
EasyChair Preprint
№ 9410

Coding Sketch: Turn Your Sketch Designs into
Code

Ayush Gour, Sankalp Sudarsan Rajguru, V Shivanshu Yadav and
Shilpa Sharma

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 3, 2022

Coding Sketch: Turn Your Sketch Designs into Code

Ayush Gour, Sankalp Sudarsan Rajguru, V Shivanshu Yadav, Shilpa Sharma

Lovely Professional University

E-mail:ayushgour232@gmail.com, sankalprajgurur1221@gmail.com,

shivanshu.yadav04@gmail.com, shilpa.sharma@lpu.co.in

Abstract

It is an online application that essentially allows you to convert a hand-drawn drawing into HTML

code. Any hand-drawn plan may be instantly transformed into HTML code using artificial

intelligence. This strategy is unusual and unique. This study shows how several machine-learning

approaches may be crucial in building a model from scratch that can generate code from a user-

supplied picture. We demonstrate two ways to automate this process: conventional computer vision

approaches and state-of-the-art deep semantic segmentation networks. Finally, we release a dataset

for systems analysis and training.

Keywords: HTML, Deep Learning, Sketch-to-Code, Artificial Intelligence

Introduction

Web development is a multi-phase process. This also includes wireframe-based website design. The

front and back codes come next. Their demands are met by the developer's completely working and

enjoyable website. Every website begins with a fundamental concept and basic structure that may

be outlined in a wireframe. It supplies the necessary components and gives developers suggestions

for building a site structure. The responsibility of the developers is to create the boilerplate code that

sets everything up correctly. Like turning wireframes into HTML code, it takes a lot of time and

effort. Most boilerplate codes are now created by hand. Users now must write HTML code to

organize items on a web page. This forces users to spend precious resources and time on redundant

tasks. When the structure of web pages is the same, users are more likely to save a copy of the well-

before source code for reuse. Even though the code for the Html elements is the same, the boilerplate

script for web pages frequently differs. Such circumstances render the task unnecessary. However,

you may automate this procedure to help the world's web developers.

A machine learning model is just what we recommend using to make this process simpler. As with

components that identify text from the wireframe, it will be trained to recognize certain symbols and

shapes. The model is an outline picture—a web application's input. Processing the information is the

goal. Utilize the open-source and free Computer Vision Library to find every piece in a wireframe

(Open CV). The backend will have the relevant code for each recognized element. Once the items

on the sketch have been identified, the appropriate code is subsequently added to an HTML file. An

HTML file serves as the user's product.

Coding Sketch uses machine learning and artificial intelligence to convert a scribbled interface

design from an image to a valid HTML layout code. Learn more about how Coding Sketch converts

a handwritten graphic to HTML. Much imagination goes into the user interface design process,

which begins on a whiteboard where designers discuss ideas. After one design is created, it is often

photographed and manually converted into a functional HTML wireframe that can be seen in a web

browser. This requires work and slows down the design process. Instead, it uses artificial

intelligence, a web-based program that converts a handwritten user interface sketch from an image

to a valid HTML markup code.

Making a wireframe on paper to outline the interface's structure is a preliminary stage in the

development of an application (Pedro Campos and Nuno Nunes, 2007) and (James A. Landay,

1995). The problem for designers is turning their wireframe into code, which frequently entails

handing the design off to a developer who will then create the boilerplate graphical user interface

(GUI) script. This effort takes the developer a long time and is consequently expensive (T. Silva da

Silva et al, 2011). Prior research has been done on the following issues related to translating designs

into code: Digital drawings are transformed into application code using movements by SILK (J. A.

Landay, 2001). Many of these applications do detection and classification using traditional computer

vision algorithms. However, we have found a gap in the body of knowledge that addresses the issue

of excessive archiving. A program that converts wireframe designs into code. This program has

several advantages: Faster iteration: A wireframe may be transformed into a website prototype with

the help of simply the designer; accessibility: non-developers can construct apps. Allows developers

to concentrate on the application code rather than boilerplate GUI programming by removing the

demand for prototypes from the development process. We believe a unique deep-learning approach

to this problem might improve performance compared to standard computer vision approaches.

