the planning and optimization of future tasks are taken into considerations,
respectively.

These abbreviations can be combined in triples to form further descriptions for task alloca-
tion problems. The most common of them is the problem with Single-task robots, single-robot
tasks and instantaneous assignment (ST-SR-IA). When changing any of these abbreviations
to create different problems, they become inherently increasingly more challenging because of
their nature. Although Wirom2.0 does not limit itself to just the ST-SR-IA problem, it will
be used as an example because it’s the simplest to implement and demonstrate. In this thesis
we will not try to solve the ST-SR-IA problem because it has already been solved with several
approaches [7]. However, we will facilitate for domain experts to add and experiment with task
allocation algorithms, as finding new solutions and implementing them is by itself outside the
scope of this thesis.

2.2 Model Driven Software Engineering

2.2.1 Overview

Model Driven Software Engineering (MDSE) is a methodology for developing software using
models and transformations. MDSE is meant to increase productivity and efficiency in software
development by emphasizing the usage of models to create complex software, with the core being
the models as well as the transformations between the models [2]. It also focuses on applying
modeling on different levels of abstractions an even on different levels of models. A model can
itself be defined by another model, called a meta-model. Transformations defines the mapping
between the different models and is the second important part of MDSE. Model transformations
are defined using transformation languages, often provided by a modeling tool.

2.2.2 Domain Specific Languages

A Domain Specific Language (DSL) is a programming language which is specifically designed
to solve problems in a particular domain. They are not necessarily designed to be able to solve
any kind of problem, but rather focuses on a particular area of interest. Some known examples
of DSLs are SQL and HTML [1]. A DSL is on the contrary side of a General Purpose Language
(GPL), which as the name suggests is a programming language meant to solve all kinds of
problems, e.g. Java and C++.

2.2.3 Model Driven Engineering in Robotics

Robotics software development is inherently complex. One reason is because of the different
software components interacting in highly dynamic and uncertain environments [8]. Another
reason is the need for collaboration of experts from different fields, e.g. mechanical and elec-
trical engineering, as well as developers from software engineering. Because of these embedded
challenges, some developers and researchers are looking at Model Driven Software Engineering
to help solve some of these challenges. In [3], Brugali analyzed the role of MDSE technologies in
robotics software engineering. He argues that one of the key characteristics that separates the
systems for autonomous robots from other embedded systems is the large variety of function-
alities that comes together to make op the robot capabilities, such as navigation and collecting

4

Wirom2.0 Kleiven

Figure 1: Architecture model of Wirom2.0

data from sensors and other input. He states that this creates a critical development phase
when it comes to the software architecture of these systems, and that MDSE approaches can
support these architecture designs by automating some of the complex tasks.

3 Wirom2.0 Implementation

The resulting system for trying to approach the mentioned challenges is Wirom2.0: An Exten-
sible System for Mission Planning for heterogeneous multi-robot teams. Wirom2.0 lets users
plan and execute robot missions through a high-level interface, through an easy-to-use low code
platform. The missions are executed through a simulation software, which is streamed directly
to the browser. Furthermore, the system provides for thorough extensibility, allowing users
with some knowledge about the robotics domain to add both new and existing robots to the
system. This is achieved by using a custom Domain Specific Language, which generates the
needed code for adding new robots with simple commands.

3.1 Brief Overview

The overall system architecture is shown in Figure 1 as a top down view. At the top level, we
have the web interface. It contains the missions, the tasks that constitutes the missions and
the simpleactions which in turn defines the tasks. These are explained in section 3.2. Finally,

5

Wirom2.0 Kleiven

the web interface includes a streaming instance of the simulation view, which can be controlled
from the browser.

The web interface communicates with a Python server using HTTP requests. The web
interface sends the missions to the server, and the server publishes the missions to the correct
communication channels. This is done using the publish/subscribe model. Task allocation is
also handled by the server, by having the web interface sending a request to the server.

Going further down we have the simulation software and the robot controllers. The simu-
lation software used is Webots, which runs the controllers implemented in Python. Each robot
in the simulation world runs its own instance of a controller, and they communicate both with
each other and the server through a message broker.

Finally, there is a DSL which can be run independently from the system. It can be used to
generate the code for adding new robots of the types which already exists in the system. The
DSL can be run through the Eclipse Modeling Framework, which provides an editor and an
infrastructure to utilize the DSL.

