
EasyChair Preprint
№ 2787

Data Pre-process Facilitating Efficient K-NN
Queries in Spatial Database

Sheng Zhou and Jonathan Simmons

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 26, 2020

GISRUK 2020, 21st - 24th April 2020, Birkbeck and UCL, London, UK

Data Pre-process Facilitating Efficient K-NN Queries

in Spatial Database

Sheng Zhou*1 and Jonathan Simmons †1

1 Data Science and Analytics Team

Corporate Data Office, Ordnance Survey

21-24 April, 2020

Summary

This paper presents 2DMAX, a method to improve performance of large-scale repeated K-NN

queries. Distances from a source point to its nearest neighbours are pre-computed and stored to

facilitate re-use of query results for multiple queries without additional database access. For certain

application scenarios this method may offer performance improvement up to one magnitude over

conventional methods.

KEYWORDS: K-NN, nearest neighbour query, spatial query, spatial database, big data process.

1. Introduction

The K-NN (K nearest neighbours) query is one of the most frequently performed spatial database

queries. Single K-NN query is generally regarded as a solved problem and most spatial database

servers have been highly optimised to handle K-NN queries efficiently via utilisation of appropriate

spatial indices such as R-Tree (e.g. Roussopoulos N et al). However, for certain use cases it is still

possible to further improve K-NN query performance, for example:

• Generate an inventory of 6-nearest schools for all 28.957 million GB addresses;

• Real-time updates of 5-nearest restaurants for a user on the move

In this paper we focus on point-point queries although some techniques presented here may be

extended to support linear and areal objects and queries.

In K-NN queries the range of spatial search to be performed is unknown prior to query and depends

on query location and data distribution. The search process must find at least k data points, and ensure

no other data points can be closer to the query location than the found k points.

1.1. K-NN of queries in proximity

Given a data point set Pi and a query location Q0 (Figure 1A) with known K-NN range of RP (i.e. its

K-NN is within the circle CP with radius RP centred at Q0, K = 6, and for simplicity Q0 is coincident

to a data point P0), for a new query Q (Figure 1B) which is DPQ away from Q0, the K-NN of Q is

within the circle CQ with radius RQ = RP + DPQ centred at Q. A spatial query Distance(x, Q) ≤ RQ will

guarantee to retrieve at least K objects (i.e. K-NN of Q0). If more data points are retrieved, simple

distance comparison will find the nearest K data points for Q (Sankaranarayanan J et al 2007).

1.2. The 2DMAX Method

* Sheng.Zhou@os.uk
† Jonathan.Simmons@os.uk

The above observation may be extended to a query point set QS={Q1| Distance(Q1, Q0) ≤ DPQMAX}. In

this case (Figure 2), the K-NN of any Q1 is within the circle CPMAX with radius RMAX = RP + 2DPQMAX

centred at Q0. Consequently, if we make a single spatial query to retrieve all data points in CPMAX as

the candidate result set Sq, the K-NN of any Q1 may then be obtained from Sq without further access

to the database server.

Figure 1 K-NN of query locations in proximity

P
0

P
1

P
2

P
3

P
4

P
5

R
P

C
P

Q
0

Q

P
0

P
1

P
2

P
3

P
4

P
5

R
Q
 = R

P
 + D

PQ

C
P

C
Q

D
PQ

A B

Q
0

Q
1
 R

MAX
= R

QMAX
 + D

PQMAX

 = R
p
 + 2D

PQMAX

D

PQMAX

P
0

P
1

P
2

P
3

P
4

P
5

R
QMAX

= R
P
 + D

PQMAX

C
P

C
Q

C
PMAX

C
QMAX

Figure 2 Q0 with known K-NN and adjacent query point Q1 in general position

Q
0

Query space may be partitioned into regions in some way (e.g. using Voronoi diagram). Each region

is associated with a query pivot Q0 (conveniently but not necessarily coincident to a data point) and

multiple RP for various K. All query points falling into a region forms the QS of that region as

described above, and the K-NN of these query points may then be computed accordingly. We refer to

this approach as the 2DMAX method.

2. Efficient Large-scale K-NN Computation Using 2DMAX method

In this section we present several strategies for computing K-NN (K > 1) in data point set S for a

query set Q under different circumstances.

Figure 3 Query points (blue square), source points (large red diamond) and their Voronoi polygons

2.1 Small S, Large Q, Computed K-NN

This is the scenario in the 6-nearest school use case. The source dataset (about 24k schools) is small

compared to query points (near 29 millions addresses).

Stage 1: Data point pre-process

• Construct Delaunay triangulation DT(S) on points in S;

• For point s0 ϵ S, find its K-1 nearest neighbour si=2, K and store Rp_i = Distance(s0, si)

o given k and point s0 in DT

▪ Find points s1j connected to s0 by DT edges, with maximum distance to s0 as

Lmax

• Search all s1j to find connected points, count the number of points

within Lmax from s0

• New points within Lmax from s0 will be searched recursively for

connected points

▪ If the number of current within Lmax point ≥ k, return and compute R;

otherwise, use the maximum distance of all current points to s0 as new Lmax

and repeat the previous two steps.

o Multiple Rp are stored to support queries of various k ≤ K

• Construct Voronoi diagram VD(S) of S from DT(S) where VDC(s) is the Voronoi

polygon associated with point s ϵ S (Figure 3). Here VDC(s) is the partition and s is the

query pivot.