Literature review

To convert the wireframe setup into code, intelligent systems and the suggested model go through

the process of picture analysis and pattern recognition built on an ML model (Pedro Campos and

Nuno Nunes, 2007), (James A. Landay, 1995) and (T. Silva da Silva et al, 2011). It depicts the

tedious yet time-consuming job a UI designer performs while turning a Graphical User Interface

(UI) design into a programmed UI application. This process will be significantly sped up by an

automated system that can substitute human efforts for the simple implementation of UI ideas. The

publications that advocate for such a system emphasize using UI wireframes (Pedro Campos and

Nuno Nunes, 2007) rather than hand-drawn drawings as input. A platform-independent UI

representation object is the network's output (T. Silva da Silva et al, 2011). A dictionary of key-

value pairs is used to represent user interface components and their associated attributes. Our UI

parser uses this as input and generates code for many platforms. Because of its inherent platform

neutrality, the model can train once and provide UI prototypes for several platforms (J. A. Landay,

2001) and (Pedro Campos and Nuno Nunes, 2007). The design phase of a website takes much time,

but the systems do not always function as planned. For this reason, only a few libraries employ

specific libraries like OpenCV (Andrej Karpathy, 2014), which analyze images and other contours

to decrease noise and provide a foundation for precise picture analysis. Making mockups of

individual web pages, either by hand or with graphic design and specialist mockup production tools,

is the first step in designing and developing a website. Software programmers then transform the

mockup into structured HTML or another type of markup code. (James A. Landay, 1995) and (Pedro

Campos and Nuno Nunes, 2007). An industry partner undertook a user-centered concept creation

process for a Machine Learning (ML) based design tool. The final proposal uses ML to build

consistent wireframes by matching graphical user interface elements in paper sketches to their digital

equivalents (J. A. Landay, 2001) and (T. Silva da Silva et al, 2011). As soon as the photos and

patterns are identified, we can use the text detection method and built-in ML Model library (James

A. Landay, 1995) and (Andrej Karpathy, 2014) to separate the pictures from the text and then

develop the conversion model to provide the output (J. A. Landay, 2001). It might be difficult to

extract text from intricate photos or have more colour. Textual information found in photographs

may be used to structure, index, and consistently explain images. The text in each image is extracted

via detecting, localizing, tracking, removing, improving, and recognizing it (Oriol Vinyals et al,

2014). This document presents a system and technique for dynamically generating source code for

a software application from a collection of wireframe pictures. A series of wireframe pictures are

transmitted from an end user's device via a network to a wireframe recognition and analysis engine

(James A. Landay, 1995). The attributes that make up each wireframe in the collection of wireframe

pictures are determined by comparison with a model library and then recorded to a data storage. The

data store's contents are processed by an inference engine, which is guided by a base of knowledge

of wireframe design principles to create a set of wireframe components. A template engine

dynamically generates source code for the software program using a collection of graphical elements

and a bunch of Source templates. The whole output of source code is reduced into a single archive

folder and made available for download to the end user's device (James Lin et al, 2000). Once the

product has been formed, the HTML code must be converted. This must be done by creating the

HTML code from scratch using sophisticated approaches, which calls for a skilled developer. To

generate a personalized user interface, the program was constructed to transform user-generated

images into HTML code (James Lin et al, 2000). The ability to train pre-defined models using

machine learning is virtually shown in this notion. The user-provided data is reverse-engineered

using these models. A code that is generated using this idea will be more accurate. Additional

platforms can be added to the compatibility. This analysis shows that the deep learning technique

outperforms our traditional computer vision approach and concludes that deep learning is the most

effective strategy for future study (James Lin et al, 2000) and (T. A. Nguyen, 2015). The present

scenario addresses this reality and provides information on the automatic code-generation

approaches for using various inputs to generate code in different programming languages (Chao

Dong et al, 2015). These define the breadth of the available technology.

COMPUTER VISION AND TECHNIQUES

Image processing or technique accepts input from web cameras or real-world photos. Due to changes

in current across the camera sensor, these pictures frequently have Gaussian noise. Edge detection

(S. Singh and B. Singh, 2015), which we use for element detection, can perform poorly on noisy

images. Therefore, it is crucial to lessen this noise. Although denoising auto-encoders, a kind of deep

learning approach, are particularly good at removing noise, they are slower than kernel filtering

methods.