3.2 Simpleactions

One of the most important elements in Wirom2.0 is the simpleactions. A ”simpleaction” is
a single action a robot can execute, e.g., go forward, turn right and go to point. The users
adds these together to create missions. The robot controllers, explained in section 3.5, needs
to implement each simpleaction for that robot type. When the user adds a robot of an existing
type, this is done automatically. If the users add a brand new robot to the system, he/she
needs to also add the implementation of as many simpleactions they want the robot to have
the capabilities of doing. Furthermore, each simpleaction has a cost which plays a key role in
the task allocation algorithm.

3.3 Frontend: Web Interface

The project was developed as a web application to make it simple to use and setup for the users.
It is implemented using React, a popular JavaScript framework for building user interfaces. The
web interface includes all the simpleactions which the user can put together to define the tasks.
Several tasks can be but together to constitute a mission. A task is a list of actions for a
robot to execute sequentially. Allocating these tasks can either be done manually by the user,
or automatically by an implemented task allocation algorithm on the server. A screenshot of
the top of the web interface is shown in Figure 2. Below is a window with a stream of the
simulation, which looks like the screenshot of the demonstration in figure 3.

Lastly, the web interface includes a ”Streaming Viewer”, which is an instance of the robot
simulation streamed from the simulation software to the browser. By streaming the simulation
to the interface we get the advantage of having ”everything in one place”, and it creates a good
opportunity to later deploy the system on a hosting service for the backend and the simulation
software.

3.4 Backend: Python Server

The server is the main communication module between the web interface and the running
simulation. It is implemented in Python and uses the web framework Flask to handle incoming
HTTP requests from the web interface. These are sent as JSON objects, and the server forwards
these messages by publishing them to the proper ”topics”. It also includes a task allocation

6

Wirom2.0 Kleiven

Figure 2: Screenshot from the Web Interface

manager, which can be called by the users to automatically allocate the tasks to the different
robots.

RabbitMQ, an open source message broker, is used to implement the publish/subscribe
model for the communication between the robots. This is a common pattern in robotics,
and allows for a hybrid architecture where the communication is both centralized (by mainly
going through the server) and also decentralized (the robots can publish messages to each
other). Publish/Subscribe pattern works by having the robots choose which topic they want
to subscribe to, which in Wirom2.0’s case is their own robot-name queue, and listening for
updates. A publisher publishes a message to this channel, and all the subscribers receive this
message. A publisher can also subscribe to topics.

Lastly, when the server is started it runs a script which checks if there has been generated
any robots from the DSL (explained in section 3.6). This script will find newly added robots
and add their data to the necessary configuration files, such as the web interface lists and the
simulation software world file.

3.5 Backend: Simulation

Using simulation software to simulate the robotics behavior has many advantages over using
real robots. These includes both the cost savings and the opportunity to test functionalities
which would otherwise be too challenging to do. In this thesis we are using Webots, an open-
source robot simulator. Webots is well suited for research and educational purposes, with a
large set of supported robots as well as a mode for streaming the simulation to the browser. A

7

Wirom2.0 Kleiven

Figure 3: Screenshot of the Simulation in Webots, with some extra added robots

screenshot of the simulation can be seen in Figure 3

The individual robots in Webots are controlled by a controller, which is written in one of the
supported languages. In our case, we are using Python. The controllers are an essential part of
this thesis, as it is here the different kinds of robots in the heterogeneous teams have their own
individual implementations. The capabilities of the robots, namely how many simpleactions
they have implemented, play a large role in the potentials for the mission planning. One of the
goals in this thesis is to facilitate for ”domain experts” to be able to expand the repository of
robots and their functionalities. It is therefore important with the expansion of both new and
existing robots, where the controllers are the key part of Webots.

3.6 Robotgenerator - A Domain Specific Language and its implemen-
tation

One of the features of MDSE which is utilized in this project is the usage of DSLs for code
generation. By using the DSL, we can create abstractions for the creation of adding new
(existing) robots, by automating the process and removing some of the complexity for the
users. The DSL created in this thesis, currently named ”Robotgenerator”, comes with simple
commands with a familiar syntax. Without much prior knowledge about programming, the
users should be able to easily utilize its features. Robotgenerator is created using Xtext, an
Eclipse framework which covers all the aspects of the language infrastructure.