Stage 2: Query point set partition and K-NN computation:

• Given Kq ≤ K, for each point s ϵ S, retrieve polygon VDC(s) and select query point set Qs

= {q|q ϵ Q and VDC(s).Contains(q) = True}

• If Kq = 1 (1-NN, the nearest neighbour), s is the nearest neighbour for all points in Qs.

• if Kq > 1, retrieve the corresponding Rp stored in stage 1, compute DPQMAX =

Max(Distance(q, s)) and perform a spatial query to retrieve candidate result set Sq={si|si ϵ

S and Distance(si, s) ≤ Rp + 2DPQMAX}.

o For each query point q in Qs, compute its distances to all points in Sq to find its

nearest Kq-NN. Note that the two-point K-NN result may be used here if necessary to

(potentially) further speed up the process (i.e. any P for Distance(Q, P) > Rp + 2DPQ

may be disregarded without comparison).

o Max(Distance(s, vvdc)) may be used as DPQMAX where vvdc are vertices of the Voronoi

polygon VDC(s). This will eliminate a lot of distance computation (make sense if it is

expensive) but may result in an increased query range (more points in Sq).

Note that the second stage of process is inherently parallel and suitable for distributed computation.

2.2 Small S, Multiple Real Time Queries

In this scenario of moving query point, the query points are unknown prior to query so we have to use

Max(Distance(s, vvdc)) as DPQMAX. Subsequently the candidate result set Sq may be selected in the

same manner as stage 2 in 2.1.

Figure 4 Voronoi polygons clipped by the concave hull (overlaying gridded coastline)

For the entire duration while the query point (e.g. a vehicle) is inside a VDC(s), the candidate result

set Sq will be retrieved once only to compute multiple K-NN in real time.

Due to the manner the Voronoi polygons are generated, on the boundary of the dataset the DPQMAX

distance may become (unnecessarily) very large, resulting in many irrelevant data points being

retrieved. A simple solution is to use concave hull to clip the boundary Voronoi polygons to reduce

their size and subsequently DPQMAX (Figure 4).

2.3 Large S, very large Q

In this scenario similar to Lu et al (2012), S is also very large (e.g. find 6 nearest lamp posts for all

households in GB). It is not feasible to create VD for the whole source dataset S and a sampling

process is required.

• Assuming datasets are stored in an indexed spatial database, given a sample rate r ϵ (0.0, 1.0),

n = S.size()*r points will be randomly selected from S to form a sample set S1.

• For each point s in S1,

o its K-1 nearest neighbours are discovered via conventional K-NN query on S and Rp_i

(i = 2, K) are calculated;

o Select query points falling into VDC(s) to generate query subset Qs and compute

DPQMAX;

o Select source points into a sub source set Ss = {si | si ϵ S and Distance(si, s) ≤ Rp_K +

2DPQMAX}.

o Now the K-NN of every point in Qs are contained in Ss. We may then apply the

algorithm in 2.1 to Qs and Ss. If Ss is still too large, additional levels of the same

sampling process may be performed on Ss.

If size of S is comparable to Q, improvement may not be significant. Nevertheless, this method may

be useful for data partition in a parallel computing environment.

3. Experiment results

We performed experiments of 2DMAX-based KNN on the 6-nearest school problem. The number of

addresses is 28,597,000 and the number of schools is 23,855. The programme is written in Java

connected to a local PostGIS server via JDBC.

Total process time is 25.9 hours on a ThinkPad W530 laptop with 16GB RAM and Intel Core i7-

3820QM processor (in addition to about a minute to pre-process school data, compute distances from

each school to 5 nearest other schools and generate Voronoi diagram for all schools). This equals to

about 3.22 seconds per 1000 addresses.

In comparison, single query making use of pre-process results (as shown in Figure 1-B) on 100

random selected Voronoi diagram cells performs at 19.43 seconds per 1000 addresses. It is 28.37

seconds for PostGIS’ own KNN (using ‘order by’ and ‘limit’).

We also tested a pure SQL solution on one region with 681 addresses, the result equals to 52.81

seconds per 1000 addresses (which is a surprise, because the process runs on the server side only).

4. Summary

For application scenarios described in this paper, the 2DMAX approach significantly improves the

performance of batched process of large query set (our main concern) by near one magnitude. Clear

(but small) improvements is observed on single query over built-in query optimiser. This method may

be extended to higher dimensional and non-spatial data.

Remarks

A patent application (19183722.8 - 1222) based on this research has been submitted to European

Patent Office.

5. Biography

Sheng Zhou is a Senior Data Scientist at Ordnance Survey. He obtained his PhD in GIS/Urban

Planning from Cardiff University. Prior to joining OS Research, he participated in research projects

on multiscale spatial database and multi-agent system for active maps at Glamorgan and Cardiff

universities. His research interests include machine learning algorithms and applications on spatial

data; computational geometry; spatial databases; spatial analysis; map generalisation.

Jonathan Simmons is the Head of Data Science and Analytics at Ordnance Survey Data Office.

References

Lu W, Shen Y, Chen S and Ooi BC (2012). Efficient Processing of k Nearest Neghbor Joins using

MapReduce. Proceedings of the VLDB Endowment, 5(10).

Roussopoulos N, Kelley S, Vincent, F D R. (1995). Nearest neighbor queries. Proceedings of

SIGMOD '95. p.71

Sankaranarayanan J, Samet H and Varshney A (2007). A fast all nearest neighbour algorithms for

applications involving large point-clouds. Computers & Graphics, 31, 157-174.