1. Colour Detection: in our technique, element detection is aided by colour detection. This section

explains many methods for identifying colours in visual media. However, we concentrate on

threshold-based detection since it is a valuable method for handling big, homogeneous colour blobs.

Red, Green, and Blue (RGB), often known as a colour space, are the three colour channels most

frequently used to describe digital pictures.

2. Edge Detection: we are interested in identifying components in wireframe drawings. The icons

for the wireframe elements mostly have straight edges. Therefore, we employ edge detection as a

crucial method for element discovery.

3. Segmentation: wireframe elements must first be discovered before they can be categorized. Since

a wireframe sketch will likely include several components, a technique for identifying element

boundaries is necessary. Numerous possible segmentation algorithms are available. Since our first

approach uses traditional computer vision methods, trainable segmentation will not be considered a

segmentation object for this approach.

4. Text Detection: we employ the stroke width transform in our algorithm to identify text from

drawings. It should be noted that SWT is not a text recognition program; instead, it is a quick,

lightweight, and language-independent scene text detector. SWT's quickness and linguistic

neutrality make it extremely useful for our technique.

Machine Learning Techniques

1. Deep Learning: this area of machine learning, also known as "deep learning", uses deep neural

networks with several hidden layers. Deep understanding has demonstrated phenomenal

performance in several sectors, frequently exceeding conventional approaches [7, 9]. Since this is

essentially a visual problem and deep learning has established itself as the gold standard for superior

performance in many vision problems.

2. TensorFlow: a free software library called TensorFlow exists. TensorFlow was initially created

by engineers and researchers working on the Brain Team of Google within Google's Machine

Intelligence research organization to conduct deep learning and machine learning research. Still, the

system is versatile enough to be used in a variety of other domains as well.

3. Keras: an open-source, Python-based high-level neural network framework called Keras is

powerful enough to operate with TensorFlow. It is designed to be user-friendly, expandable, and

modular, enabling quicker exploration with deep neural networks. It uses the Middleware library to

resolve low-level calculations because it cannot manage them.

4. K Nearest Neighbor: one of the most fundamental but crucial categorization methods in machine

learning is K-Nearest Neighbors. It falls under supervised learning and is heavily utilized in pattern

recognition, data mining, and intrusion detection.

5. OpenCV Python: openCV is a sizable open-source library for image processing, machine

learning, and computer vision. OpenCV supports Python, C++, Java, and many other programming

languages. It can analyze pictures and movies to find faces, objects, and even human handwriting.

All operations that can be performed with NumPy may be coupled with OpenCV.

Methodology and Model Specifications

The two objectives of this work are to a) develop a program that converts a wireframe into code; b)

assess the effectiveness of deep learning, and traditional computer vision approaches. Our program

was only allowed to operate on wireframes created using a black marker over a white backdrop. This

is reasonable because wireframes are frequently built on paper or whiteboards. Our software was

supposed to generate and display code instantly. We developed two strategies using traditional

computer vision and deep learning methods to accomplish the aim. This section explains our dataset

first, followed by our generic framework, which can produce the website using either way after

accepting a picture of the wireframe and pre- and post-processing. Then, we go over each step of the

approach. Traditional computer vision in this part, we go over our standard procedure for

transforming an image of a drawing into code, which mainly relies on computer vision. This strategy

includes four essential phases: Computer vision may be used for element detection to identify and

categorize the locations, dimensions, and kinds of every element in the drawing. Necessary for

generating identical HTML components. Create a hierarchical tree using the list of all items using

structural detection. Necessary for accurately replicating the HTML element tree. Classify the

various sorts of container structures, such as headers and footers.

Dataset Training

It would be best to have a big dataset with plenty of examples to use deep learning techniques. The

dataset includes code and trained drawings. Human blunders and divergent viewpoints on the proper

drawing method might help determine the dataset's quality. We consider three methods for

generating the dataset: finding websites and manually drawing them, manually drawing websites,

and manually creating matching websites, and finding websites and automatically drawing them

(James A. Landay, 1995). To maximize accuracy on our test set, we tuned our hyper-parameters to

our dataset using standard methodologies and trial and error. Two MLPs coupled together make up

our model. One MLP is trained and taught to categorize using the container's x, y, width, and height.