In figure 4 we can see a screenshot of the editor which is generated by the Eclipse framework.
The commands seen are defined by the grammar of the language, which specifies the syntax.
We can see that the editor includes functionalities common in an IDE (Integrated development
environment), such as auto completion and error detection. When the file is saved, the DSL
generates a controller file and a JSON file with the needed data. The command shown should
be quite familiar to common programming syntax, with a ”function call”, and the arguments:
ENUM parameter type, robot name as a string, X position value and Y position value. A
semicolon marks the end of the line.

8

Wirom2.0 Kleiven

Figure 4: Usage of the DSL in the editor

3.7 Method

The software development method used in this work is an agile approach, leaning most towards
Kanban. To organize the tasks, a Github project board has been used. Work-tasks are labeled
with categories and their importance, which makes it easier to prioritize the work. There has
also been frequent communication between the student and supervisor, with scheduled meetings
once a week.

3.8 Further planned work

The plan going forward is to add another task allocation algorithm and create the possibility
for the users to add their own, to try to answer the second research question in section 1.4. I
will also focus on refactoring and making the current solutions better in general. As a huge part
of this thesis is the focus on extensibility, it is important to lay a good foundation for future
work on the project.

4 Results and Conclusions

The thesis has yet to finish its results. Data collection in this thesis will mainly be to create
different mission scenarios, as well as user testing of the system. Since some of the focus is
to have users with different ”levels” of knowledge using the system, it will be useful to gather
qualitative data from the user testing of the system. Ideally we will have users with different
experience levels to test the individual features, both non-developers and students in software
engineering.

Through the work in this thesis, we are further developing a mission planning system for
multi-robot teams. The system have been updated to the newer versions, and there has been
added a lot of improved functionalities. The end result is new and improved prototype for
heterogeneous multi-robot teams, with simple usability and useful abstractions. It is extensible

9

Wirom2.0 Kleiven

by facilitating for adding any robot in the Webots ecosystem, scalable with its communication
model. Wirom2.0 is hopefully an example of how MDSE principles and abstractions can help
in the robotics developments of this category.

References

[1] Lorenzo Bettini. Implementing domain-specific languages with xtext and xtend : learn how to
implement a dsl with xtext and xtend using easy-to-understand examples and best practices, 2016.

[2] Marco Brambilla, Jordi Cabot, Manuel Wimmer, and Luciano Baresi. Model-Driven Software
Engineering in Practice: Second Edition. Synthesis Lectures on Software Engineering. Morgan &
Claypool Publishers, San Rafael, 2017.

[3] Davide Brugali. Model-driven software engineering in robotics: Models are designed to use the
relevant things, thereby reducing the complexity and cost in the field of robotics. Robotics &
Automation Magazine, IEEE, 22:155–166, 09 2015.

[4] Davide Brugali, Arvin Agah, Bruce MacDonald, Issa A. D. Nesnas, and William D. Smart. Trends
in Robot Software Domain Engineering, pages 3–8. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[5] Brian P Gerkey and Maja J Matarić. A formal analysis and taxonomy of task allocation in
multi-robot systems. The International journal of robotics research, 23(9):939–954, 2004.

[6] Joakim Moss Grutle. Wirom: a high-level mission planning system for heterogeneous multi-robot
simulations. Master’s thesis, University of Bergen, 2020.

[7] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A comprehensive taxonomy for
multi-robot task allocation. The International journal of robotics research, 32(12):1495–1512, 2013.

[8] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. Model-driven software develop-
ment approaches in robotics research. In Proceedings of the 6th International Workshop on Mod-
eling in Software Engineering, MiSE 2014, page 43–48, New York, NY, USA, 2014. Association
for Computing Machinery.

[9] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering : an international journal, 14(2):131–164,
2008.

[10] C.B. Seaman. Qualitative methods in empirical studies of software engineering. IEEE Transactions
on Software Engineering, 25(4):557–572, 1999.

10

	Introduction
	Background
	Motivation
	Contributions
	Research Questions and Methodology

	Background
	Robotics
	Model Driven Software Engineering

	Wirom2.0 Implementation
	Brief Overview
	Simpleactions
	Frontend: Web Interface
	Backend: Python Server
	Backend: Simulation
	Robotgenerator - A Domain Specific Language and its implementation
	Method
	Further planned work

	Results and Conclusions