The other is taught to categorize using the sub-element element's kinds. The categorical element

types are binarized using one hot encoding. The final classification is created by combining both

results into a final MLP (Figure 1). This model was created to give the network the best possible

chance of success. We considered the Tanh (Nasser M Nasrabadi, 2007) and ReLU (Vinod Nair and

Geoffrey E Hinton, 2010) activation functions for hidden layers.

Figure 1: (Dataset Training)

Conclusion

To create a tool that converts a wireframe design into a website and to compare deep learning to

traditional computer vision techniques for this purpose. The study that has already been done has

been expanded in this work to include the innovative field of wireframe-to-code conversion.

Wireframes are converted into websites using an end-to-end framework that generates outcomes

instantly. We describe how our framework was created to be simple to use: by enabling the use of

photographs taken using webcams or mobile devices, hosting the generated webpage for

collaboration, and employing widely used wireframe symbols to reduce the need for special training.

A dataset and tools for recreating or expanding the dataset have been available. Two strategies have

been devised for us: a traditional computer vision strategy and a 49-strategy utilizing deep feature

extraction networks. Our deep learning method employs an innovative approach by training on

fabricated wireframe designs for websites. To assess how successfully a system converts a wireframe

that has been sketched into a website, we lastly developed repeatable empirical approaches. As a

result, we believe we have accomplished our two objectives. According to our evaluation, both

techniques we created did not perform well enough to be employed in production contexts. However,

we contend that our dataset, infrastructure, and assessment methods will significantly impact the

area of design-to-code methodologies. Our dataset sketching method makes it possible to do

empirical evaluations on converting drawings into code, which was impossible before our study.

Additionally, we were not knowledgeable of any deep learning applications in this issue area. We

anticipate that our publication and the availability of our dataset and methodology will encourage

more research in this area.

References

Pedro Campos and Nuno Nunes. "Practitioner Tools and Workstyles for User-Interface Design". In:

24 (Feb. 2007), pp. 73–80.

James A. Landay and Brad A. Myers. "Interactive Sketching for the Early Stages of User Interface

Design". In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI

'95. Denver, Colorado, USA: ACM Press/Addison-Wesley Publishing Co., 1995, pp. 43–50. ISBN:

0-201-84705-1. DOI: 10 . 1145 / 223904 . 223910. URL: HTTP :

//dx.doi.org/10.1145/223904.223910.

T. Silva da Silva et al. "User-Centered Design and Agile Methods: A Systematic Review". In: 2011

Agile Conference. Aug. 2011, pp. 77–86. DOI: 10.1109/AGILE.2011.24.

J. A. Landay and B. A. Myers. "Sketching interfaces: toward more human interface design". In:

Computer 34.3 (Mar. 2001), pp. 56–64. ISSN: 0018-9162. DOI: 10.1109/2.910894.

James Lin et al. "DENIM: Finding a Tighter Fit Between Tools and Practice for Web Site Design".

In: (Apr. 2000), pp. 510–517.

T. A. Nguyen and C. Csallner. "Reverse Engineering Mobile Application User Interfaces with

REMAUI (T)". In: 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE). Nov. 2015, pp. 248–259. doi: 10.1109/ASE.2015.32.

Chao Dong et al. "Image Super-Resolution Using Deep Convolutional Networks". In: CoRR

abs/1501.00092 (2015). arXiv: 1501.00092. url: http://arxiv.org/abs/1501.00092. .

Oriol Vinyals et al. "Show and Tell: A Neural Image Caption Generator". In: CoRR abs/1411.4555

(2014). arXiv: 1411.4555. url: http://arxiv.org/abs/1411.4555.

Andrej Karpathy and Fei-Fei Li. “Deep Visual-Semantic Alignments for Generating Image

Descriptions”. In: CoRR abs/1412.2306 (2014). arXiv: 1412.2306. url: http://arxiv.

org/abs/1412.2306.

S. Singh and B. Singh. "Effects of noise on various edge detection techniques". In: 2015 2nd

International Conference on Computing for Sustainable Global Development (INDIACom). Mar.

2015, pp. 827–830.

Nasser M Nasrabadi. "Pattern recognition and machine learning". In: Journal of electronic imaging

16.4 (2007), p. 049901

Vinod Nair and Geoffrey E Hinton. "Rectified linear units improve restricted Boltzmann machines".

In: Proceedings of the 27th international conference on machine learning (ICML10). 2010, pp. 807–

814.

